Ładunki puszczamy w ruch. Wykład 12

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ładunki puszczamy w ruch. Wykład 12"

Transkrypt

1 Ładunki puszczamy w ruch. Wykład 12 Prawa przepływu prądu stałego Podstawowe definicje dla prądu elektrycznego Elektrony w ciałach stałych pasma energetyczne Prawo Ohma Opór elektryczny Nadprzewodnictwo Mikroskopowa postać prawa Ohma Obwody. Praca i moc prądu elektrycznego Prawa Kirchhoffa Łączenie oporników Kondensatory Fot. Fotolia 1

2 Prąd elektryczny - definicje Podstawowe definicje dla prądu elektrycznego Dotychczas były rozpatrywane zjawiska związane z nieruchomymi ładunkami elektrycznymi. Obecnie będziemy rozpatrywać ładunki w ruchu - zajmiemy się prądem elektrycznym. Nośnikami ładunku w metalu (np. drut miedziany) są poruszające się swobodnie (nie związane z poszczególnymi atomami) elektrony tzw. elektrony przewodnictwa. Bez pola elektrycznego te elektrony poruszają się (dzięki energii cieplnej) przypadkowo we wszystkich kierunkach. Elektrony swobodne zderzają się z atomami (jonami) przewodnika zmieniając swoją prędkość i kierunek ruchu zupełnie tak jak cząsteczki gazu zamknięte w pojemniku. Rys. Chaotyczny ruch cieplny elektronów (strzałki szare) i uporządkowany ruch elektronów w polu elektrycznym (strzałki czerwone). Rys. źródło: Elektrony w swoim chaotycznym ruchu cieplnym przechodzą przez tę powierzchnię w obu kierunkach i wypadkowy strumień ładunków przez tę powierzchnię jest równy zeru. Przez przewodnik nie płynie prąd. Ruchowi chaotycznemu nie towarzyszy przepływ prądu. 2

3 Prąd elektryczny Przyłożenie napięcia U (rys.) pomiędzy końce przewodnika,wytwarza pole elektryczne E, które działa siłą elektrostatyczną na ładunki, powodując ich ruch w określonym kierunku. Ruch chaotyczny każdego elektronu zostaje zmodyfikowany. W przewodniku płynie prąd elektryczny. Prąd elektryczny to uporządkowany ruch ładunków. Na rys. zaznaczona jest prędkość ruchu elektronów (strzałki czerwone),uzyskana dzięki przyłożonemu polu elektrycznemu. 3

4 . Podstawowe definicje dla prądu elektrycznego Kierunek przepływu prądu zależy od kierunku ruchu oraz od znaku przemieszczających sie ładunków. Przyjmuje się, ze prąd płynie od punktu (punktów) o wyższym potencjale do punktu (punktów) o niższym potencjale. Zatem umowny kierunek przepływu prądu jest zgodny z kierunkiem ruchu ładunków dodatnich. Dla określenia wielkości prądu wprowadza sie pojecie NATĘŻENIA (I): I dq dt 1C 1 A (12.1) 1 s I, to zmiana ilości ładunku, przepływającego przez poprzeczny przekrój przewodnika S, do czasu jego przepływu. Jednostką nateżenia jest amper (1A). W przypadku, gdy płynący prąd jest stały powyższe równanie sprowadza się do prostego ilorazu: (12.2) I Q t natężenie prądu jest równe ilorazowi ładunku elektrycznego, jaki przepłynął przez powierzchnię, do czasu przepływu. 4

5 . Podstawowe definicje dla prądu elektrycznego Definicja -gęstość prądu ( j ). Poprzednie równania j d I ds (12.3) 5

6 12.2. Elektrony w ciałach stałych pasma energetyczne Struktura ciała stałego Ciało stałe jest to zbiór atomów znajdujących się blisko siebie w położeniach równowagi. Atomy te wykonują drgania wokół swych położeń równowagi, a amplituda tych drgań zależy od temperatury. Ze względu na uporządkowanie atomów ciała stałe można podzielić na: krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym regularny wzór zwany siecią krystaliczną polikrystaliczne, zbudowane z bardzo wielu malutkich kryształków, amorficzne, wykazujące brak uporządkowania, np. szkła Ograniczmy się do ciał krystalicznych! 6

