WPPT; kier. Inż. Biom.; lista zad. nr 4 pt.
|
|
- Krzysztof Sowiński
- 6 lat temu
- Przeglądów:
Transkrypt
1 WPPT; kier. Inż. Biom.; lista zad. nr 4 pt.: Analizowanie i rozwiązywanie zadań/problemów dotyczących zderzeń sprężystych i niesprężystych. z wykorzystaniem praw zachowania energii kinetycznej i pędu; pod koniec listy zadania do samodzielnego rozwiązania. Lista ma na celu zdobycie przez studentów wiedzy matematycznofizycznej, nabycie umiejętności rozwiązywania prostych zadań z wykorzystaniem zasad zachowania pędu i utrwalanie dotychczas zdobytej wiedzy fizycznej. Materiał dydaktyczny: wykłady i rozdziały 8-9 podręcznika Łyżwiarz o masie M, stojący na zamarzniętym jeziorze rzuca poziomo kulkę o masie m=m/99 w kierunku brzegu. W momencie rzutu kulka znajdowała się na wysokości h i upadła na brzegu w odległości d od łyżwiarza. Proszę wyznaczyć wartość pracy wykonanej przez łyżwiarza. Ws-ka. Proszę uzasadnić, że d=(v Ł +v k )t, gdzie v Ł prędkość łyżwiarza po odrzuceniu kulki o prędkości v k, t czas ruchu kulki. 17. A) Sternik o masie 45 kg stoi na pokładzie niezacumowanej żaglówki o masie 450 kg i długości 7 m, nieruchomo spoczywającej na powierzchni jeziora. Sternik rozpoczyna spacer po pokładzie z prędkością 1 m/s względem żaglówki przechodząc od z jej przodu na rufę. Proszę obliczyć jak daleko względem brzegu przemieści się żaglówka, a jak sternik? Ws-ka: Środek masy układu spoczywa. 18. Proszę obliczyć a jaką wysokość h wzniesie się wahadło balistyczne o M=10 kg, gdy utkwi w nim pocisk o masie m=0,1 kg lecący poziomo z prędkością v=200 m/s? (rys. obok). 19. Proszę obliczyć ciśnienie p wywierane na powierzchnię przez strumień światła słonecznego padającego prostopadle na nią zakładając, że zderzenia fotonów z powierzchnią są idealnie niesprężyste; proszę przyjąć, że powierzchnia ma masę dużo większą od masy padających cząstek, tj. pozostaje nieruchoma a zmianę jej masy można zaniedbać; w przypadku światła słonecznego gęstość masy padającego światła E =(s-s)/c, gdzie s-s stała słoneczna o wartości 1400 W/m 2 ( Ws-ka. Niechaj strumień światło rozchodzi się wzdłuż osi cylindra i oświetla jego podstawę o powierzchni S, niechaj gęstość energii światła wynosi E ; wtedy natężenie J=s-s (moc/powierzchnia) światła słonecznego padającego w czasie t na podstawę cylindra wyniesie S E c t -s -s c -s s E J E s s E masy ; proszę zweryfikować wymiary lewej 2 3 St c c c 2 i prawej strony ostatniego ze wzorów, a następnie uzasadnić, że p c masy i pokazać, że wymiary obu stron tego wzoru są spójne. 20. Jednej kuli bilardowej nadano prędkość V kierując ją na 15 innych nieruchomych. W rezultacie idealnie sprężystych zderzeń kul między sobą i z brzegiem masywnego idealnie gładkiego stołu, w pewnym momencie wszystkie kule mają te same prędkości v. Jeśli zaniedbamy ruch obrotowy kul (idealnie gładka powierzchnia, masa stołu olbrzymia), to ile wynosi stosunek v/v? 21. Spoczywające w początku układu odniesienia jądro atomu rozpadło się na 3 części. Znane są dane rozpadu: m 1 = 16, kg, v 1 = (6 10 6, 0, 0) m/s, m 2 = 8, kg, v 2 = (8 10 5, 0, 0) m/s oraz m 2 = 11, kg. Proszę wyznaczyć wektor v 3 oraz wartość energii kinetycznej uwolnionej w tym rozpadzie i oszacować ile takich rozpadów w czasie 1 s jest potrzebnych, aby moc wydzielonej energii była 1 MW? 22. Zadanie do samodzielnego rozwiązania i zamieszczenia w portfolio. Proszę oszacować wartości sił z jakimi tornada o prędkościach wiatrów 160 km/h (typ EF1), 240 km/h (typ EF3, siła huraganu Metthew, który szalał nad Morzem Karaibskim, nad Haiti i Florydą), 290 km/h (typ EF4, początkowa siła huraganu Metthew, który szalał nad Morzem Karaibskim, nad Haiti i Florydą) i 360 km/h (typ EF5; taką siłę miał tajfun Irma, wrzesień 2017, zdjęcie satelitarne po lewej stronie) działa na Twoje ciało, gdy stoisz w pozycji pionowej w strumieniu tornado. Wartość sił oszacuj ze wzoru powietrza S v 2, gdzie S pole powierzchni Twojego ciała; powietrza = 1.2 kg/m 3. Więcej patrz Wyniki należy zamieścić w portfolio w postaci tabeli z wartościami odpowiednich danych oraz oszacowanymi wartościami sił. Wrocław, 5 października 2018 W. Salejda 1
