Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca
|
|
- Zuzanna Kosińska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015
2 Materia skondensowana OC 6 H 13 H 13 C 6 O OC 6 H 13 H 17 C 8 O H 17 C 8 O N N Cu O O H 21 C 10 O OC 10 H 21 OC 10 H 21
3 Kondensacja Kondensacja: co najmniej bliski porządek (ciecze, ciała stałe amorficzne, szkła) daleki porządek (ciała krystaliczne) Opis teoretyczny cieczy, ciał amorficznych, szkieł, kwazikryształów bardzo skomplikowany brak symetrii translacyjnej
4 Kondensacja Kondensacja: co najmniej bliski porządek (ciecze, ciała stałe amorficzne, szkła) daleki porządek (ciała krystaliczne) Opis teoretyczny cieczy, ciał amorficznych, szkieł, kwazikryształów bardzo skomplikowany brak symetrii translacyjnej
5 Kondensacja molten mixture of aluminium and manganese under an electron microscope
6 Porządek bliskiego zasięgu Al 2 O 3 Bliski porządek: ciała bezpostaciowe (amorficzne), przechłodzone ciecze każdy biały atom ma 2 czarnych sąsiadów każdy czarny atom ma 3 białych sąsiadów brak symetrii translacyjnej R. Stępniewski, Współczesne metody doświadczalne fizyki materii skondensowanej i optyki M. Baj Wykład
7 Porządek dalekiego zasięgu Al 2 O 3 Daleki porządek, kryształ (także ciekły!) każdy biały atom ma 2 czarnych sąsiadów każdy czarny atom ma 3 białych sąsiadów symetria translacyjna R. Stępniewski, Współczesne metody doświadczalne fizyki materii skondensowanej i optyki M. Baj Wykład
8 Rodzaje wiązań Kowalencyjne
9 Kowalencyjne Rodzaje wiązań Półprzewodniki Energia wiązania na atom: C (diament) 7.30 ev Si 4.64 ev Ge 3.87 ev
10 Kowalencyjne Rodzaje wiązań Półprzewodniki II III IV V VI Be B C N O Mg Al Si P S Jonowość Jonowość Zn Ga Ge As Se Cd In Sn Sb Te Grupa IV: diament, Si, Ge Grupy III-V: GaAs, AlAs, InSb, InAs... Grupy II-VI: ZnSe, CdTe, ZnO, SdS...
11 Rodzaje wiązań Kowalencyjne
12 Kowalencyjne Rodzaje wiązań Węgiel Odmiany alotropowe węgla: (Wikipedia) a) diament, b) grafit, c) lonsdaleit d) fuleren C60 e) fuleren C540 f) fuleren C70 g) węgiel amorficzny, h) nanorurka
13 Rodzaje wiązań Kowalencyjne Grafen
14 Ogród Zoologiczny nanorurek Single Wall Nanotube (Zig-Zag Type) Uprolling a Graphene (Zig-Zag Type) Single Wall Nanotube (Arm-Chair Type) Uprolling a Graphene (Arm-Chair Type) Single Wall Nanotube (Chiral Type) f = (n 2 +nm+m 2 ) 1/2 / π (nm)
15 Winda do nieba
16
17 plumber s nightmare
18 Wiązanie jonowe Rodzaje wiązań Elektroujemność (ozn. c) - zdolność atomu w cząsteczce do przyciągania (przyłączania) elektronu. W skrajnym przypadku, gdy elektroujemności obu pierwiastków bardzo się różnią (np. Li i F), dochodzi do pełnego przeskoku elektronów na bardziej elektroujemny atom, co prowadzi do powstania wiązania jonowego (Dc 1,7). NaCl Tablica 2.4. Wartości elektroujemności (wg Paulinga) dla kilku ważniejszych pierwiastków (dla H przyjęto 2,1) I II III IV V VI VII Li 1,0 Na 0,9 K 0,8 Rb 0,8 Be 1,5 Mg 1,2 Ca 1,0 B 2,0 Al 1,5 Ga 1,6 Jonowość C 2,5 Si 1,8 Ge 1,7 Sn 1,7 N 3,0 P 2,1 As 2,0 O 3,5 S 2,5 Se 2,4 Jonowość F 4,0 Cl 3,0 Br 2,8 J 2,4
