Fizyka, technologia oraz modelowanie wzrostu kryształów Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 0-42 Warszawa, ul Sokołowska 29/37 tel: 88 80 244 e-mail: stach@unipress.waw.pl, mike@unipress.waw.pl Zbigniew Żytkiewicz Instytut Fizyki PAN 02-668 Warszawa, Al. Lotników 32/46 E-mail: zytkie@ifpan.edu.pl Wykład 2 godz./tydzień wtorek 9.5.00 Interdyscyplinarne Centrum Modelowania UW Budynek Wydziału Geologii UW sala 3075 http://www.icm.edu.pl/web/guest/edukacja http://www.unipress.waw.pl/~stach/wyklad_ptwk_2009
Wykład 4. Równowagowe własności powierzchni krystalicznych Fazy skondensowane (stała, ciekła) ujemna entalpia układu Energia oddziaływania np. potencjał Lennarda-Jonesa (gazy szlachetne).00 0.75 0.50 0.25 E ( r) = ε r σ 2 r σ 6 V/ε 0.00-0.25-0.50-0.75 -.00 0.8.0.2.4.6.8 2.0 2.2 2.4 2.6 2.8 3.0 r/σ Do entalpii układu (jego energii wiązania) daje wkład wiele warstw atomowych.
Własności energetyczne warstw powierzchniowych Gęstość oraz energia oddziaływania zmienia się w sposób ciągły Energia Gęstość Grubość warstwy powierzchniowej może być bardzo różna, jednak w wielu przypadkach, np. kryształy półprzewodników lub kryształy jonowe, może to być wiele warstw atomowych. Stosuje się wiele różnych przybliżeń do opisu własności powierzchni, jednak najprostszym jest opis Gibbsa
Model powierzchni Gibbsa Model Gibbsa jednorodne własności faz objętościowych i dodatkowa gęstość (masy, energii, itp.) przypisywana powierzchni gdy zachodzi taka potrzeba Energia Można wybrać położenie powierzchni tak, aby znikała powierzchniowa gęstość masy lub powierzchniowa gęstość energii. Gęstość W przypadku układy zawierającego kilka składników można wybrać położenie tak aby znikała powierzchniowa gęstość jednego ze składników.
Opis standardowy znika powierzchniowa gęstość masy Energia swobodna kryształu F jest sumą wkładu objętościowego i powierzchniowego: F = V s f s r (T, p, r) dv + V l f l r (T, p, r) dv + S γ( θ, ϕ,t,p) ds µ l,s - potencjał chemiczny (s,l) f l,s - gęstość energii swobodnej na jednostkę objętości faz (s,l) γ - gęstość energii powierzchniowej Energia swobodna w modelu Gibbsa jest więc równa: F = f s (T, p)v s + f l (T, p)v l + γ( θ, ϕ,t, p)a
Napięcie powierzchniowe - i powierzchniowa gęstość energii Powierzchniowa gęstość energii γ ( θ,t,p) ds = γ( θ,t, p)a Praca potrzebna na zwiększenie obwodu = zmiana energii powierzchni F = Napięcie powierzchniowe siła działające na jednostkę długości obwodu powierzchni σ r A W = r r dlσ* δx r σδa = r σ F pow = γδa σ r = γ
Zwilżanie powierzchni Rozważmy 3 układy: faza stała(), faza gazowa(3) oraz inna faza (ciekła lub stała - 2) Własności energetyczne powierzchni są określone przez ich energie powierzchniowe (napięcia powierzchniowe):γ 2, γ 3, γ 23. (A) (B) Całkowite zwilżanie powierzchni (A) zachodzi gdy γ 3 > γ2 + γ 23
Częściowe zwilżanie powierzchni kąt zwilżania Częściowe zwilżanie powierzchni (A) zachodzi gdy γ γ 3 < γ2 + γ 23 3 > γ2 γ 23 Kąt zwilżania powierzchni definiujemy jako γ 3 = γ 2 + γ 23 cos ( θ) γ 2 θ γ 3 γ 23