2 Siłownia umysłowa. Zadania przeznaczone do samodzielnego rozwiązania 1. Zadanie egzaminacyjne. 1A) Opisz fizyczną treść zasady zachowania pędu dla pojedynczego ciała oraz układu N ciał podając warunki stosowalności tej zasady w każdym z ww. przypadków. 1B) Wyprowadź zasadę zachowania pędu dla układu 2 ciał oddziaływujących ze sobą siłami spełniającymi III zasadę dynamiki. 1C) W drewniane wahadło balistyczne o masie m 2 = 20,0 kg uderzył lecący poziomo z nieznaną prędkością v 0 pocisk o masie m 1 = 0,008 kg, przebił je, co spowodowało wzniesienie się wahadła na wysokość h = 0,002 m (patrz rysunek obok). Wyznacz v 0, jeśli po przebiciu wahadła zmierzona prędkość pocisku wyniosła v k = 54 m/s. 2. Dwie kule o masach i prędkościach, odpowiednio, m 1, m 2 i v 1, v 2 zderzają się centralnie idealnie sprężyście. Pokaż, że wzory (10.38) i (10.39), zamieszczone obok, poprawnie zadają prędkości v 1końc, v 2końc tych kul po zderzeniu. Czy wzory zmienią się, gdy dokonamy w nich zamiany wskaźników 1 na 2? 3. Należy rozpatrzyć wzory (10.38) i (10.39) dla m 1 << m 2 w następujących przypadkach: A) v 1 0, v 2 = 0; B) v 1 = 0, v 2 0; C) m 1 = m 2, v 1 0, v 2 = Neutron zderza się czołowo, idealnie sprężyście ze spoczywającym atomem węgla 12 C 6. Jaka część początkowej energii kinetycznej neutronu jest przekazywana 12 C 6? Wyznaczyć energię kinetyczną atomu 12 C 6 i neutronu po zderzeniu, jeśli początkowa energia kinetyczna neutronu wynosiła 1, J. Zadanie omówione na wykładzie. 5. W czasie testów samochodu bada się jego odporność na zderzenia. Samochód o masie 2300 kg i prędkości 15 m/s uderza w podporę mostu. Jaką średnią siłą działa podpora na samochód (a samochód na podporę) w czasie zderzenia trwającego 0,56 s? 6. Zagadnienia egzaminacyjne. A) Proszę przedstawić drugą zasadę dynamiki Newtona (także z wykorzystaniem pojęcia pędu) dla ciała o danej masie określając warunki jej stosowalności oraz znaczenia zastosowanych w tekście odpowiedzi wielkości fizycznych i symboli. v1m2 m12mv 2 2 (12 pkt.) B) Proszę sformułować zasadę zachowania pędu dla układu N ciał o V1, m m znanych masach oddziaływujących ze sobą (5 pkt.) podając warunki, przy spełnieniu których zasada ta jest spełniona. (3 pkt) C) Neutron o masie m V2 prędkości v zderza się centralnie idealnie sprężyście ze spoczywającą cząsteczką deuteru (izotop wodoru) o masie 2m. Proszę po-kazać, że po jednym zderzeniu energia kinetyczna neutron maleje 9-krotnie. Ws-ka: Podane wzory można wykorzystać opisując ich sens fizyczny. (4 pkt) 7. Kamizelki kuloodporne są szyte z odpowiednio gęsto utkanych tkanin (dlatego są bardzo ciężkie). Uderzająca w kamizelkę kula stopniowo ale błyskawicznie grzęźnie w splotach tkanin. Przypuśćmy, że pocisk o masie 10,2 g wystrzelono w kierunku człowieka ubranego w kamizelkę, którego masa wraz z kamizelką wynosi 100 kg. Zależność v(t) prędkości kuli w tkaninach kamizelki zadaje równanie v(t) = a b t, gdzie a = 300 m/s, b = 75 m/(ms) 2 dla 0 t 4 s (mikrosekund). Jakie jest opóźnienie pocisku w kamizelce? Obliczyć: a) zmianę pędu i energii pocisku; b) drogę, na której pocisk zatrzymuje się; c) oszacuj wartość siły działającej na kamizelkę ze strony grzęznącej w niej kuli, d) oszacuj prędkość człowieka po ugrzęźnięciu kuli w kamizelce. 8. Strumień wody z armatki policyjnego samochodu pada na ciało demonstranta. Prędkość wody wynosi 15 m/s. W ciągu sekundy armatka wylewa 10 litrów wody. Woda o gęstości 1000 kg/m 3 praktycznie nie odbija się od ciała demonstranta i spływa po nim. Obliczyć średnią wartość siły działającej na ciało demonstranta. 9. Granat lecący w pewnej chwili z prędkością v = 10 m/s rozerwał się na dwa odłamki. Większy odłamek, którego masa stanowiła w = 60% masy całego granatu, kontynuował lot w pierwotnym v m m 2mv m m