19 Wiązanie jonowe Rodzaje wiązań Elektroujemność (ozn. c) - zdolność atomu w cząsteczce do przyciągania (przyłączania) elektronu. W skrajnym przypadku, gdy elektroujemności obu pierwiastków bardzo się różnią (np. Li i F), dochodzi do pełnego przeskoku elektronów na bardziej elektroujemny atom, co prowadzi do powstania wiązania jonowego (Dc 1,7). Umownie: NaCl Wiązanie kowalencyjne Dc 0,4 Wiązanie polarne 0,4 Dc 1,7 Wiązanie jonowe Dc 1,7
20 Wiązanie jonowe Rodzaje wiązań Elektroujemność (ozn. c) - zdolność atomu w cząsteczce do przyciągania (przyłączania) elektronu. W skrajnym przypadku, gdy elektroujemności obu pierwiastków bardzo się różnią (np. Li i F), dochodzi do pełnego przeskoku elektronów na bardziej elektroujemny atom, co prowadzi do powstania wiązania jonowego (Dc 1,7). NaCl C. Kittel
21 Wiązanie jonowe Rodzaje wiązań W kryształach jonowych jest niemożliwe, żeby elektrony poruszały się prawie swobodnie pomiędzy jonami, chyba że dostarczymy dużą energię. Dlatego ciała stałe o wiązaniach jonowych są nieprzewodzące. W wysokich temperaturach przewodnictwo jonowe. NaCl Energia wiązania na parę jonów: NaCl 7.95 ev NaI 7.10 ev KBr 6.92 ev Rozkład gęstości ładunku w płaszczyźnie podstawowej NaCl na podst. badań rentgenowskich. C. Kittel
22 Wiązanie metaliczne Rodzaje wiązań Wiązanie chemiczne w metalach, utworzone w wyniku elektrodynamicznego oddziaływania między dodatnio naładowanymi rdzeniami atomowymi, które znajdują się w węzłach sieci krystalicznej, a ujemnie naładowaną plazmą elektronową (elektronami zdelokalizowanymi, gazem elektronowym). Podobne do wiązania kowalencyjnego, ale elektrony tworzące wiązanie są wspólne dla wielkiej liczby atomów. e e e e e Na + e Na + Na + Na + Na + Na + Na + Na + e e e e e Na + e Na + e Na + e Na + e Na + e Na + e Na + Na + Na + Na + Na + e e e e Na + Na + Na + Na + Na + e e e e Na + Na + Na + Na + Na + e e Gaz elektronowy
23 Wiązanie wodorowe Uwspólnienie wodoru Rodzaje wiązań Celuloza
24 Wiązanie van der Waalsa Rodzaje wiązań Ne, Ar, Kr, Xe oddziaływanie wyindukowanych momentów dipolowych. F ~ r -6
25 Wiązania Rodzaje wiązań Wiązanie kowalencyjne Wiązanie jonowe Wiązanie metaliczne Wiązanie kierunkowe (hybrydyzacja) Izolatory lub półprzewodniki (ładunek pomiędzy atomami) Wiele ze związków kowalencyjnych rozpuszcza się w rozpuszczalnikach niepolarnych, a nie rozpuszcza się w wodzie Wiązanie bezkierunkowe Izolatory (ładunek skupiony na jonach) Wiele ze związków jonowych rozpuszcza się w rozpuszczalnikach polarnych (woda), a nie rozpuszcza się w niepolarnych
26 Struktura krystaliczna Kryształy Kryształ Ciało amorficzne
27 Kryształy T n t Struktura krystaliczna 1 1 n2t2 n3t3 V( r) V ( r T) wektory translacji prymitywnych Sieć (węzły sieci) jest regularnym i periodycznym układem punktów w przestrzeni. Jest ona matematyczną abstrakcją; ze strukturą krystaliczną mamy do czynienia jedynie wtedy, gdy baza atomów jest przyporządkowana jednoznacznie do każdego węzła sieci. Kryształ Ciało amorficzne
28 Kryształy T n t Struktura krystaliczna 1 1 n2t2 n3t3 wektory translacji prymitywnych
29 Kryształy T n t Struktura krystaliczna 1 1 n2t2 n3t3 wektory translacji prymitywnych
30 Kryształy T n t Struktura krystaliczna 1 1 n2t2 n3t3 wektory translacji prymitywnych
31 Kryształy T n t Struktura krystaliczna 1 1 n2t2 n3t3 wektory translacji prymitywnych Wektory translacji prymitywnych nie są wybrane jednoznacznie!