7 Elektrony w ciałach stałych pasma energetyczne W ciele stałym, poziomy energetyczne elektronów ulegają rozszczepieniu, tworząc pasma energii dozwolonych rozdzielone pasmami zabronionymi. Elektrony mogą posiadać wyłącznie energie leżące w zakresie pasm dozwolonych. Poziomy walencyjne tworzą pasmo walencyjne lub inaczej pasmo podstawowe, a powyżej tego pasma utworzone zostaje pasmo przewodnictwa. Pasma te rozdzielone są pasmem wzbronionym, nazywanym przerwą energetyczną Eg. 7

8 Elektrony w ciałach stałych Izolatory oprzewodnictwo prądu elektrycznego związane jest z obecnością elektronów w paśmie przewodnictwa. Jeżeli w danym materiale pasmo to jest puste, a pasmo walencyjne pełne, to taki materiał jest izolatorem (Rys.1a). o W paśmie przewodnictwa w izolatorach nie ma elektronów, a pasmo walencyjne jest całkowicie zapełnione - nawet w wyższych temperaturach. Wartość przerwy wzbronionej pomiędzy pasmem przewodnictwa i pasmem walencyjnym jest bardzo duża (Eg > 5 ev) i wzrost energii elektronu spowodowany wzrostem temperatury nie może spowodować jego przejścia z pasma walencyjnego do pasma przewodnictwa. Brak elektronów w paśmie przewodnictwa jest powodem braku przepływu prądu w izolatorach. 8

9 Elektrony w ciałach stałych Przewodniki Przewodnikami są ciała, w których istnieją tzw. ładunki swobodne mogące poruszać się wewnątrz tych ciał. Typowymi przedstawicielami przewodników są metale - pierwiastki, których atomy posiadają jeden lub dwa elektrony na zewnętrznych powłokach elektronowych zwanych powłokami walencyjnymi. Elektrony walencyjne uwalniają się od swoich atomów przy łączeniu się takich atomów w większe zespoły, i nie zajmują określonych miejsc w sieci krystalicznej, lecz mogą poruszać się swobodnie między zjonizowanymi atomami metalu. W związku z tym, nazywamy je elektronami swobodnymi lub elektronami przewodnictwa. Pasmo przewodnictwa jest zapełnione częściowo. W temperaturze wyższej od 0K elektrony mogą obsadzać wyższe poziomy energetyczne w paśmie przewodnictwa i pod wpływem przyłożonego pola elektrycznego elektrony mogą się rozpędzać. W ten sposób zachodzi przepływ prądu elektrycznego. 9

10 Elektrony w ciałach stałych Przewodnictwo właściwe metali opisuje wzór: (12.4) Gdzie: e- oznacza ładunek nośnika prądu, n - koncentrację, μ ruchliwość nośników. Koncentracja określa liczbę nośników w jednostce objętości natomiast ruchliwość jest to prędkość, jaką uzyskuje nośnik ładunku pod działaniem jednostkowego pola elektrycznego. Przewodnictwo elektryczne metali 10

11 Elektrony w ciałach stałych -metale Prawdopodobieństwo znalezienia elektronu w stanie o energii E opisuje funkcja Fermiego-Diraca: gdzie: E FD jest energią (poziomem) Fermiego. (12.5) Dla T = 0 funkcja rozkładu Fermiego- Diraca ma wartość 1 dla energii 0 < E < E F i 0 dla energii powyżej EF. W bardzo niskich temperaturach dominuje rozpraszanie na niedoskonałościach sieci, co daje oporność resztkową. Ze wzrostem temperatury koncentracja elektronów nie wzrasta lecz zwiększają się drgania sieci krystalicznej rośnie koncentracja fononów. Powoduje to zwiększanie rozpraszania i zmniejszenie ruchliwości, a tym samym spadek przewodnictwa (wzrost oporności) wraz ze wzrostem temperatury. 11

