12 K AT E D R A F I Z Y K I S T O S OWA N E J



Podobne dokumenty
WYDZIAŁ LABORATORIUM FIZYCZNE

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

12 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I

Człowiek najlepsza inwestycja FENIKS

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

MECHANIKA PŁYNÓW Płyn

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY Z PRAWA STOKESA

Wyznaczanie gęstości i lepkości cieczy

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.

WYMAGANIA EDUKACYJNE Z FIZYKI

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU

WYZNACZANIE ROZMIARÓW

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie

Wyznaczanie współczynnika lepkości cieczy.

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA

Ćwiczenie 402. Wyznaczanie siły wyporu i gęstości ciał. PROSTOPADŁOŚCIAN (wpisz nazwę ciała) WALEC (wpisz numer z wieczka)

8. OPORY RUCHU (6 stron)

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

DOŚWIADCZENIE MILLIKANA

mgr Anna Hulboj Treści nauczania

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych

WOJEWÓDZKI KONKURS FIZYCZNY

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Wyznaczanie współczynnika lepkości cieczy za pomocą wiskozymetru Höpplera (M8)

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Schemat punktowania zadań

Świat fizyki Gimnazjum Rozkład materiału - WYMAGANIA KLASA I

WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ. Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową.

PF11- Dynamika bryły sztywnej.

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Ma x licz ba pkt. Rodzaj/forma zadania

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI POWIETRZA

Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń:

DYNAMIKA SIŁA I JEJ CECHY

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich

ZADANIA Z FIZYKI NA II ETAP

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Schemat punktowania zadań

Wyznaczanie współczynnika lepkości cieczy oraz zależności lepkości od temperatury

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów. Schemat punktowania zadań

Ćwiczenie nr 43: HALOTRON

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Badanie lepkości cieczy

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp

1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15)

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY

Laboratorium. Hydrostatyczne Układy Napędowe

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

FIZYKA. karty pracy klasa 3 gimnazjum

TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

ROZWIĄZUJEMY ZADANIA Z FIZYKI

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Wyznaczanie stosunku e/m elektronu

Miarą oddziaływania jest siła. (tzn. że siła informuje nas, czy oddziaływanie jest duże czy małe i w którą stronę się odbywa).

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA.

Zakład Dydaktyki Fizyki UMK

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z FIZYKI DLA KLASY I GIMNAZJUM

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Wyznaczenie długości fali świetlnej metodą pierścieni Newtona

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza

Transkrypt:

12 K AT E D R A F I Z Y K I S T O S OWA N E J P R A C O W N I A F I Z Y K I Ćw. 12. Wyznaczanie współczynnika lepkości dynamicznej cieczy metodą Stokesa Wprowadzenie Ciecze stanowią jedną z trzech faz, obok gazu i ciała stałego, w jakich według tradycyjnego podziału mogą występować substancje w przyrodzie. Jej cechą makroskopową jest zjawisko płynięcia pod wpływem siły zewnętrznej. To właśnie dzięki niemu ciecz wlana do naczynia zawsze wypełni dolną jego część i wytworzy płaską powierzchnię swobodną pod wpływem pola grawitacyjnego. Czas potrzebny do dostosowania początkowego kształtu wlanej cieczy do naczynia zależy głównie od jej parametru fizycznego lepkości, która decyduje jak szybko może ciecz płynąc pod wpływem siły zewnętrznej, tu swojego ciężaru. Różnicę łatwo można zaobserwować, gdy mamy do czynienia z cieczami tak różnymi pod względem lepkości jak woda czy płynny miód. Ruch fragmentów cieczy podczas jej przepływu może mieć charakter ruchu burzliwego lub laminarnego/warstwowego. W tym pierwszym przypadku ruch cieczy jest niestabilny w czasie, gdyż tworzą się w nim przemieszczające się i nietrwałe wiry. Dzięki tym wirom zachodzi intensywne mieszanie się różnych obszarów cieczy. W drugim przypadku wiry nie powstają, a sam przepływ odbywa się stabilnymi w czasie strugami. W przypadku płynięcia cieczy po płaskiej powierzchni, takie strugi mają kształt warstw równoległych do tej powierzchni. Ruch laminarny cieczy pokazany na rys. 1 pozwala sformułować ważną zależność definiującą lepkość. Jeśli siła zewnętrzna działa na powierzchnię S, np. folii położonej na powierzchnię cieczy, to zacznie ona poruszać się wraz z najwyższą warstwą cieczy z prędkością v0, a głębsze warstwy mają coraz mniejszą prędkość aż do wartości zerowej przy podłożu (patrz rys.1). Prędkość warstw cieczy jest wprost proporcjonalna do odległości od podłoża, więc mamy do czynienia ze stałym gradientem prędkości w kierunku pionowym v/y. Ma on wartość v0/d, gdzie d jest grubością warstwy cieczy. Siła potrzebna do wywołania takiego ruchu cieczy wynosi Δv F = η S, Δy gdzie jest współczynnikiem lepkości dynamicznej cieczy, której jednostką jest N s/m 2 czyli Pa s. Siła z jaką działa ciecz na przesuwaną powierzchnię S ma charakter sił tarcia, gdyż zawsze skierowana jest przeciwnie do prędkości tej powierzchni. Powstaje ona na skutek wzajemnego oddziaływania warstewek cieczy (np. A, B i C na rys. 1), na jakie dzielimy myślowo całą warstwę. Zawsze warstewka wolniejsza będzie spowalniała ruch szybszej (np. B spowalnia A) a sama ciągnie do przodu niższą, wolniejszą warstwę (np. B pociąga C). d S v 0 A B C F (1) Rys. 1. Rozkład prędkości w warstwie cieczy o grubości d na której górną powierzchnię S działa siła F. 1

Istnienie sił oporu między przesuwającymi się warstwami można wytłumaczyć analizując ruch cząsteczek cieczy. Mają one w cieczach dość dużą swobodę przemieszczania się w odróżnieniu od ciał stałych, gdzie jest on praktycznie niemożliwy. Wynika to z różnej budowy wewnętrznej tych faz, gdyż obydwa upakowania cząsteczek są niemal równie gęste, ale ich uporządkowanie jest bardzo różne w ciałach stałych obejmuje całą objętość ciała, a w cieczach tylko najbliższe cząsteczki. Dlatego też tylko cząsteczki w cieczach mogą w czasie zderzeń z sąsiadami podczas drgań termicznych zmieniać swoje położenie, gdy między nieregularnie rozmieszczonymi cząsteczkami pojawia się puste miejsce do obsadzenia. Takie zmiany położenia prowadzą do chaotycznego ruchu cząsteczek w obrębie cieczy czyli ich dyfuzji, charakteryzowanej przez współczynnik dyfuzji D. Zależy on silnie od temperatury bezwzględnej T cieczy i wartości jej energii aktywacji Ea potrzebnej do wytworzenia miejsca, w które wejdzie dyfundująca cząstka, co wyraża zależność D T exp E / a kt (2) gdzie k to stała Boltzmanna. Na skutek takiego ruchu dyfuzyjnego cząsteczki z warstwy poruszającej się/płynącej wolniej mogą przejść do tej szybszej, np. z B do A na rys. 1. Tuż po przejściu mają mniejszą prędkość w kierunku przepływu. Żeby uzyskały prędkość równą tej, jaką mają jej nowi sąsiedzi z warstwy A, trzeba ich prędkość a więc i pęd w kierunku przepływu zwiększyć. Robi to siła zewnętrzna wymuszająca przepływ. Bezpośrednim dowodem na związek zjawiska lepkości i dyfuzji w cieczach jest równanie Einsteina-Stokesa Łącząc zależności 2 i 3 uzyskujemy Dη kt = const, η= A exp E / a kt, gdzie A jest pewną stałą. Oznacza to, że wartość lepkości dynamicznej silnie rośnie wraz ze wzrostem Ea (zależy głównie od rodzaju cieczy a w mniejszym stopniu od ciśnienia w cieczy) i maleje ze wzrostem temperatury. Bardzo wyraźnie widać to dla cieczy, których energia aktywacji jest duża jak np. dla smoły, której lepkość zmienia się gwałtownie w przedziale temperatur np. od 0 o C do 100 o C. Metoda pomiaru (3) (4) Pomiar współczynnika lepkości dynamicznej można oprzeć na zjawisku oporu dynamicznego jaki wywiera ciecz na poruszające się w niej ciała. W metodzie Stokesa wykorzystuje się ciała w kształcie kuli o znanym promieniu r. Gdy taka kulka porusza się w cieczy z prędkością v na tyle małą, że ruch cieczy wokół kulki będzie laminarny, działa na nią siła oporu o wartości (5) nazywana siłą Stokesa od nazwiska brytyjskiego odkrywcy tego prawa George'a Stokesa z połowy XIX w. Znak,, w równaniu 5 oznacza, że siła oporu jest zawsze przeciwnie skierowana do prędkości kulki, co jest charakterystyczne dla sił tarcia. Z wzoru 5 wynika, że kulki o większym promieniu lub większej prędkości będą doznawały większego oporu ośrodka. Żeby określić wartość Fo i z równania 5 obliczyć wykorzystuje się ruch kulek o gęstości znacznie większej od gęstości cieczy, do której są wrzucane. Jak pokazuje to rys. 2, na taką kulkę w cieczy działają trzy siły: ciężkości Fg, oporu Fo (siła Stokesa) i wyporu Fw. Początkowo siły te nie równoważą się, gdyż siła Stokesa jest zbyt mała ze względu na małą prędkość v, więc kulka porusza się ruchem przyspieszonym. Po krótkim czasie osiąga jednak taką prędkość, że siła wyporu i siła Stokesa równoważą ciężar, tzn. Fo = 6πηrv 2