32 Kryształy T n t Struktura krystaliczna 1 1 n2t2 n3t3 wektory translacji prymitywnych Wektory translacji prymitywnych nie są wybrane jednoznacznie!
33 Kryształy T n t Struktura krystaliczna 1 1 n2t2 n3t3 wektory translacji prymitywnych Można na wiele sposobów wybrać komórkę elementarną. Zwykle chcemy, żeby komórka taka: miała możliwie najwyższą symetrię, najmniejszą objętość Komórka prosta: komórka elementarna o najmniejszej objętości Komórka prosta
34 Kryształy T n t Struktura krystaliczna 1 1 n2t2 n3t3 wektory translacji prymitywnych Komórka Wignera-Seitza C. Kittel
35 Kryształy T n t Struktura krystaliczna 1 1 n2t2 n3t3 wektory translacji prymitywnych Bazą może być pojedynczy atom, jon, zbiór atomów, np. dla białek 10 5.
36 Struktura krystaliczna Kryształy T n t 1 1 n2t2 n3t3 R 0 j Baza R nj R 0 j T wektory translacji prymitywnych Bazą może być pojedynczy atom, jon, zbiór atomów, np. dla białek 10 5.
37 Sieci Bravais T n t Struktura krystaliczna 1 1 n2t2 n3t3 wektory translacji prymitywnych
38 Struktura krystaliczna Sieci Bravais Istnieje 14 możliwych sieci wypełniających przestrzeń. Sieci te noszą nazwę sieci Bravais. Tworzą one 7 układów krystalograficznych Auguste Bravais
39 Struktura krystaliczna Sieci Bravais Regularna Istnieje 14 możliwych sieci wypełniających przestrzeń. Sieci te noszą nazwę sieci Bravais. a b c 90 Tworzą one 7 układów krystalograficznych a b c 90 Tetragonalna Heksagonalna a b c Rombowa a b c 90 Romboedryczna a b c Jednoskośna a b c a b c Trójskośna
40 Struktura krystaliczna Sieci Bravais Przykład: struktura najgęstszego upakowania
41 Struktura krystaliczna Sieci Bravais Przykład: struktura najgęstszego upakowania 1 warstwa A
42 Struktura krystaliczna Sieci Bravais Przykład: struktura najgęstszego upakowania 1 warstwa A 2 warstwa B
43 Struktura krystaliczna Sieci Bravais Przykład: struktura najgęstszego upakowania 1 warstwa A 2 warstwa B 3 warstwa A B A B
44 Struktura krystaliczna Sieci Bravais Przykład: struktura najgęstszego upakowania 1 warstwa A 2 warstwa B 3 warstwa C A B C
45 Struktura krystaliczna Sieci Bravais Przykład: struktura najgęstszego upakowania
46 Struktura krystaliczna Sieci Bravais Przykład: struktura najgęstszego upakowania Sieć heksagonalna z bazą Sieć fcc
47 Struktura krystaliczna Sieci Bravais Przykład: struktura najgęstszego upakowania Sieć fcc
48 Struktura krystaliczna Sieci Bravais Przykład: struktura najgęstszego upakowania Sieć fcc
49 Struktura krystaliczna Sieci Bravais Przykład: struktura najgęstszego upakowania Sieć fcc
50 Oznaczenie węzłów Kryształy T n t 1 1 n2t2 n3t3 wektory translacji prymitywnych Wskaźniki węzłów: Sieć fcc ½ ½ Krawędzie komórki elementarnej n a, n a 1 1 n2a2, 3 3 Wskaźniki węzła ½ 0½ 1½ ½ 0½ ½ ½1 ½ ½ ½0 110
51 Oznaczenie węzłów Kryształy T n t 1 1 n2t2 n3t3 wektory translacji prymitywnych Wskaźniki węzłów: Sieć fcc ½ ½ Krawędzie komórki elementarnej n a, n a 1 1 n2a2, 3 3 Wskaźniki węzła n 1 n2 n3 ½ 0½ 000 1½ ½ 0½ ½ ½1 ½ ½ ½0 110
52 Oznaczenie kierunków Kryształy Wskaźniki kierunków: Zbiór najmniejszych liczb całkowitych względnie pierwszych u,v,w, które mają się do siebie tak, jak rzuty wektora równoległego do danego kierunku na osie krystaliczne. u v w Sieć fcc [001] 011 ½ ½ 1 [112] [101] [111] Krawędzie komórki elementarnej n a, n a 1 1 n2a2, 3 3 Wskaźniki węzła n 1 n2 n3 ½ 0½ 1½ ½ 000 0½ ½ ½1 ½ [010] [100] ½ ½0 [110]