Brak zwilżania Kąt zwilżania powierzchni γ 3 = γ 2 + γ 23 cos ( θ) γ 2 θ γ 3 γ 23 Brak zwilżania powierzchni (A) zachodzi gdy γ 2 > γ3 + γ 23
Warunki stabilności (V,T) Układy zamknięty warunek na stabilności - fluktuacje izotermicznoizochoryczne δf 0 δf = p δv p2δv + γδa + µ δn + µ 2δN 2 0 N = N + N2 = V = V + V2 = const const Równania równowagi δn δv = δ N 2 = V 2 T = const δt = 0 p δa = p2 + γ µ ( p,t) = µ 2( p,t) δv Stan równowagi zależy od kształtu powierzchni
Powierzchnia płaska U,V,N U 2,V 2,N 2 p,t,ρ p 2,T 2,ρ 2 Równania równowagi p δa = p2 + γ µ ( p,t) = µ 2( p,t) δv Dla powierzchni płaskiej wielkość powierzchni nie zależy od objętości faz: δa δv Warunki równowagi nie zależą od ich rozmiaru są to wartości umieszczane na diagramach fazowych = 0 p = p 2 T = = T2 Tp
Powierzchnia zakrzywiona przypadek izotropowy Równania równowagi p δa = p2 + γ µ ( p,t) = µ 2( p,t) δv U,V,N p,t,ρ U 2,V 2,N 2 Fazy izotropowe - kula: p 2,T 2,ρ 2 V = 4πR 3 3 A = 4πR 2 δa δv = 2 R = κ + κ 2 κ, κ 2 - krzywizny powierzchni Warunki równowagi zależą od rozmiaru faz p p2 2γ + R = T = T2 T p
Powierzchnia zakrzywiona efekt Gibbsa-Thompsona Równania równowagi p = p2 + 2γ R U,V,N p,t,ρ Przesunięcie ciśnienia zmiana warunku równowagi chemicznej U 2,V 2,N 2 p 2,T 2,ρ 2 µ ( + dp,t + dt) = µ ( p,t dt) p 2 + Efekt Gibbsa - Thompsona zmiana temperatury równowagi powierzchni zakrzywionej
Powierzchnia płaska Efekt Gibbsa-Thompsona Powierzchnia zakrzywiona µ (,T) = ( p,t) p µ 2 µ ( + dp,t + dt) = µ ( p,t dt) p 2 + Po rozwinięciu otrzymujemy: vdp s dt = s2dt dt = vdp s s 2 = (V / T dp ( S S )/ N S S L N)dp 2 = Vdp 2 = p Efekt Gibbsa - Thompsona zmiana temperatury równowagi powierzchni zakrzywionej T = T p - 2 d R o d o = T p γ = ( S - S ) L l s γ - długość kapilarna L ciepło przemiany na jednostkę objętości
Powierzchnia zakrzywiona przypadek anizotropowy Równania równowagi p = p 2 + γ Dla powierzchni są zdefiniowane dwa promienie krzywizny R oraz R 2 które dają rozmiar obszaru fazy 2. Zmiana ta powoduje zmianę potencjału chemicznego µ ( θ, ϕ) + R R ( + dp,t + dt) = µ ( p,t dt) p 2 + 2 R 2 R Efekt Gibbsa - Thompsona zmiana temperatury równowagi powierzchni zakrzywionej: T = Tm - do( θ, ϕ) + do( θ, ϕ) R R 2 γ = T m ( θ, ϕ) ( S - S ) l s = γ ( θ, ϕ) L
Przypadek anizotropowy - równowagowy kształt powierzchni kryształów W przypadku kryształów energią powierzchniowa zależy od orientacji, tzn. zachodzi γ = γ(θ,ϕ) Wykres tej zależności jest to tzw. γ - plot - wyznaczenie na jego podstawie równowagowego kształtu kryształu nosi nazwę konstrukcji (twierdzenia) Wulfa. Równowagowy kształt kryształu jest wyznaczony przez minimalną obwiednię utworzoną przez płaszczyzny prostopadłe do linii wychodzących ze środka wykresu i przechodzące przez punkty przecięcia linii i tego wykresu Stąd wyznaczenie równowagowego kształtu sprowadza się do wyznaczenia zależności γ(θ,ϕ).