12 Elektrony w ciałach stałych Półprzewodniki Rys. Tworzenie pary nośników elektron dziura w półprzewodniku W półprzewodniku w temperaturze zera bezwzględnego pasmo walencyjne jest całkowicie zajęte elektronami, a pasmo przewodnictwa całkowicie puste. Ze wzrostem temperatury w paśmie przewodnictwa pojawiają się elektrony, a w paśmie walencyjnym puste miejsca po elektronach, tzw. dziury. W półprzewodniku mamy jednocześnie prąd elektronów i dziur. Jeżeli ilość dziur w paśmie walencyjnym równa jest ilości elektronów w paśmie przewodnictwa p = n, to półprzewodnik taki jest półprzewodnikiem samoistnym. Jeżeli występuje przewaga elektronów w paśmie przewodnictwa lub przewaga dziur w paśmie walencyjnym, to półprzewodnik taki nazywa się półprzewodnikiem domieszkowym. 12

13 Półprzewodniki samoistne Półprzewodniki samoistne (np. Si, Ge). Pierwiastki te należą do IV grupy układu okresowego. Uwolniony elektron może brać udział w przewodzeniu prądu. Jednym ze sposobów dostarczenia energii elektronom jest zwiększenie energii termicznej poprzez podwyższenie temperatury kryształu. Wartość energii aktywacji E wyrażana jest w elektronowoltach: 1 ev = 1, J 13

14 Prąd elektryczny w półprzewodnikach Rys. Tworzenie pary nośników elektron dziura w półprzewodniku W przewodzeniu prądu w półprzewodniku uczestniczą nie tylko elektrony swobodne. W wyniku oderwania się elektronu od atomu powstaje wolne miejsce, tzw. dziura, która łatwo może być zapełniona przez elektron z sąsiedniego wiązania. W efekcie dziury przemieszczają się w stronę przeciwną do ruchu elektronów, zachowują się więc jak swobodne ładunki dodatnie. Jeśli mamy do czynienia z półprzewodnikiem czystym i bez defektów wewnętrznych, to koncentracja dziur i elektronów swobodnych jest taka sama i przewodnictwo, w tym przypadku, nazywane jest przewodnictwem samoistnym. Koncentracja nośników samoistnych w półprzewodniku jest niewielka i ulega istotnej zmianie ze zmianą warunków zewnętrznych, takich jak temperatura czy oświetlenie. Dla krzemu: 14

15 Półprzewodniki domieszkowane Rys. Schemat energetyczny półprzewodnika zawierającego dwa rodzaje domieszek. Liczbę dziur lub elektronów w półprzewodnikach możemy bardzo łatwo zwiększyć nie tylko przez zmianę warunków zewnętrznych, ale także przez odpowiednie domieszkowanie kryształu. Jeśli wprowadzimy do czterowartościowego półprzewodnika niewielką ilość pierwiastka pięciowartościowego (jak fosfor, antymon), zwiększamy liczbę elektronów swobodnych. Taki półprzewodnik jest półprzewodnikiem typu n, a zjonizowane atomy domieszkowe dostarczające jeden elektron nazywane są donorami. Obecność atomów trójwartościowych (jak bor, aluminium) w germanie lub krzemie powoduje zwiększenie liczby dziur, ponieważ atomy takie mają trzy elektrony walencyjne, które utworzą wiązania tylko z trzema elektronami atomu germanu lub krzemu. Czwarte wiązanie pozostanie niepełne tworzy dziurę, która może być łatwo zapełniona przez elektron z sąsiedniego atomu Ge lub Si. Taki półprzewodnik jest półprzewodnikiem typu p, a atomy domieszkowe zwiększające liczbę dziur nazywamy akceptorami. 15

16 Półprzewodniki typu n Rys. Schemat struktury krzemu z domieszkowym atomem arsenu. Półprzewodnik typu n 16

17 Elektrony w ciałach stałych Przewodnictwo właściwe półprzewodnika, w którym koncentracja elektronów swobodnych i dziur wynosi odpowiednio ρ e i ρ p przedstawione jest wzorem: (12.6) gdzie:, są to ruchliwości elektronów i dziur. Zależność koncentracji elektronów i dziur od temperatury w półprzewodniku 17