53 Oznaczenie kierunków Kryształy Wskaźniki kierunków: u v w Zbiór najmniejszych liczb całkowitych względnie pierwszych u,v,w, które mają się do siebie tak, jak rzuty wektora równoległego do danego kierunku na osie krystaliczne. u v w Liczbę ujemną zaznaczamy minusem nad wskaźnikiem Sieć fcc [001] 011 ½ ½ 1 [112] [101] [111] 0½ ½ ½ 0½ ½1 ½ 1½ ½ [010] [100] ½ ½0 [110]
54 Oznaczenie płaszczyzn Kryształy Należy podać trzy odcinki A, B, C, które płaszczyzna odcina na osiach sieci. Odcinki te wyrażamy w jednostkach osiowych i zapisujemy 1/A, 1/B, 1/C i sprowadzamy do najmniejszego wspólnego mianownika D. hk l h D D, k, l A B Np.: A=2, B=3, C=6, płaszczyzna (3,2,1) (wskaźniki Millera) Na ćwiczeniach: obliczyć odległości między kolejnymi płaszczyznami o symbolu (h,k,l). D C C 000 B A
55 Oznaczenie płaszczyzn Kryształy Należy podać trzy odcinki A, B, C, które płaszczyzna odcina na osiach sieci. Odcinki te wyrażamy w jednostkach osiowych i zapisujemy 1/A, 1/B, 1/C i sprowadzamy do najmniejszego wspólnego mianownika D. hk l h D D, k, l A B Np.: A=2, B=3, C=6, płaszczyzna (3,2,1) (wskaźniki Millera) D C C [321] Na ćwiczeniach: obliczyć odległości między kolejnymi płaszczyznami o symbolu (h,k,l). 000 B A
56 Kryształy Oznaczenie płaszczyzn Należy podać trzy odcinki A, B, C, które płaszczyzna odcina na osiach sieci. Odcinki te wyrażamy w jednostkach osiowych i zapisujemy 1/A, 1/B, 1/C i sprowadzamy do najmniejszego wspólnego mianownika D. hk l h D D, k, l A B D C (100) (110) (111)
57 Oznaczenie płaszczyzn Kryształy (110) (120) (212) (100) (110) (111)
58 Kryształy Oznaczenie płaszczyzn
STRUKTURA CIAŁA STAŁEGO
STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich
Fizyka Ciała Stałego
Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej
Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.
Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych
Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna
Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć
Stany skupienia materii
Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię
MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność
MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych
Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11
Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna
Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć
Elementy teorii powierzchni metali
Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura
Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,
Krystalografia. Typowe struktury pierwiastków i związków chemicznych
Krystalografia Typowe struktury pierwiastków i związków chemicznych Wiązania w kryształach jonowe silne, bezkierunkowe kowalencyjne silne, kierunkowe metaliczne słabe lub silne, bezkierunkowe van der Waalsa
Wykład 5. Komórka elementarna. Sieci Bravais go
Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,
Wykład 9 Wprowadzenie do krystalochemii
Wykład 9 Wprowadzenie do krystalochemii 1. Krystalografia a krystalochemia. 2. Prawa krystalochemii 3. Sieć krystaliczna i pozycje atomów 4. Bliskie i dalekie uporządkowanie. 5. Kryształ a cząsteczka.