dθ Konstrukcja Wulfa E θ E 2 Dana jest zależność energii powierzchniowej od kątów γ(θ,ϕ) Obliczamy wielkość energii powierzchniowej dla kąta dθ Dla przypadku Dla przypadku E2 = E2dl E dl cosθ E dl cosθ E = Edl = = W przypadku gdy E 2 > (E /cosθ) to realizowany będzie przypadek, w przypadku odwrotnym przypadek 2. Jest to konstrukcja Wulfa
Kryształ Kossela najprostszy model kryształu Siec kwadratowa (2d) lub regularna( 3d) Oddziaływanie najbliższych sąsiadów Energia oddziaływania nie zależy od kierunku (φ - energia wiązania dwu atomów) Z liczba sąsiadów (d=2 Z=4, d=3 Z=6) φ φ Modyfikacje Oddziaływanie anizotropowe Oddziaływanie drugich sąsiadów φ X φ nn φ Y φ nnn
Powierzchnie w krysztale Kossela Powierzchnia układ atomów które nie maja wysycanych wiązań (mają złamane wiązania - broken bonds ) φ Energia kryształu (bez uwzględnienia powierzchni): E S ZNsφ = = Nbond Sφ 2 Energia kryształu (z powierzchnią): Energia powierzchni: E E = N S+ A S bond A φ E NsZφ = + Nbond 2 S+ A A Jest to uproszczony lecz zupełny opis powierzchni dla fazy stałej i fazy gazowej φ
Powierzchnie kryształ-ciecz w modelu Kossela Energia wiązania atomów w krysztale - φ ss Energia wiązania atomów w cieczy - φ ll E S E l N Zφ 2 s ss = = Nbond SS N Zφ 2 l ll = = Nbond ll φ φ ll ss Energia wiązania atomu w cieczy i w krysztale - φ sl φ ll φ sl Energia układu z powierzchnią: E S+ A+ L N = bond ls φ ls + N bond ss φ ss N bond ll φ ll φ ss Każde wiązanie łączy dwa atomy, stąd energia powierzchni jest równa: E A = Nbond A φ sl φ ll + φ 2 Jest to zupełny opis powierzchni dla fazy ciekłej i fazy stałej ss
Przykład (2d) - powierzchnie (0) oraz powierzchnie nachylone (vicinal surfaces) Powierzchnia (0) Powierzchnia nachylona (vicinal) α ( α) tg = n γ n = tg ( α) ( α) = φ( + n) cos( α) = cos( α) + sin( α) n szerokość stopnia (w stałych sieciowych) [ ] φ φ γ - plot wykres ma wcięcie (cusp) dla płaszczyzn o niskich wskaźnikach Millera (T = 0)
2-d kryształ Kossela - zależność kształtu od temperatury kt/ϕ = 0 kt/ϕ = 0.3 kt/ϕ = 0. kt/ϕ = 0.6
Powierzchnie 2-d oraz 3-d Stopień jest obiektem -d
Struktura powierzchni 3-d F S K Powierzchnie o niskich wskaźnikach Millera nazywamy powierzchniami płaskimi (F flat) Warstwy atomowe zakończone są brzegiem. Brzeg warstwy nazywamy stopniami (S step lub L ledge) Koniec rzędu atomów w stopniu nazywamy kinkiem (K kink) Model nosi nazwę modelu TLK terrace ledge - kink
Rodzaje powierzchni 3-d Powierzchnia S(stepped) Powierzchnia F(flat) Powierzchnia K(kinked)
3-d Kossel klasyfikacja Rotmana i Wortisa Diagram fazowy Ciemne kropki - punkty osobliwe przejścia od powierzchni gładkiej do powierzchni zakrzywionej
Mikroskopowa struktura powierzchni powierzchnie gładkie i szorstkie Szorstkość powierzchni definiujemy jako: R N - N N o o N - ilość złamanych wiązań N o - minimalna ilość złamanych wiązań gladka szorstka Parametr szorstkości zdefiniowany w ten sposób nie jest tożsamy z szorstkością mierzona np. przy pomocy mikroskopu sił atomowych (AFM)