18 Przewodnictwo elektryczne ciał stałych Prawo Ohma (dla U = const.) Jeżeli do przewodnika przyłożymy stałe napięcie U (różnicę potencjałów ΔV), to przez przewodnik płynie prąd, którego natężenie I jest proporcjonalne do przyłożonego napięcia. Otrzymana zależność, to PRAWO OHMA ( z 1826r.) U const. (12.7) I Stosunek napięcia przyłożonego do przewodnika do natężenia prądu przepływającego przez ten przewodnik jest stały. 18

19 Definicja oporu elektrycznego Iloraz : (12.8) R U I S nazywamy oporem elektrycznym (R) danego przewodnika. Opór prostoliniowego przewodnika z prądem Załóżmy, że różnica potencjałów V V B V a dzieli końce przewodnika, co generuje pole elektryczne w przewodniku o natężeniu E i przepływ prądu o natężeniu I. Jeżeli pole jest jednorodne, to: Zwiążemy teraz opór właściwy ( ) z oporem R: Ostatecznie: (12.11) V l R S V B V a b a E dl E l (12.9) E j ( V / l) ( I / S) R S l - opór prostoliniowego przewodnika z prądem. (12.10) 19

20 Rezystywność Definicja oporu właściwego ( ). W wielu przypadkach, tak jest w metalach, wektor gęstości prądu ( ) jest proporcjonalny do natężenie pola elektrycznego (E), które oddziaływuje j na nośniki prądu elektrycznego znajdujące się w objętości przewodnika, wtedy: E j (12.12) i określa definicję oporu właściwego ( ). Wielkość ta charakteryzuje materiały pod względem przewodnictwa elektrycznego. Definicja Odwrotność oporu właściwego, to konduktywność ( 1 j E stąd, 1S ( A/ m 2 ) ( N / C), przewodnictwo właściwe): ( A/ m 2 ) ( V / m) Jednostką przewodnictwa jest simens (1S) Powyższe równanie nosi nazwę mikroskopowego prawa Ohma. Materiał spełniający to prawo nazywamy opornikiem ohmowym. E j, [ ] [1 m] A V m (12.13) 20

21 Rezystywność Wielkością charakteryzującą zdolność substancji do przewodzenia prądu jest jej opór właściwy ρ. Ze względu na wielkość oporu właściwego wszystkie substancje dzielą się na: 21

22 ZALEŻNOŚĆ OPORU OD TEMPERATURY. A. DLA PRZEWODNIKÓW. R( T) R0 R0T (12.14) gdzie: R0 oznacza opór w temperaturze 0 C=273K, α- temperaturowy wsp. oporu ele. T T T 0 różnicę temperatur w skali Kelvina. nadprzewodnik ρ0 Temp. Tk krytyczna Rys. Zależność oporu właściwego (ρ) od temperatury dla różnych materiałów, ρ0 - oporność resztkowa (zależna od rodzaju i koncentracji defektów stałych). 22

23 ZALEŻNOŚĆ OPORU OD TEMPERATURY B. DLA PÓŁPRZEWODNIKÓW Zależność oporu półprzewodnika od temperatury jest nieliniowa i można przedstawić następująco: E R( T) Ae 2kT (12.15) gdzie: A - wielkość stała ( współczynnik proporcjonalności); ΔE = Eg/2, to energia aktywacji. Jest energią potrzebną do przeniesienia elektronu do pasma przewodnictwa. Eg przerwa energetyczna; T -temperatura w skali Kelvina; k- stała Boltzmanna. W półprzewodniku samoistnym energia aktywacji E równa jest szerokości przerwy wzbronionej. W półprzewodnikach domieszkowych E określa bezwzględną wartość odległości energetycznej poziomu donorowego od pasma przewodnictwa lub poziomu akceptorowego od pasma walencyjnego. 23