STRUKTURA KRYSTALICZNA
PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais
Elementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.
Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań
Wiązania chemiczne Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych 5 typów wiązań wodorowe A - H - A, jonowe ( np. KCl ) molekularne (pomiędzy atomami gazów szlachetnych i małymi
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Komórki Bravais go Cel ćwiczenia: kształtowanie umiejętności: przyporządkowywania komórek translacyjnych Bravais
WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE
WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być
S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych
Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez
Model wiązania kowalencyjnego cząsteczka H 2
Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami
Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.
2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek
WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE
WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE 1 Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być
Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych
Budowa ciał stałych sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Ciała stałe to substancje o regularnej, przestrzennej budowie krystalicznej, czyli regularnym
Rozwiązanie: Zadanie 2
Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn
STRUKTURA MATERIAŁÓW. Opracowanie: Dr hab.inż. Joanna Hucińska
STRUKTURA MATERIAŁÓW Opracowanie: Dr hab.inż. Joanna Hucińska ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY
Wstęp. Krystalografia geometryczna
Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.
Podział ciał stałych ze względu na strukturę atomowo-cząsteczkową
Podział ciał stałych ze względu na strukturę atomowo-cząsteczkową Kryształy Atomy w krysztale ułożone są w pewien powtarzający się regularny wzór zwany siecią krystaliczną. Struktura kryształu NaCl Polikryształy
Właściwości kryształów
Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne
MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska
MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska Struktura materiałów UKŁAD ATOMÓW W PRZESTRZENI CIAŁA KRYSTALICZNE Układ atomów/cząstek (a/cz) w przestrzeni jest statystyczne
Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by arcourt,
STRUKTURA MATERIAŁÓW
STRUKTURA MATERIAŁÓW ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami
Zasady obsadzania poziomów
Zasady obsadzania poziomów Model atomu Bohra Model kwantowy atomu Fala stojąca Liczby kwantowe -główna liczba kwantowa (n = 1,2,3...) kwantuje energię elektronu (numer orbity) -poboczna liczba kwantowa
Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań?
Inne koncepcje wiązań chemicznych 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie.
Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania
Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela
Wiązania. w świetle teorii kwantów fenomenologicznie
Wiązania w świetle teorii kwantów fenomenologicznie Wiązania Teoria kwantowa: zwiększenie gęstości prawdopodobieństwa znalezienia elektronów w przestrzeni pomiędzy atomami c a a c b b Liniowa kombinacja
S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna. Struktura krystaliczna
S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna Struktura krystaliczna Kwarc (SiO2) (źródło: Wikipedia) Piryt (FeS2) (źródło: Wikipedia) Halit/Sól kamienna (NaCl) (źródło: Wikipedia)
Opracowała: mgr inż. Ewelina Nowak
Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr
Wiązania jonowe występują w układach złożonych z atomów skrajnie różniących się elektroujemnością.