Przejście fazowe powierzchnia gładka powierzchnia szorstka: wyniki analityczne Model pojedynczej warstwy: Teoria pola średniego (przybliżenie Bragga Williamsa) Energia swobodna układu jest równa: [ ( - x) ln ( - x) + Z φ x ( - x) ] F = kt x ln x + 0. 0.0-0. Zφ/kT=3 x N N at o Zφ/kT=2 F/kT -0.2-0.3-0.4 Zφ/kT= Przejście fazowe dla Zφ=2kT -0.5 0.0 0.2 0.4 0.6 0.8.0 x
Przejście fazowe powierzchnia gładka powierzchnia szorstka: wyniki symulacji komputerowych Różnica energii układu ze stopniami oraz bez stopni: Model ze stopniami Pseudoperiodyczne warunki brzegowe Przybliżenie SOS Leamy & Gilmer - 974 α kt φ = kt ε Przejście fazowe dla kt = 0.6φ
Równowagowa struktura stopni Stopień obiekt -d Nie występuje przejście fazowe dla struktury stopnia Stopień - obiekt szorstki obecność dużej gęstości kinków Stopień obiekt na którym odbywa się wymiana atomów
Powierzchnie kryształów rzeczywistych bez atomów obcych Na powierzchni kryształów rzeczywistych może zajść efekt Jahna-Tellera: spontaniczne złamanie symetrii dla obniżenia energii układu Wyróżniamy dwa rodzaje efektów: relaksację i rekonstrukcje powierzchni Relaksacja powierzchni: zmiana położeń atomów zachowująca symetrię translacyjną sieci (równoległą do powierzchni) Rekonstrukcja powierzchni: zmiana położeń atomów w sieci naruszająca symetrie sieci Bravais
Relaksacja powierzchni Występuje w przypadku metali wiązania prawie izotropowe Zachowanie elektrostatycznej struktury powierzchni Powierzchnia prosta Powierzchnia zrelaksowana
Powierzchnie ulegające rekonstrukcji przykłady 2x rekonstrukcja brakującego rzędu 2x rekonstrukcja parowania Symetria sieci notacja Wooda
Powierzchnia o wskaźnikach krystalograficznych (hkl) Notacja (symbol) Wooda a, a 2 - wektory translacji prymitywnych powierzchni Symbol chemiczny, np. C S(hkl) κ a r r b, a r r b Rϕ o Obrót o kąt ϕº (Dla ϕ=0 symbol jest pomijany) c centrowana p prosta (domyślna w przypadku braku symbolu) b, b 2 - wektory translacji prymitywnych sieci objętościowej Notacja Wooda jest niekiedy niejednoznaczna (dla sieci regularnej)
Symbol Wooda - przykłady ( x) ( 2 x) ( 2x2) ( 2x2) ( 2x 2)
Powierzchnie półprzewodników rekonstrukcja Silne, kierunkowe wiązania Tendencja do wysycenia przez tworzenie wiązań równoległych do powierzchni: łańcuchów, dimerów itp. Struktura powierzchni może ulec zmianie na skutek przyłączenia obcych atomów wysycających złamane wiązania Rekonstrukcja może sięgać kilku warstw atomowych Ładunki związane ze stanami powierzchniowymi tworzą pola które mogą sięgać głęboko do wnętrza półprzewodnika
Powierzchnie półprzewodników - dimery Dimery symetryczne - schemat powstawania Dimery asymetryczne schemat powstawania
Skanningowy mikroskop tunelowy (Scanning Tunneling Microscope STM) Nobel Laureates: Heinrich Rohrer and Gerd Binnig
Działanie skanningowego mikroskopu tunelowego Oddziaływanie końcówki mikroskopu z powierzchnią Zależność prądu tunelowania od odległości d. K oraz k są stałymi STM osiąga rozdzielczość atomową!