3 kierunku, lecz ze zwiększoną prędkością v 1 = 25 m/s. Znaleźć kierunek i wartość prędkości mniejszego odłamka. 3
4 10. Człowiek o masie 60 kg biegnący z prędkością 8 km/h, dogania wózek o masie 90 kg, który jedzie z prędkością 4 km/h i wskakuje na ten wózek; a) Z jaką prędkością będzie poruszał się wózek z człowiekiem? b) Jaka będzie prędkość wózka z człowiekiem w przypadku, gdy człowiek będzie biegł naprzeciw wózka? 11. Pocisk o masie m lecąc poziomo z prędkością v uderza w stojący wózek z piaskiem o masie M (patrz rys. obok). Przebiwszy warstwę piasku poruszał się dalej z prędkością u 1. Proszę wyznaczyć prędkość u 2 wózka tuż po zderzeniu oraz wartość współczynnika tarcia f wózka o podłoże, jeżeli wózek zatrzymał się na drodze s. 12. Na poziomo poruszający się z prędkością 10 m/s wózek o masie 5 kg spadła pionowo cegła o masie 3 kg. Ile wynosiła po tym prędkość wózka i cegły? 13. Ołowiany pocisk o masie 0,1 kg lecąc poziomo uderza w stojący wózek z piaskiem o łącznej masie 50 kg i grzęźnie w nim. Po zderzeniu wózek odjeżdża z prędkością 1 m/s. Jaka była prędkość pocisku przed zderzeniem? 14. W spoczywający na gładkim stole klocek o masie 0,5kg uderza poruszający się poziomo z prędkością 500m/s pocisk o masie 0,01kg. Po przebiciu pocisk porusza się z prędkością 300m/s. Ile wynosi prędkość u klocka po uderzeniu przez pocisk? 15. W spoczywający na stole klocek o masie 0,5 kg uderzył poruszający się poziomo z prędkością 500 m/s pocisk o masie 0,01 kg i utkwił w nim. Jaką drogę s przebył klocek do zatrzymania się, jeżeli współczynnik tarcia klocka o podłoże wynosi 0,2? 16. Pocisk o masie m lecący z prędkością v trafia w nieruchomy wagon naładowany piaskiem i grzęźnie w nim. Obliczyć prędkość u wagonu po tym zdarzeniu. Masa wagonu z piaskiem wynosi M. 17. Od dwustopniowej rakiety o masie 1200kg po osiągnięciu szybkości 200m/s, oddzielił się pierwszy stopień o masie 700 kg. Jaką szybkość osiągnął drugi stopień rakiety, jeśli szybkość pierwszego stopnia zmalała w wyniku tej operacji do 150 m/s? 18. Piłka o masie m = 100g uderza w ścianę z prędkością v = 5 m/s pod kątem 60 o odbija się od niej doskonale sprężyście. a) Narysuj wektor zmiany pędu piłki p. b) Oblicz wartość wektora zmiany pędu. c) Na podstawie rysunku wykonanego w punkcie a) zadania podaj kierunek i zwrot siły, którą ściana działa na piłkę i którą piłka działa na ścianę. 19. Dwie kule zawieszone na równoległych niciach tej samej długości stykają się. Kula o masie M zostaje odchylona od pionu tak, że jej środek ciężkości wznosi się na wysokość h zostaje puszczona swobodnie. Na jaką wysokość wzniesie się ta kula po zderzeniu doskonale niesprężystym z drugą kulą. Masa drugiej kuli wynosi m. 20. Z działa o masie M następuje wystrzał pocisku o masie m pod kątem α do poziomu. Oblicz prędkość, z jaką działo zostaje odrzucone wstecz, jeżeli prędkość pocisku względem ziemi wynosi v. 21. Poziomo lecący strumień wody uderza o ścianę i spływa po niej swobodnie. Prędkość strumienia wynosi v, a jego pole przekroju poprzecznego S. Wyznaczyć siłę z jaką ten strumień działa na ścianę. 22. Piłka o masie m uderza pod kątem α o doskonale gładką ścianę i odbija się od niej doskonale sprężyście. Znaleźć średnią siłę F z jaką ściana działa na piłkę. Prędkość padającej piłki v, a czas zderzenia Δt. 23. Kulka o masie 0,25 kg lecąca poziomo z prędkością v 1 = (14, 0, 0) zderza się centralnie idealnie sprężyście z kulką o masie 0,4 kg lecącej poziomo po tej samej prostej z prędkością v 2 = ( 8, 0, 0). Wyznaczyć prędkości (wartości i kierunki) obu kulek po zderzeniu. 24. Rozwiązać poprzednie zadanie przy założeniu, że zderzenie jest idealnie niesprężyste. Jaka ilość i na co jest tracona początkowa wartość energii kinetycznej kulek? Przy jakich warunkach obie kulki po zderzeniu będą spoczywały? 25. Stoisz na łyżwach na idealnie gładkim lodzie. Piłka o masie 0,4 kg, której pozioma prędkość w chwili uderzenia o Twoje ciało o masie 60 kg, wynosi 14 m/s. a) Jeśli złapiesz piłkę, to z jaką prędkością będziesz się poruszał? W jakim kierunku? B) Jeśli piłka odbije się od Ciebie i następnie poruszać się będzie w kierunku przeciwnym z poziomą prędkością 8 m/s, to jaka będzie Twoja prędkość? v m M u 2 u 1 4