105 Elektronowa teoria wiązania chemicznego Cząsteczki powstają w wyniku połączenia się dwóch lub więcej atomów. Już w początkowym okresie rozwoju chemii podejmowano wysiłki zmierzające do wyjaśnienia
Położenia, kierunki, płaszczyzny
Położenia, kierunki, płaszczyzny Dalsze pojęcia Osie krystalograficzne; Parametry komórki elementarnej; Wskaźniki punktów kierunków i płaszczyzn; Osie krystalograficzne Osie krystalograficzne: układ osi
Orbitale typu σ i typu π
Orbitale typu σ i typu π Dwa odpowiadające sobie orbitale sąsiednich atomów tworzą kombinacje: wiążącą i antywiążącą. W rezultacie mogą powstać orbitale o rozkładzie przestrzennym dwojakiego typu: σ -
Podstawowe pojęcia opisujące sieć przestrzenną
Uniwersytet Śląski Instytut Chemii akład Krystalografii Laboratorium z Krystalografii 2 godz. Podstawowe pojęcia opisujące sieć przestrzenną Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami
CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB)
CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka
Podstawy krystalochemii pierwiastki
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Podstawy krystalochemii pierwiastki Cel ćwiczenia: określenie pełnej charakterystyki wybranych struktur pierwiastków
Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11
Tradycyjny podział stanów skupienia: fazy skondensowane
Tradycyjny podział stanów skupienia: o o o stały (ciało stałe) zachowuje objętość i kształt ciekły (ciecz) zachowuje objętość, łatwo zmienia kształt gazowy (gaz) łatwo zmienia objętość i kształt lód woda
Układy krystalograficzne
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Układy krystalograficzne Cel ćwiczenia: kształtowanie umiejętności wyboru komórki elementarnej i przyporządkowywania
CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej jedną z dwóch metod (teorii): metoda wiązań walencyjnych (VB)
CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka
1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych
1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych 1 1.1. Struktura elektronowa atomów Rozkład elektronów na pierwszych czterech powłokach elektronowych 1. powłoka 2. powłoka 3. powłoka
STRUKTURA IDEALNYCH KRYSZTAŁÓW
BUDOWA WEWNĘTRZNA MATERIAŁÓW METALICZNYCH Zakres tematyczny y 1 STRUKTURA IDEALNYCH KRYSZTAŁÓW 2 1 Sieć przestrzenna kryształu TRANSLACJA WĘZŁA TRANSLACJA PROSTEJ SIECIOWEJ TRANSLACJA PŁASZCZYZNY SIECIOWEJ
Wykład V Wiązanie kowalencyjne. Półprzewodniki
Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie
E e l kt k r t o r n o ow o a w a s t s r t u r kt k u t ra r a at a o t m o u
Elektronowa struktura atomu Anna Pietnoczka BUDOWA ATOMU CZĄSTKA SYMBOL WYSTĘPOWANIE MASA ŁADUNEK ELEKTRYCZNY PROTON p + jądroatomowe około 1 u + 1 NEUTRON n 0 jądroatomowe około 1u Brak ELEKTRON e - powłoki
Dr inż. Zbigniew Szklarski
Wykład : Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Struktura kryształu Ciała stałe o budowie bezpostaciowej
Dr inż. Zbigniew Szklarski
Wykład : Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 19.06.018 Wydział Informatyki, Elektroniki i 1 Struktura
Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania
Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela
Dr inż. Zbigniew Szklarski
Wykład 1: Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Struktura kryształu Ciała stałe o budowie bezpostaciowej
UKŁAD OKRESOWY PIERWIASTKÓW
UKŁAD OKRESOWY PIERWIASTKÓW Michał Sędziwój (1566-1636) Alchemik Sędziwój - Jan Matejko Pierwiastki chemiczne p.n.e. Sb Sn Zn Pb Hg S Ag C Au Fe Cu (11)* do XVII w. As (1250 r.) P (1669 r.) (2) XVIII
Dr inż. Zbigniew Szklarski
Wykład : Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 08.06.017 Wydział Informatyki, Elektroniki i 1 Struktura
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******
Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:
1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru
1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 2. Na podstawie struktury cząsteczek wyjaśnij dlaczego N 2 jest bierny a Cl 2 aktywny chemicznie? 3. Które substancje posiadają budowę
Rozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
Okresowość właściwości chemicznych pierwiastków. Układ okresowy pierwiastków. 1. Konfiguracje elektronowe pierwiastków