24 12.4. Nadprzewodnictwo Rys. Wykres zależności oporu elektrycznego od temperatury dla czystej rtęci uzyskany przez Heike Kamerlingh Onnes a. Odkryte w 1911r. przez Heike Kamerlingh Onnes a ( ) podczas badania oporu elektrycznego rtęci w niskich temperaturach (Nagroda Nobla w 1913). Poniżej temperatury krytycznej 4,2 K opór elektryczny spada do zera. Zerowy opór oznacza, że elektrony płyną przez nadprzewodnik bez strat energii - prąd wzbudzony w nadprzewodzącym pierścieniu płynie przez wiele lat bez dodatkowego zasilania. Nadprzewodnictwo Materiał, w którym całkowicie zanika opór elektryczny staje się nadprzewodnikiem. Nadprzewodnik jest też doskonałym diamagnetykiem - to znaczy, że jeżeli znajdzie się w polu magnetycznym, to nie będzie ono wnikać do jego wnętrza. 24

25 Nadprzewodnictwo Nadprzewodnictwo - Zjawisko Meissnera Jeżeli nadprzewodnik ochłodzony do temperatury niższej od temperatury T k zostanie umieszczony w polu magnetycznym, to linie indukcji magnetycznej nie przenikają przezeń, ale go omijają. W warstwie powierzchniowej nadprzewodnika pojawi się prąd elektryczny o natężeniu takim, by wytworzyć pole magnetyczne kompensujące to docierające z zewnątrz, z magnesu. Powstaje wtedy poduszka magnetyczna utrzymująca magnes nad nadprzewodnikiem lub nadprzewodnik nad magnesem. Mówimy wtedy o efekcie lewitacji. 25

26 Nadprzewodnictwo 26

27 Nadprzewodnictwo 27

28 Gęstość prądu, a natężeniem pola elektrycznego w przewodniku Mikroskopowa postać prawa Ohma 1 (12.16) j E, E j (12.17) (12.18) (8.10) (8.11) 28

29 PRACA I MOC PRĄDU PRACA I MOC PRĄDU ELEKTRYCZNEGO Rozpatrzmy zamknięty układ elektryczny przedstawiony na rysunku. I U Układ zawiera opór R. Napięcie między okładkami baterii wynosi U V V b V a 0. Niech ładunek dq zostanie przemieszczony przez baterię, to praca wykonana przez napięcie U, przy przesunięciu tego ładunku wynosi: dw U dq U I dt (12.19) 29

30 PRACA I MOC PRĄDU Całkowita praca wykonana w czasie t będzie równa: W t t dw 0 0 U I dt U I t (12.20) Praca ta zamienia się w ciepło i jest to ciepło Joula-Lenza. Z drugiej strony ten sam ładunek płynący przez opornik w obwodzie traci swoją energię wskutek zderzeń z atomami opornika. Jeżeli zaniedbamy oporność baterii i przewodów Łączących, to płynący ładunek nie traci dodatkowo energii. Zatem strata energii ładunku dq wynosi: P dw dt U I I 2 R 2 U R (12.21) Otrzymany wzór określa także moc dostarczaną obwodowi przez baterię! Definicja Moc prądu: P dw dt U I (12.22) 30

31 Siła elektromotoryczna Siła elektromotoryczna (SEM). Do wytworzenia prądu stałego niezbędne jest urządzenie, utrzymujące stałą różnicę potencjałów miedzy końcami przewodnika. Źródło energii - np.: bateria, akumulator, prądnica, komórka fotowoltaiczna płynącej w każdym obwodzie elektrycznym nazywane jest źródłem siły elektromotorycznej (SEM). Mówimy o źródle tej energii jako o pompie ładunków, która powoduje przemieszczanie się ładunków elektrycznych z punktu o mniejszym potencjale do punktu o potencjale wyższym. Przypomnijmy, że prąd elektryczny płynie od punktów o wyższym potencjale do punktów o potencjale niższym. Wartość siły elektromotorycznej ( ε ), definiuje się za pomocą wzoru: Jednostką siły elektromotorycznej jest wolt (V). (12.23) Siła elektromotoryczna (ε) określa więc pracę konieczną do przeniesienia jednostkowego ładunku w kierunku rosnącego potencjału. 31