5 26. Ciało A o masie 3 kg zderza się idealnie sprężyście i centralnie z innym nieruchomym ciałem. Ciało A po zderzeniu porusza się w tym samym kierunku ale z prędkością czterokrotnie mniejszą? Jak była masa nieruchomego ciała? 27. Dwa klocki o masach 2 kg i 5 kg, spoczywające na idealnie gładkiej poziomej powierzchni, łączy ściśnięta sprężyna. Po zwolnieniu sprężyny ciało o mniejszej masie uzyskało prędkość 2 m/s. Jaką prędkość miał drugi klocek? 28. Neutron zderza się czołowi i idealnie sprężyście ze spoczywającym początkowo jadrem atomu węgla 12 C 6. Jaką część początkowej energii kinetycznej neutronu jest przekazywana atomowi węgla? Wyznaczyć energię kinetyczną jądra węgla i neutronu po zderzeniu, jeśli początkowa energia neutronu wynosiła 1, J. Przyjąć w obliczeniach, że masa jądra węgla jest 12 razy większa od masy neutronu. 29. Podczas legendarnego oblężenia przez Szwedów Jasnej Góry kolubryna o masie własnej 500 kg wystrzeliwała pociski o masie 10 kg z prędkością poziomą 150 m/s przesuwając się przy tym o 2 m. Obliczyć prędkość początkową działa oraz średnią siłę działającą na armatę, zakładając, że ruch armaty jest jednostajnie opóźniony. 30. (Kosmiczna proca) Pojazd kosmiczny Voyager 2 o masie m i prędkości v = 12 km/s względem nieruchomego Słońca zbliża się do Jowisza o masie m J i prędkości orbitalnej v 1 = 13 km/s. Pojazd okrąża planetę i oddala się od niej w kierunku, z którego nadleciał. Wyznacz prędkość pojazdu względem Słońca po tym manewrze, który można rozpatrywać jako zderzenie idealnie sprężyste, przy warunku M m. Ws-ka: skorzystać ze wzoru na prędkości zderzających się obiektów przed i po zderzeniu i przyjąć, że prędkość Jowisza praktycznie nie ulega zmianie. 31. Na jaką wysokość liczoną od położenia równowagi wzniesie się ciało o masie 10 kg, gdy utkwi w nim pocisk o masie m = 0,1 kg lecący poziomo z prędkością v = 200 m/s? (patrz rys. obok, nić jest nieważka). Jak należałoby analizować to zadanie, gdyby ciało+pręt było wahadłem fizycznym? 32. Ciało o masie m = 2 kg znajduje się początkowo na wierzchołku równi o masie M = 8 kg, wysokości h = 2 m i długości poziomej podstawy L = 6 m mogącej poruszać się po poziomej idealnie gładkiej powierzchni. Wyznaczyć położenie równi w momencie, gdy ciało osiągnie koniec równi. Ws-ka: Środek masy układu spoczywa. Wiemy, że współrzędna x-owa środka masy równi 2L/ Zagadnienie egzaminacyjne. (24 pkt.) Zasady zachowania a) Sformułuj zasadę zachowania energii mechanicznej dla pojedynczego ciała o masie m określając warunki, przy spełnieniu których można ją stosować (6 pkt.). b) Podaj wzór na energię mechaniczną Ziemi orbitującej wokół Słońca i wyjaśnij dlaczego wartość tej energii nie zmienia się w czasie. Dane są: m masa Ziemi, M Słońca, r odległość chwilowa Ziemi od Słońca, wektor prędkości chwilowej Ziemi na orbicie okołosłonecznej, G stała grawitacji (4 pkt.). c) Sformułuj zasadę zachowania pędu dla pojedynczego ciała o masie m i wektorze prędkości określając warunki, przy spełnieniu których można ją stosować. (4 pkt.). d) Jakie zasady zachowania obowiązują w trakcie dowolnego centralnego zderzenia (elastycznego lub niesprężystego) dwóch ciał? (6 pkt.). e) Kulka jest przemieszczana po 3 różnych drogach 1: BA, 2: CA i 3: DA w polu grawitacyjnym Ziemi. Uzasadnij stwierdzenie: Praca siły grawitacyjnej na każdej z tych dróg jest taka sama (4pkt.). Wrocław, 5 października W. Salejda 5
Środek masy Na rysunku przedstawiono ułożenie czterech ciał o jednakowej masie równej 1kg. Wyznacz położenie środka masy tego układu.