Układ okresowy pierwiastków Okresowość właściwości chemicznych pierwiastków 1. Konfiguracje elektronowe pierwiastków. Konfiguracje a układ okresowy 3. Budowa układu okresowego 4. Historyczny rozwój układu
Wykład 4: Struktura krystaliczna
Wykład 4: Struktura krystaliczna Wg Blicharskiego, Wstęp do materiałoznawstwa http://webmineral.com/ Komórka elementarna Geometria komórki Dla zdefiniowania trójwymiarowej komórki elementarnej należy podać
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
STRUKTURA KRYSZTAŁÓW
STRUKTURA KRYSZTAŁÓW Skala wielkości spotykanych w krystalografii: Średnica atomu wodoru: 10 Rozmiar komórki elementarnej: od kilku do kilkudziesięciu Å o D = 1*10 m = 1A 1 Struktura = sieć + baza atomowa
S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h
Są tylko 32 grupy punktowe, które spełniają ten warunek, Można je pogrupować w 7 typów grup (spośród omówionych 12- tu), które spełniają powyższe własności S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h nazywają
Laboratorium inżynierii materiałowej LIM
Laboratorium inżynierii materiałowej LIM wybrane zagadnienia fizyki ciała stałego czyli skrót skróconego skrótu dr hab. inż.. Ryszard Pawlak, P prof. PŁP Fizyka Ciała Stałego I. Wstęp Związki Fizyki Ciała
Wykład II Sieć krystaliczna
Wykład II Sieć krystaliczna Podstawowe definicje Wiele z pośród ciał stałych ma budowę krystaliczną. To znaczy, Ŝe atomy z których się składają ułoŝone są w określonym porządku. Porządek ten daje się stosunkowo
Fizyka materii skondensowanej i struktur półprzewodnikowych (1101-4FS22) Michał Baj
Fizyka materii skondensowanej i struktur półprzewodnikowych (0-4FS) Michał Baj Zakład Fizyki Ciała Stałego Instytut Fizyki Doświadczalnej Wydział Fizyki Uniwersytet Warszawski 07-03- Fizyka materii skondensowanej
Teoria VSEPR. Jak przewidywac strukturę cząsteczki?
Teoria VSEPR Jak przewidywac strukturę cząsteczki? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie. Rozkład elektronów walencyjnych w cząsteczce (struktura Lewisa) stuktura
Struktura elektronowa
Struktura elektronowa Struktura elektronowa atomów układ okresowy pierwiastków: 1) elektrony w atomie zajmują poziomy energetyczne od dołu, inaczej niż te gołębie (w Australii, ale tam i tak chodzi się
III.4 Gaz Fermiego. Struktura pasmowa ciał stałych
III.4 Gaz Fermiego. Struktura pasmowa ciał stałych Jan Królikowski Fizyka IVBC 1 Gaz Fermiego Gaz Fermiego to gaz swobodnych, nie oddziałujących, identycznych fermionów w objętości V=a 3. Poszukujemy N(E)dE
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Elementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn
Podstawy fizyki wykład 4
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Atomy wieloelektronowe i cząsteczki
Atomy wieloelektronowe i cząsteczki 1 Atomy wieloelektronowe Wodór ma liczbę atomową Z=1 i jest prostym atomem. Zawiera tylko jeden elektron i jeden proton stąd potencjał opisuje oddziaływanie kulombowskie
Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne.
Układ regularny Możliwe elementy symetrii: 3 osie 3- krotne m płaszczyzny równoległe do ścian m płaszczyzny przekątne 4 osie 4- krotne 2 osie 2- krotne Układ regularny Możliwe elementy symetrii: 3 osie
Krystalografia i krystalochemia Wykład 15 Repetytorium
Krystalografia i krystalochemia Wykład 15 Repetytorium 1. Czym zajmuje się krystalografia i krystalochemia? 2. Podsumowanie wiadomości z krystalografii geometrycznej. 3. Symbolika Kreutza-Zaremby oraz
STRUKTURA CIAŁA STAŁEGO. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
STRUKTURA CIAŁA STAŁEGO Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA CIAŁA STAŁEGO 1. BUDOWA ATOMU 2. WIĄZANIA MIEDZY ATOMAMI 3. UKŁAD
Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:
Chemia - klasa I (część 2) Wymagania edukacyjne Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Dział 1. Chemia nieorganiczna Lekcja organizacyjna. Zapoznanie
Klasyfikacja przemian fazowych
Klasyfikacja przemian fazowych Faza- jednorodna pod względem własności część układu, oddzielona od pozostałej częsci układu powierzchnią graniczną, po której przekroczeniu własności zmieniaja się w sposób
Czym się różni ciecz od ciała stałego?