32 Siła elektromotoryczna Użyteczne prawa i zależności dla obwodu zamkniętego. Rozpatrzymy teraz obwód elektryczny przedstawiony na rys. Załóżmy najpierw, że bateria ma zerowy opór wewnętrzny oraz, że różnica potencjałów między dodatnim i ujemnym jej zaciskiem jest równa Oznacza to, że (12.24) Uruchomienie przepływu prądu w obwodzie elektrycznym jest wynikiem procesu zamiany energii chemicznej na elektryczną. Zauważmy, że SEM to ilość energii chemicznej potrzebnej do uwolnienia jednostkowego ładunku elektrycznego. Proces ten zachodzi w baterii. Ze względu na zachowawczy charakter pola elektrostatycznego praca W potrzebna do przemieszczenia ładunku po krzywej zamkniętej, tj. po obwodzie zamkniętym wynosi zero. (12.25) 32

33 Siła elektromotoryczna Rozważmy pkt. a na poniższym schemacie. Obchodzimy obwód zamknięty zgodnie z ruchem wskazówek zegara zaczynając od punktu a. Przejście przez SEM oznacza wzrost potencjału o wartość ε. Przejście przez rezystor oznacza spadek napięcia równy U V I R Jeśli opory przewodników i opór wewnętrzny zaniedbamy, to (12.26) stąd: (12.27) 33

34 W rzeczywistości bateria ma Siła niezerowy elektromotoryczna opór elektryczny, więc rzeczywisty obwód ma postać: Różnica potencjałów na zaciskach baterii jest teraz równa: (12.28) Ponieważ pole jest zachowawcze, otrzymujemy PRAWO OHMA DLA UKŁADU ZAMKNIĘTEGO: (12.29) Graficznie spadek napięcia w powyższym obwodzie (rys ). Zauważmy, że najwyższy potencjał ma w obwodzie dodatni zacisk baterii. i (12.30) Moc prądu w obwodzie zamkniętym wynosi: (12.31) 34

35 Prawa elektryczności Prawa Kirchhoffa W przypadku złożonych obwodów elektrycznych w celu obliczenia płynących w nich prądów i napięć na ich elementach wygodnie jest korzystać z praw Kirchhoffa. W każdym obwodzie możemy wyróżnić tzw. węzły i oczka. Przez węzeł rozumiemy punkt połączenia co najmniej trzech przewodów (rys.) n i1 n I i I j1 j 0 (12.32) Rys. 1. Rozgałęzienie prądu (do I prawa Kirchhoffa). 35

36 Część IV. Elektromagnetyzm (12.33) n i n I i R i 0 i1 i1 Rys.2. Oczko prądu - dowolnych zamkniętych fragmentów obwodu -rys. ). WNIOSEK: Uogólnione prawo Ohma stanowi szczególny przypadek drugiego prawa Kirchhoffa. 36

37 UMOWNE KIERUNKI OBCHODZENIA OBWODÓW: Przy stosowaniu II prawa Kirchhoffa należy przestrzegać określonej konwencji, dotyczącej znaków prądów i sił elektromotorycznych. A) Zwykle wybiera się w dowolny sposób kierunku obiegu oczka (zgodnie z ruchem wskazówek zegara lub przeciwnie). Prąd o kierunku zgodnym z kierunkiem obiegu oczka przyjmujemy za dodatni, w przeciwnym przypadku za ujemny. B) Siłę elektromotoryczną uważamy za dodatnią, jeżeli powodowałaby ona przepływ prądu w kierunku zgodnym z kierunkiem obiegu oczka, a za ujemną w przeciwnym przypadku. Przykład Zastosowanie praw Kirchhoffa do obwodu przedstawionego na rys. 2. I 1R1 I2R2 I3R3 I4R Rys

38 12.8. ŁĄCZENIE OPORNIKÓW Część IV. Elektromagnetyzm W wielu sieciach mamy do czynienia z wieloma opornikami połączonymi równolegle lub (i) szeregowo. Często musimy znaleźć oporność zastępczą układu szeregowo lub równolegle połączonych oporników. Na podstawie praw Kirchhoffa można łatwo otrzymać wzory, określające wypadkowy opór przewodników, a) Łączenie szeregowe oporników Przykład (tablica). Wyznaczyć opór zastępczy dla dwóch oporników połączonych szeregowo. b) Łączenie równoległe oporników: R N i R i (12.34) Przykład (tablica). Wyznaczyć opór zastępczy dla dwóch oporników połączonych równolegle. 1 R N i 1 Ri (12.35) 38