F F o w F i wtedy jej ruch staje się jednostajny. Z równania 6 możemy obliczyć Fo, gdyż pozostałe dwie siły zależą od łatwych do określenia wielkości: objętości kulki V i jej gęstości k oraz gęstości cieczy c. Siła ciężkości wynosi Fg = mg = kvg, gdzie masa kulki m i przyspieszenie ziemskie g = 9,81 m/s 2. Zgodnie z prawem Archimedesa, siła wyporu cieczy jest równa Fw = cvg. Wprowadzając wyrażenia na te dwie siły do przekształconego równania 6 w postaci Fo = Fg Fw, otrzymujemy Fo =Vg ρ k ρ c Po podstawieniu za objętość kuli V = 4r 3 /3 a za Fo siłę Stokesa daną zależnością 5, mamy równanie w postaci g 4 3 6πηrv = πr gρ k ρc. 3 Uwzględniając, że prędkość ruchu kulki jest stosunkiem drogi S pokonanej przez nią w ruchu jednostajnym w czasu t czyli v = S/t, możemy już obliczyć współczynnik lepkości dynamicznej ρk ρc t. 2r 2 g η= 9S Przy założeniu, że gęstości kulki i cieczy są znane, obliczenie z tego wzoru wymaga zmierzenia promienia kulki, długości drogi oraz czasu potrzebnego na jej przebycie. (6) (7) (8) (9) Rys. 2. Siły działające na kulkę spadającą w cieczy wlanej do cylindra o promieniu R. Istnieje też druga, dokładniejsza metoda pomiaru współczynnika lepkości, która tym różni się od poprzedniej, że wykorzystuje nieco inną postać równania 5. Uwzględnia ona fakt, że ruch kulki odbywa się w cieczy ograniczonej ściankami cylindra, a nie w nieograniczonej objętości cieczy. Trzeba więc przyjąć, że ciecz opływając kulkę musi mieć prędkość zerową przy ściankach cylindra, co utrudnia jej przepływ i zwiększa dlatego wartość siły oporu. Zakładając, że ruch kulki odbywa się wzdłuż osi cylindra o promieniu R, należy wprowadzić poprawkę do wzoru 5 zaproponowaną przez Ladenburga tak, że przyjmuje on postać r Fo = 6πηrv1+ 2,4. (10) R Taka poprawka oznacza, że wzór do obliczania współczynnika lepkości przyjmuje teraz postać ρk ρc t. 2r 2 g η = (11) r 9S1+ 2,4 R Oznacza to, że poza pomiarami r, t i S, należy jeszcze zmierzyć średnicę wewnętrzną cylindra R. 3