Mikroskop sił atomowych (AFM Atomic Force Microscope) Atomic Force Microscope - NovaScan ESPM II OSPM II
Działanie mikroskopu sił atomowych Oddziaływanie końcówki mikroskopu z powierzchnią Detekcja ruchu końcówki mikroskopu odbity promień lasera Rozdzielczość atomowa powierzchni miki w roztworze wodnym. Odległość pomiędzy sąsiadującymi wypukłościami wynosi 5.4 Å.
Powierzchnie półprzewodników adatomy Si () 7x7 DAS (dimer adatom stacking fault) Adatomy na powierzchni Si () - model STM obraz Adatomy kółka szare
Si() rekonstrukcja (7x7) - obrazy STM 3-d model Model - R.M. Tromp (IBM) Obraz STM
Adsorpcja Fizysorpcja przyłączanie atomów do powierzchni kryształu/cieczy bez tworzenia wiązań chemicznych. Siły wiążące siły Lennarda Jonesa. Na ogół nie prowadzi do lokalizacji atomu na powierzchni Chemisorpcja przyłączenie atomu do powierzchni kryształu/cieczy powodujące powstanie wiązania chemicznego. Na ogół prowadzi do lokalizacji atomów w węzłach sieci krystalograficznej. Często prowadzi do zmian wiązania w przyłączanych cząsteczkach chemicznych.
Fizysorpcja izoterma Langmuira Zakładamy ze istnieje pewna liczba węzłów na których mogą być zaadsorbowane cząstki Pokryciem Γ nazywamy stosunek liczby obsadzonych wezłów do liczby wszystkich węzłów Pokrycie zależy min. od energii wiązania na powierzchni Dla danego układu (tzn. dla określonej energii wiązania) pokrycie jest funkcja ciśnienia gazu nad powierzchnia i temperatury: Γ = Γ o P + P P 2 ( T) Γ E kt o = Γ( P ) 5 2 b P ( T) = P Γ = = CT exp 2 2 E b energia wiązania do powierzchni
Przykład - adsorpcja CO/Pd()
Chemisorpcja Adsorpcja molekularna Adsorpcja dysocjatywna 25 25 20 20 5 5 E dis Energy 0 E dis Energy 0 5 E bar 5 E bar 0.0.5 2.0 2.5 3.0 3.5 4.0 distance 0.0.5 2.0 2.5 3.0 3.5 4.0 distance
Oddziaływanie N 2 z Ga(l) N 2 Energia bariery na rozpad Excess energy [ev] 6 4 2 0 5.8 ev 4.8 ev 3.2 ev N2 molecule horizontally and cluster of 9 atoms In Ga Al Ga Energia dysocjacji swobodnej cząsteczki N 2 -- 9.8 ev/cząsteczkę 2 3 4 Distance from surface(a) S. Krukowski and Z. Romanowski Obliczenia kwantowe, Dmol, QM DFT
Dysocjacja N 2 na powierzchni Ga 3,5 3,0.0A N - N spacing [A] 2,5 2,0,5.6A 2.6A,0 0,8,2,6 2,0 2,4 2,8 3,2 3,6 4,0 d [A] S. Krukowski and Z. Romanowski Dmol, QM DFT
Podsumowanie Powierzchnie, zwłaszcza powierzchnie półprzewodników tworzą struktury o własnościach różnych od własności układów objętościowych Równowagowe struktury powierzchni mogą wykazywać przemiany będące przemianami fazowymi związanymi ze zmianą symetrii (rekonstrukcja). Innego typu zmiany prowadzą do relaksacji powierzchni lub do zmiany jej gładkości. Wizualizacja struktury powierzchni wymaga zastosowanie zaawansowanych technik mikroskopowych, np. AFM lub TEM Adsorpcja gazów na powierzchni może zmieniać ich własności, w tym ich strukturę w sposób zasadniczy Adsorpcja cząsteczek może prowadzić do zmiany ich konformacji chemicznej (chemisorpcja) lub tylko lokalizacji (fizysorpcja) Otrzymanie właściwego obrazu powierzchni, w tym jej struktury oraz procesów powierzchniowych wymaga przeprowadzenia obliczeń kwantowomechanicznych, najczęściej za pomocą metody DFT