39 12.9. Kondensatory i dielektryki Pojemność elektryczna kondensatora Układ dwóch przewodników ( lub płytek),odizolowanych wzajemnie oraz od otoczenia, który może gromadzić ładunek elektryczny, przy przyłożonej różnicy potencjałów, nazywamy kondensatorem (rys.), a te przewodniki okładkami kondensatora. Rysunek przedstawia kondensator płaski, w którym przewodniki (okładki) stanowią dwie równoległe płytki przewodzące o polu powierzchni S. Podłączona bateria transportuje ładunki z jednej płyty kondensatora na drugą, dopóki napięcie między płytami kondensatora nie zrówna się z napięciem baterii. Naładowany kondensator: są to dwie płytki (okładki) naładowane identycznym ładunkiem co do wartości, lecz o przeciwnym znaku, tj. +q i q; q reprezentuje bezwzględną wartość ładunku. 39

40 Kondensatory Wielkością charakteryzującą kondensator jest jego pojemność, którą definiujemy następująco: [1F ]=[ 1C/1V]. (12.36) Pojemnością elektryczną nazywamy stosunek ładunku kondensatora do różnicy potencjałów (napięcia) między okładkami. Jednostką pojemności elektrycznej jest farad (F): Jeden farad jest wiec pojemnością przewodnika, na którym ładunek jednego kulomba wytwarza potencjał jednego volta. Farad jest stosunkowo dużą jednostką pojemności; w praktyce pojemność wyraża sie zwykle w podwielokrotnościach farada, np. mikrofaradach (1μF = F), nf, pf. Należy zauważyć, że stałej dielektrycznej próżni można przypisać wymiar: (7.2) Wartość : 40

41 Kondensatory Pojemność (C) zależy od: (a) kształtu, rozmiaru i wzajemnego położenia płytek (b) materiału który wypełnia przestrzeń pomiędzy płytkami. Podział kondensatorów : A) ze względu na konstrukcję : o elektrolityczne (dielektrykiem jest cienka warstwa tlenku, a osadzona elektrolitycznie na okładzinie dodatniej, drugą okładziną jest elektrolit); Zdj. Kondensatory stałe różnych typów i pojemnościach. Źródło: pl.wikipedia.org o poliestrowe - foliowe (dielektrykiem jest folia poliestrowa); o ceramiczne (dielektrykiem jest specjalna ceramika); o powietrzne (dielektrykiem jest powietrze). B) kształt okładzin: o płaski; ocylindryczny; o sferyczny; oizolowany przewodzący przedmiot (ziemia jest drugą okładką). droga całkowania Rys. Przekrój cylindrycznego kondensatora, źródło:h.r.w. Rys. 26.5, str

42 Kondensatory Obliczanie pojemności kondensatora płaskiego Rys. Kondensator płaski. źródło: Składa się on z dwóch przewodzących, równoległych płytek o powierzchni S każda, umieszczonych w odległości d << w porównaniu z liniowymi rozmiarami płytek (rys. ). Można przyjąć, ze pole elektryczne kondensatora jest w przybliżeniu równe sumie pól dwóch nieskończonych płaszczyzn, naładowanych różnoimiennie z gęstością powierzchniową (por. w. 10). Biorąc pod uwagę kierunki pola elektrycznego, Wytworzonego przez ładunki na każdej z okładek można stwierdzić, ze na zewnątrz kondensatora całkowite natężenie pola elektrycznego E = 0 a miedzy okładkami kondensatora natężenie pola jest dwukrotnie większe, niż w przypadku pojedyncze naładowanej płaszczyzny: (12.37) 42

43 Kondensatory (12.38) (12.39) (12.40) Zauważmy, że pojemność zależy od kształtu okładek, ich rozmiaru i wzajemnego położenia. Oznacza to, że dla kondensatorów o innej geometrii obowiązują inne wzory. Równanie powyższe obowiązuje dla kondensatora płaskiego znajdującego się w próżni. Zależność pojemność kondensatora od przenikalności elektrycznej ośrodka omówimy później. 43