Środek masy 125. Na rysunku przedstawiono ułożenie czterech ciał o jednakowej masie równej 1kg. Wyznacz położenie środka masy tego układu. 126. Dwa klocki poruszają się po płaskim stole wzdłuż tej samej
Bardziej szczegółowoPęd układu. r r r. Zderzenia oraz zasada zachowania pędu
Praca i energia. Zasada zachowania energii mechanicznej. Środek masy. Lista zadań nr 3 dla potoku A i B SKP oraz kierunku IŚ Wydziału IŚ PWr; rok ak. 2008/09 Praca Uwaga: Zadania w tej części rozwiązujemy
Bardziej szczegółowob) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.
Zadanie 1 Szybkie neutrony, powstające w reaktorze jądrowym, muszą zostać spowolnione, by mogły wydajnie uczestniczyć w łańcuchowej reakcji rozszczepienia jąder. W tym celu doprowadza się do ich zderzeń
Bardziej szczegółowoBlok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
Bardziej szczegółowoZasady dynamiki Newtona
Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź
Bardziej szczegółowo3. Zadanie nr 21 z rozdziału 7. książki HRW
Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;
Bardziej szczegółowoPrzykłady: zderzenia ciał
Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski
Bardziej szczegółowoautor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt PYTANIA ZAMKNIĘTE Jeśli energia kinetyczna
Bardziej szczegółowoFizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Zderzenia Zasada zachowania pędu Pęd i druga zasada dynamiki Pęd cząstki (ciała) to wektor prędkości pomnożony przez masę. r p = r mv
Bardziej szczegółowoĆwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"
Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.
Bardziej szczegółowoPraca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
Bardziej szczegółowoZakład Dydaktyki Fizyki UMK
Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością
Bardziej szczegółowo(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.
1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka
Bardziej szczegółowoPOWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE
POWTÓRKA PRZED KONKURSEM CZĘŚĆ C DO ZDOBYCIA PUNKTÓW 55 Jest to powtórka przed etapem szkolnym z materiałem obejmującym dynamikę oraz drgania i fale. ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte (na 10) otwarte
Bardziej szczegółowoMateriały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Energia mechaniczna. Energia mechaniczna dzieli się na energię kinetyczną i potencjalną. Energia kinetyczna
Bardziej szczegółowoWykład 7: Układy cząstek. WPPT, Matematyka Stosowana
Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?
Bardziej szczegółowoSprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.
Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..
Bardziej szczegółowo14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)
Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
Bardziej szczegółowoWe wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2
m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1. (1 punkt) Pasażer samochodu zmierzył za pomocą stopera w telefonie komórkowym, że mija słupki kilometrowe co
Bardziej szczegółowoDynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
Bardziej szczegółowoKołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)
Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany
Bardziej szczegółowo14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY. Obejmuje u mnie działy od początku do POLE GRAWITACYJNE
Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY Obejmuje u mnie działy od początku do POLE GRAWITACYJNE 01 WEKTORY, KINEMATYKA. RUCH JEDNOSTAJNY
Bardziej szczegółowopobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka
4. Pole grawitacyjne. Praca. Moc.Energia zadania z arkusza I 4.8 4.1 4.9 4.2 4.10 4.3 4.4 4.11 4.12 4.5 4.13 4.14 4.6 4.15 4.7 4.16 4.17 4. Pole grawitacyjne. Praca. Moc.Energia - 1 - 4.18 4.27 4.19 4.20
Bardziej szczegółowoFIZYKA Kolokwium nr 3 (e-test)
FIZYKA Kolokwium nr 3 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Z balkonu znajdującego się na wysokości 11m nad ziemią wypadła poduszka o
Bardziej szczegółowoZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II
ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II Oblicz wartość prędkości średniej samochodu, który z miejscowości A do B połowę drogi jechał z prędkością v 1 a drugą połowę z prędkością v 2. Pociąg o długości
Bardziej szczegółowoZadania z zasad zachowania
Zadania z zasad zachowania Maciej J. Mrowiński 23 kwietnia 2010 Zadanie ZZ1 Ciało zjeżdża bez tarcia ze szczytu gładkiego wzniesienia o wysokości H. Dla jakiej wysokości h, przy której wzniesienie się
Bardziej szczegółowoBryła sztywna Zadanie domowe
Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła
Bardziej szczegółowoWydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne
Bardziej szczegółowoMECHANIKA 2. Teoria uderzenia
MECHANIKA 2 Wykład Nr 14 Teoria uderzenia Prowadzący: dr Krzysztof Polko DYNAMIKA PUNKTU NIESWOBODNEGO Punkt, którego ruch ograniczony jest jakimiś więzami, nazywamy punktem nieswobodnym. Więzy oddziaływają
Bardziej szczegółowoPrzykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni
Bardziej szczegółowoEgzamin z fizyki Informatyka Stosowana
Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka
Bardziej szczegółowoPraca domowa nr 3. WPPT, kierunek IB., gdyby praca na rzecz siły tarcia wyniosłaby 10% początkowej wartości energii mechanicznej?