Wykonanie zadania Rys. 3. a) Wygląd układu pomiarowego z przyrządami potrzebnymi do pomiaru: cylinder z badaną cieczą, szalka Petriego z kulkami i pęsetą (suchą) do manipulowania nimi, lampka mikroskopu, mikroskop ze szkiełkiem mikroskopowym z wgłębieniem, pokrywka z cieczą i pęsetą do zamoczenia kulek, suwmiarka, przymiar liniowy, stoper. b) W powiększeniu pokazany sposób pomiaru wewnętrznej średnicy cylindra. METODA I (bez poprawki Ladenburga) Skompletować zestaw przyrządów pokazany na rys. 3a. Ciecz do badania wybiera prowadzący. Przygotować mikroskop do pracy. W tym celu ustawić szkiełko mikroskopowe na stoliku mikroskopu i zamocować go stabilnie uchwytami stolika. Przesuwając stolik mikroskopu pokrętłami na stoliku (mikroskop czarny) lub samo szkiełko mikroskopowe po stoliku (mikroskop biały), ustawić najniższą część wgłębienia szkiełka na osi obiektywu. Włączyć lampkę i skierować wiązkę światła na wklęsłe lusterko mikroskopu. Obracając lusterko ustawić go tak, aby światło oświetlało wgłębienie szkiełka mikroskopowego. Wybrać dowolną kulkę z szalki chwytając ją suchą pęsetą i przenieść do wgłębienia szkiełka. UWAGA: pomyłkowe użycie tu zamoczonej w cieczy pęsety spowoduje zabrudzenie szkiełka mikroskopu, co popsuje ostrość obrazu kulki w mikroskopie. Przesuwając szkiełko mikroskopowe ustawić je tak, aby cała kulka była dobrze widziana na tle skali okularu. Odczytać jej średnicę 2r a wynik zapisać w działkach skali. Zmierzoną kulkę przenosimy suchą pęsetą i wrzucamy do pokrywki z cieczą. Korzystając z drugiej pęsety, zamoczyć dokładnie kulkę, aby wyeliminować ewentualne pęcherzyki powietrza doczepione do kulki. Zamoczoną kulkę przenosimy do górnego otworu cylindra i wrzucamy na jego osi, w czym pomaga specjalny otworek w pokrywce. Mierzymy stoperem czas t spadania kulki na drodze między dwoma okrężnymi nacięciami lub cienkimi drutami na obwodzie cylindra w górnej i dolnej jego części. UWAGA: Gdyby kulka wyraźnie odchylała swój ruch od osi cylindra ku ściankom, należy sprawdzić pion cylindra na wskaźniku przy cylindrze i ewentualnie skorygować jego ustawienie pokręcając nóżkami podstawy cylindra. Powtórzyć czynności od punktu 3 do 7 wybierając min. 8 kul, najlepiej różnej wielkości. Zmierzyć przymiarem liniowym odległość S między nacięciami/drutami. Odczytać na termometrze ustawionym na stoliku temperaturę powietrza w laboratorium i przyjąć ją jako temperaturę cieczy. 4