Szkła Czym się różni ciecz od ciała stałego? gęstość Czy szkło to ciecz czy ciało stałe? Szkło powstaje w procesie chłodzenia cieczy. Czy szkło to ciecz przechłodzona? kryształ szkło ciecz przechłodzona
4. STRUKTURA KRYSZTAŁÓW PÓŁPRZEWODNIKOWYCH. Irena Zubel Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska (na prawach rękopisu)
4. STRUKTURA KRYSZTAŁÓW PÓŁPRZEWODNIKOWYCH Irena Zubel Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska (na prawach rękopisu) Krzem, podstawowe parametry 1. Konfiguracja elektronowa:
ROZDZIAŁ I. Symetria budowy kryształów
ROZDZIAŁ I Symetria budowy kryształów I Ciała krystaliczne i amorficzne Każda substancja ciekła z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe Jednakże proces
CZ STECZKA. Do opisu wi za chemicznych stosuje si najcz ciej jedn z dwóch metod (teorii): metoda wi za walencyjnych (VB)
CZ STECZKA Stanislao Cannizzaro (1826-1910) cz stki - elementy mikro wiata, termin obejmuj cy zarówno cz stki elementarne, jak i atomy, jony proste i zło one, cz steczki, rodniki, cz stki koloidowe; cz
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
2. Właściwości krzemu. 3. Chemia węgla a chemia krzemu. 4. Związki krzemu.
Wykład 1 Wprowadzenie do chemii krzemianów 1. Znaczenie krzemianów. 2. Właściwości krzemu. 3. Chemia węgla a chemia krzemu. 4. Związki krzemu. 5. Wiązanie krzem-tlen 6. Model kryształów jonowych 7. Reguły
Materiały Reaktorowe. - wiązanie chemiczne. - budowa ciał stałych - struktura pasmowa
Materiały Reaktorowe - wiązanie chemiczne - budowa ciał stałych - struktura pasmowa Z punktu widzenia wielu właściwości fizycznych materiałów, a w szczególności właściwości mechanicznych wielkościami decydującymi
Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr.
Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Typ wiązania w KBr... Typ wiązania w HBr... Zadanie 2. (2 pkt) Oceń poprawność poniższych
Rodzina i pas płaszczyzn sieciowych
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Rodzina i pas płaszczyzn sieciowych Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami komórek
Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 2003
Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 003 1. Wiązania atomów w krysztale Siły wiążące atomy w kryształ mają charakter
Wykład III. Teoria pasmowa ciał stałych
Wykład III Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie
Sieć przestrzenna. c r. b r. a r. komórka elementarna. r r
Sieć przestrzenna c r b r r r u a r vb uvw = + + w c v a r komórka elementarna V = r r a ( b c) v Układy krystalograficzne (7) i Sieci Bravais (14) Triclinic (P) a b c, α β γ 90 ο Monoclinic (P) a b c,
Związki chemiczne. Większość pierwiastków oddziałuje ze sobą tworząc związki chemiczne
Związki chemiczne Większość pierwiastków oddziałuje ze sobą tworząc związki chemiczne spalanie mieszanina wodoru i tlenu woda Typy wiązań chemicznych CZĄSTECZKI HETEROJĄDROWE wiązanie chemiczne - P - =
Atomy wieloelektronowe
Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,
Wykład z Chemii Ogólnej
Wykład z Chemii Ogólnej Część 2 Budowa materii: od atomów do układów molekularnych 2.3. WIĄZANIA CHEMICZNE i ODDZIAŁYWANIA Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja
+ + Struktura cia³a sta³ego. Kryszta³y jonowe. Kryszta³y atomowe. struktura krystaliczna. struktura amorficzna
Struktura cia³a sta³ego struktura krystaliczna struktura amorficzna odleg³oœci miêdzy atomami maj¹ tê sam¹ wartoœæ; dany atom ma wszêdzie takie samo otoczenie najbli szych s¹siadów odleg³oœci miêdzy atomami