Praca domowa nr 3. WPPT, kierunek IB. Grupa1. Praca i energia mechaniczna, tw. o pracy i energii, zasada zachowania energii mechanicznej. Równania ruchu (cd). 1. A) Z wysokości 11,5 m spadł pionowo lecący
Bardziej szczegółowoPraca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
Bardziej szczegółowo14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)
Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
Bardziej szczegółowoETAP I - szkolny. 24 listopada 2017 r. godz
XVI WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
Bardziej szczegółowoMateriały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
Bardziej szczegółowoTreści dopełniające Uczeń potrafi:
P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć
Bardziej szczegółowo09-TYP-2015 DYNAMIKA RUCHU PROSTOLINIOWEGO
Włodzimierz Wolczyński 09-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY DYNAMIKA RUCHU PROSTOLINIOWEGO Obejmuje działy u mnie wyszczególnione w konspektach jako 01 WEKTORY,
Bardziej szczegółowoZestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :
Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał
Bardziej szczegółowoZADANIA PRACA, MOC, ENREGIA
ZADANIA PRACA, MOC, ENREGIA Aby energia układu wzrosła musi być wykonana nad ciałem praca przez siłę zewnętrzną (spoza układu ciał) Ciało, które posiada energię jest zdolne do wykonania pracy w sensie
Bardziej szczegółowoPodstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia
Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha
Bardziej szczegółowoPęd ciała. ! F wyp. v) dt. = m a! = m d! v dt = d(m! = d! p dt. ! dt. Definicja:! p = m v! [kg m s ]
Pęd ciała Definicja: p = v [kg s ] II zasada dynaiki Newtona w oryginalny sforułowaniu: F wyp = a = d v = d( v) = d p F wyp = d p Jeżeli ciało zienia swój pęd to na ciało działa niezerowa siła wypadkowa.
Bardziej szczegółowoZasada zachowania pędu
Zasada zachowania pędu Zasada zachowania pędu Układ izolowany Układem izolowanym nazwiemy układ, w którym każde ciało może w dowolny sposób oddziaływać z innymi elementami układu, ale brak jest oddziaływań
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych
Bardziej szczegółowoKONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY
... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie Konkursu Fizycznego. Przeczytaj uważnie instrukcję i postaraj się
Bardziej szczegółowoŁamigłówka. p = mv. p = 2mv. mv = mv + 2mv po. przed. Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0! Jak to jest możliwe?
Łamigłówka p = mv p = 2mv p = mv przed mv = mv + 2mv po Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0 Jak to jest możliwe? Zastosowanie zasady zachowania pędu - zderzenia 2. Zderzenia elastyczne
Bardziej szczegółowoZad. 5 Sześcian o boku 1m i ciężarze 1kN wywiera na podłoże ciśnienie o wartości: A) 1hPa B) 1kPa C) 10000Pa D) 1000N.
Część I zadania zamknięte każde za 1 pkt Zad. 1 Po wpuszczeniu ryby do prostopadłościennego akwarium o powierzchni dna 0,2cm 2 poziom wody podniósł się o 1cm. Masa ryby wynosiła: A) 2g B) 20g C) 200g D)
Bardziej szczegółowoZasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone
Bardziej szczegółowoPRZED KONKURSEM CZĘŚĆ 13
POWTÓRKA PRZED KONKURSEM CZĘŚĆ 13 Zadanie 1 Przez cewkę przepuszczono prąd elektryczny, podłączając ją do źródła prądu, a nad nią zawieszono magnes sztabkowy na dół biegunem N. Naciąg tej nici A. Zwiększy
Bardziej szczegółowoPODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski
PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu
Bardziej szczegółowoAnaliza zderzeń dwóch ciał sprężystych
Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.
Bardziej szczegółowoPodstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu
Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy
Bardziej szczegółowoZadanie 2 Narysuj wykres zależności przemieszczenia (x) od czasu(t) dla ruchu pewnego ciała. m Ruch opisany jest wzorem x( t)
KINEMATYKA Zadanie 1 Na spotkanie naprzeciw siebie wyszło dwóch kolegów, jeden szedł z prędkością 2m/s, drugi biegł z prędkością 4m/s po prostej drodze. Spotkali się po 10s. W jakiej maksymalnej odległości
Bardziej szczegółowoZasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub
Bardziej szczegółowoWykład 2. podstawowe prawa i. Siły w przyrodzie, charakterystyka oddziaływań. zasady. Praca, moc, energia. 1. Jakie znamy siły???
Wykład 2. Siły w przyrodzie, charakterystyka oddziaływań, zasady. Praca, moc, energia podstawowe prawa i Siły w przyrodzie, charakterystyka oddziaływań 1. Jakie znamy siły??? 2. Czym jest oddziaływanie??
Bardziej szczegółowoPęd. Jan Masajada - wykłady z podstaw fizyki
Temat IV Pęd UKŁAD IZOLOWANY p p =0 po pewnej chwili p1 k p2 k p1 k+ p2 k=0 Działo zostało wymierzone pod kątem = 30 0 do podłoża. W pewnej chwili wystrzelono pociski o masie 30kg z prędkością początkową
Bardziej szczegółowoZasada zachowania energii
Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F Praca i energia Praca
Bardziej szczegółowoAnaliza zderzeń dwóch ciał sprężystych
Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.