Wpisać uzyskane dane do tabeli pomiarowej. Korzystając ze skali mikroskopu podanej poniżej, obliczyć średnicę kulki w metrach. Na podstawie uzyskanych wartości pomiarów, ze wzoru 9 obliczyć szukaną wartość współczynnika lepkości dla każdej użytej kulki i obliczyć ich wartość średnią śr. Dyskusję niepewności pomiaru przeprowadzić najlepiej metodą logarytmiczną zastosowaną do wzoru 9 przyjmując, że jest funkcją trzech wielkości obarczonych niepewnością pomiarową: r, t, i S. Obliczenia najlepiej przeprowadzić dla tego pomiaru/ kulki, który dał wynik najbardziej zbliżony do wartości średniej śr. METODA II (z poprawką Ladenburga) 1. Wykonujemy czynności i pomiary identycznie jak w Metodzie I w punktach 1-9. Dodatkowo mierzymy średnicę wewnętrzną 2R cylindra przy pomocy suwmiarki po zdjęciu pokrywki cylindra z cieczą (patrz rys. 3b). Żeby uwzględnić możliwość, że jej przekrój różni się nieco od kołowego, robimy to kilkakrotnie (3-4 razy) za każdym razem przykładając ją pod różnymi kątami. 2. Dokonujemy obliczeń dla każdej użytej kulki wykorzystując wartość średnią R i wzór 11. 3. Dyskusję niepewności pomiaru przeprowadzić metodą różnicową lub różniczkową zastosowaną do wzoru 11 przyjmując, że jest funkcją czterech wielkości obarczonych niepewnością pomiarową: r, t, R i S. Obliczenia najlepiej przeprowadzić dla tego pomiaru/ kulki, który dał wynik najbardziej zbliżony do wartości średniej śr. W obliczeniach przyjąć wartości: k = 11340 kg/m 3, c = 1264 kg/m 3 dla gliceryny (15 o C), 1261 kg/m 3 dla gliceryny (20 o C), 1258 kg/m 3 dla gliceryny (25 o C), c = 800 kg/m 3 dla oleju parafinowego. Skala mikroskopu czarnego 32,78 m/dz dla obiektywu 5:1 i okularu 5 14,08 m/dz dla obiektywu 10:1 i okularu 5 Skala mikroskopu białego 14,9 m/dz dla obiektywu 4/0.25 i okularu B1 18,3 m/dz dla obiektywu 4/0.25 i okularu B4 Tabela pomiarowa Uwaga: w metodzie I kolumnę 2R pomijamy. Rodzaj cieczy Lp. 1 2 3 4 5 6 7 8 2r [dz] r [10-3 m] t [s] 2R [10-2 m] S [m] k [kg/m 3 ] c [kg/m 3 ] [Pa s] śr [Pa s] 5

Zagadnienia do kolokwium: 1. Lepkość cieczy zjawisko i definicja współczynnika lepkości dynamicznej. 2. Ruch laminarny i burzliwy cieczy. 3. Wyjaśnienie zjawiska lepkości na gruncie budowy wewnętrznej cieczy. 4. Rola dyfuzji w zjawisku lepkości cieczy. 5. Ruch kulki w cylindrze z cieczą z opisem działających na nią sił. 6. Prawo Stokesa bez i z poprawką Ladenburga. 7. Wyprowadzić wzór końcowy. 8. Wymienić etapy wykonywania ćwiczenia. Literatura: J. Massalski, M. Massalska, Fizyka dla inżynierów, Część I - Fizyka klasyczna, (Wydawnictwo Naukowo-Techniczne, Warszawa, 2005) rozdz. 8. M. A. Herman, A. Kalestyński, L. Widomski, Podstawy fizyki (PWN, Warszawa, 1995) rozdz. 15, 6.1. B. M. Jaworski, A. A. Piński, Elementy fizyki, Tom 1 (PWN, Warszawa, 1979) 11.7 i 11.8. H. Szydłowski, Pracownia fizyczna, (Wydawnictwo Naukowe PWN, Warszawa, 1997) rozdz. III 9.2. Opiekun ćwiczenia: dr Wiesław Polak 6