Bardziej szczegółowoZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!
Imię i nazwisko: Kl. Termin oddania: Liczba uzyskanych punktów: /50 Ocena: ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! 1. /(0-2) Przelicz jednostki szybkości:
Bardziej szczegółowo09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego)
Włodzimierz Wolczyński 09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
Bardziej szczegółowoPRACOWNIA FIZYCZNA I
Skrypt do laboratorium PRACOWNIA FIZYCZNA I Ćwiczenie 2: Wyznaczanie czasu zderzenia dwóch ciał. Opracowanie: mgr Tomasz Neumann Gdańsk, 2011 Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna
Bardziej szczegółowoOBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R.
OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R. Pytania mogą posłużyć do rozegrania I etapu konkursu rozgrywającego się w macierzystej szkole gimnazjalistów - kandydatów. Matematyka Zad. 1 Ze wzoru wynika,
Bardziej szczegółowoZasada zachowania energii
Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca
Bardziej szczegółowoZasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
Bardziej szczegółowoCel ćwiczenia: zapoznanie się z wielkościami opisującymi ruch i zastosowanie równań ruchu do opisu rzeczywistych
Zestaw 1 KINEMATYKA Cel ćwiczenia: zapoznanie się z wielkościami opisującymi ruch i zastosowanie równań ruchu do opisu rzeczywistych sytuacji. Wiadomości wstępne: wektory i operacje na nich. Rodzaje ruchu,
Bardziej szczegółowo18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa
Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów
Bardziej szczegółowo30 = 1.6*a F = 2.6*18.75
Fizyka 1 SKP drugie kolokwium, cd. [Rozwiązał: Maciek K.] 1. Winda osobowa rusza w dół z przyspieszeniem 1m/s2. Ile wynosi siła nacisku człowieka o masie 90 kg na podłogę windy? Wynik podaj w N z dokładnością
Bardziej szczegółowoPrzykładowe zdania testowe I semestr,
Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ
Bardziej szczegółowoROZWIĄZUJEMY ZADANIA Z FIZYKI
ROZWIĄZUJEMY ZADANIA Z FIZYKI Rozwiązując zadnia otwarte PAMIĘTAJ o: wypisaniu danych i szukanych, zamianie jednostek na podstawowe, wypisaniu potrzebnych wzorów, w razie potrzeby przekształceniu wzorów,
Bardziej szczegółowoĆwiczenie: "Dynamika"
Ćwiczenie: "Dynamika" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Układy nieinercjalne
Bardziej szczegółowoFizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2
Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.
Bardziej szczegółowoRodzaje zadań w nauczaniu fizyki
Jan Tomczak Rodzaje zadań w nauczaniu fizyki Typologia zadań pisemnych wg. prof. B. Niemierki obejmuje 2 rodzaje, 6 form oraz 15 typów zadań. Rodzaj: Forma: Typ: Otwarte Rozszerzonej odpowiedzi - czynności
Bardziej szczegółowoIII Powiatowy konkurs gimnazjalny z fizyki finał
1 Zduńska Wola, 2012.03.28 III Powiatowy konkurs gimnazjalny z fizyki finał Kod ucznia XXX Pesel ucznia Instrukcja dla uczestnika konkursu 1. Etap finałowy składa się dwóch części: zadań testowych i otwartych
Bardziej szczegółowoMiędzypowiatowy Konkurs Fizyczny dla uczniów klas II GIMNAZJUM FINAŁ
ZDUŃSKA WOLA 16.04.2014R. Międzypowiatowy Konkurs Fizyczny dla uczniów klas II GIMNAZJUM FINAŁ Kod ucznia Instrukcja dla uczestnika konkursu 1. Proszę wpisać odpowiednie litery (wielkie) do poniższej tabeli
Bardziej szczegółowoZadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu
Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych
Bardziej szczegółowoKONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 2008 r. Klasa II
...... imię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 008 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 4 zadań. Pierwsze 0 to zadania zamknięte. Rozwiązanie tych
Bardziej szczegółowoa, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna
Włodzimierz Wolczyński 3 RUCH DRGAJĄCY. CZĘŚĆ 1 wychylenie sin prędkość cos cos przyspieszenie sin sin siła współczynnik sprężystości sin sin 4 3 1 - x. v ; a ; F v -1,5T,5 T,75 T T 8t x -3-4 a, F energia
Bardziej szczegółowoZasady dynamiki Newtona
Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa
Bardziej szczegółowoKONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe)
Pieczęć KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Fizycznego i życzymy powodzenia. Maksymalna liczba
Bardziej szczegółowoI. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
Bardziej szczegółowoI zasada dynamiki Newtona
I zasada dynamiki Newtona Każde ciało pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej dopóki nie zadziała na nie niezrównoważona siła z zewnątrz. Jeśli! F i = 0! i v = 0 lub
Bardziej szczegółowoLista zadań nr 7 Praca, Moc, Energia, Zasady Zachowania
Lista zadań nr 7 Praca, Moc, Energia, Zasady Zachowania (2h) Praca Zad.7.1 Zespół ratownictwa jaskiniowego wydobywa z jaskini przez pionowy szyb rannego speleologa za pomocą liny nawijanej na bęben przy
Bardziej szczegółowoWOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM, ROK SZKOLNY 2015/2016, ETAP REJONOWY
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 IMIĘ I NAZWISKO UCZNIA wpisuje komisja konkursowa po rozkodowaniu pracy! KOD UCZNIA: ETAP II REJONOWY Informacje: 1. Czas rozwiązywania
Bardziej szczegółowoKONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO II ETAP REJONOWY 6 grudnia 2017 r. Uczennico/Uczniu: 1. Na rozwiązanie wszystkich zadań masz 90 minut. 2. Pisz długopisem/piórem
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad Poprawna odpowiedź i zasady przyznawania punktów
Operon ZAKRES ROZSZERZONY 00% KOD WEWNĄTRZ KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony Listopad 06 Vademecum Fizyka MATURA 07 VADEMECUM Fizyka Zacznij przygotowania
Bardziej szczegółowoWOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014. Imię i nazwisko:
(pieczątka szkoły) Imię i nazwisko:................................. Czas rozwiązywania zadań: 45 minut WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014 ETAP I SZKOLNY Informacje:
Bardziej szczegółowoKuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 ETAP OKRĘGOWY
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 KOD UCZNIA ETAP OKRĘGOWY Instrukcja dla ucznia 1. Arkusz zawiera 7 zadań. 2. Przed rozpoczęciem
Bardziej szczegółowoPOWTÓRKA PRZED KONKURSEM CZĘŚĆ 5 B
DO ZDOYCI 30 PUNKTÓW POWTÓRK PRZED KONKURSEM CZĘŚĆ 5 TE ZDNI Z ETPU SZKOLNEGO KONKURSU GIMNZJLNEGO YŁY KIEDYŚ UŻYTE 1. W pierwszej sekundzie ruchu jednostajnego rowerzysta przebył drogę 3 m. W trzeciej
Bardziej szczegółowoSiły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2018 Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Praca wykonana przez siłę wypadkową działającą
Bardziej szczegółowoZestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie
Zestaw 1cR Zadanie 1 Sterowiec wisi nieruchomo na wysokości H nad punktem A położonym bezpośrednio pod nim na poziomej powierzchni lotniska. Ze sterowca wyrzucono poziomo ciało, nadając mu prędkość początkową
Bardziej szczegółowo1. Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających w funkcji ciepła Q dostarczonego gazom.
. Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających i N N w funkcji ciepła Q dostarczonego gazom. N N T I gaz II gaz Molowe ciepła właściwe tych gazów spełniają zależność: A),
Bardziej szczegółowoA) 14 km i 14 km. B) 2 km i 14 km. C) 14 km i 2 km. D) 1 km i 3 km.
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Komisji Wojewódzkiego Konkursu Przedmiotowego z Fizyki Imię i nazwisko ucznia... Szkoła...
Bardziej szczegółowoZasady zachowania. Fizyka I (Mechanika) Wykład VI:
Zasady zachowania Fizyka I (Mechanika) Wykład VI: Zasady zachowania energii i pędu Zasada zachowania momentu pędu Zderzenia elastyczne Układ środka masy Zasada zachowania pędu II zasada dynamiki Pęd układu
Bardziej szczegółowo4. Jeżeli obiekt waży 1 kg i porusza się z prędkością 1 m/s, to jaka jest jego energia kinetyczna? A. ½ B. 1 C. 2 D. 2
ENERGIA I JEJ PRZEMIANY czas testu minut, nie piszemy po teście, właściwą odpowiedź wpisujemy na kartę odpowiedzi, tylko jedno rozwiązanie jest prawidłowe najpierw wykonaj zadania nieobliczeniowe Trzymamy
Bardziej szczegółowoZasady dynamiki przypomnienie wiadomości z klasy I
Zasady dynamiki przypomnienie wiadomości z klasy I I zasada dynamiki Newtona Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą, to ciało pozostaje w spoczynku lub porusza się ruchem
Bardziej szczegółowoWOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017. Imię i nazwisko:
(pieczątka szkoły) Imię i nazwisko:................................. Czas rozwiązywania zadań: 45 minut WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017 ETAP I SZKOLNY Informacje:
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad Poprawna odpowiedź i zasady przyznawania punktów
Operon ZAKRES ROZSZERZONY 00% KOD WEWNĄTRZ GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* - Twój indywidualny klucz do wiedzy! *Kod na końcu klucza odpowiedzi KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Bardziej szczegółowoKONKURS MATEMATYCZNO FIZYCZNY 11 marca 2010 r. Klasa II
...... kod ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY marca 200 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 4 zadań. Pierwsze 0 to zadania zamknięte. Rozwiązanie tych zadań polega na
Bardziej szczegółowo