44 Kondensatory ENERGIA KONDENSATORA dw U dq CU du (12.41) E C U 0 U du 1 2 CU QU 2 Q 2C (12.42) Łączenie kondensatorów A) Łączenie równoległe kondensatorów C N C i i (12.43) 44

45 Kondensatory B) Łączenie szeregowe kondensatorów 1 C N i 1 C i (12.44) Przykład. 45

46 Kondensatory 1 X C C (12.46) I U X C (12.45) 46

47 Własności materii a przenikalność elektryczna materiałów 47

48 Dziękuję za uwagę! 48

Ładunki puszczamy w ruch. Wykład 12

Ładunki puszczamy w ruch. Wykład 12 Ładunki puszczamy w ruch. Wykład 12 Prawa przepływu prądu stałego 12. 1. Podstawowe definicje dla prądu elektrycznego 12.2. Elektrony w ciałach stałych pasma energetyczne 12.3. Prawo Ohma 12.3.1.Opór elektryczny

Bardziej szczegółowo

Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika

Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika Tabela I. Metal Nazwa próbki:

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka

Bardziej szczegółowo

1 K A T E D R A F I ZYKI S T O S O W AN E J

1 K A T E D R A F I ZYKI S T O S O W AN E J 1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Prąd elektryczny - przepływ ładunku

Prąd elektryczny - przepływ ładunku Prąd elektryczny - przepływ ładunku I Q t Natężenie prądu jest to ilość ładunku Q przepływającego przez dowolny przekrój przewodnika w ciągu jednostki czasu t. Dla prądu stałego natężenie prądu I jest

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

średnia droga swobodna L

średnia droga swobodna L PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa

Bardziej szczegółowo

Natężenie prądu elektrycznego

Natężenie prądu elektrycznego Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków

Bardziej szczegółowo

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne

Bardziej szczegółowo

STAŁY PRĄD ELEKTRYCZNY

STAŁY PRĄD ELEKTRYCZNY STAŁY PRĄD ELEKTRYCZNY Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam

Bardziej szczegółowo

Podstawy fizyki sezon 2 3. Prąd elektryczny

Podstawy fizyki sezon 2 3. Prąd elektryczny Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny

Bardziej szczegółowo

Wykład FIZYKA II. 2. Prąd elektryczny. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 2. Prąd elektryczny.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 2. Prąd elektryczny Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ UCH ŁADUNKÓW Elektrostatyka zajmowała się ładunkami

Bardziej szczegółowo

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek

Bardziej szczegółowo

Podstawy fizyki sezon 2 3. Prąd elektryczny

Podstawy fizyki sezon 2 3. Prąd elektryczny Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny

Bardziej szczegółowo

STRUKTURA PASM ENERGETYCZNYCH

STRUKTURA PASM ENERGETYCZNYCH PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika

Bardziej szczegółowo

Prądem elektrycznym nazywamy uporządkowany ruch cząsteczek naładowanych.

Prądem elektrycznym nazywamy uporządkowany ruch cząsteczek naładowanych. Prąd elektryczny stały W poprzednim dziale (elektrostatyka) mówiliśmy o ładunkach umieszczonych na przewodnikach, ale na takich, które są odizolowane od otoczenia. W temacie o prądzie elektrycznym zajmiemy

Bardziej szczegółowo

Wykład 11 i 12 Równania Maxwella. Prąd elektryczny.

Wykład 11 i 12 Równania Maxwella. Prąd elektryczny. Wykład 11 i 12 Równania Maxwella. Prąd elektryczny. z y x 11.1 RÓŻNICZKOWE PRAWO GAUSSA i co z niego wynika... Niech ładunek będzie rozłożony w objętości V (o nieskończenie małych bokach x, y, z ) i wierzchołku

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków.

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków. 2. Półprzewodniki 1 Półprzewodniki to materiały, których rezystywność jest większa niż rezystywność przewodników (metali) oraz mniejsza niż rezystywność izolatorów (dielektryków). Przykłady: miedź - doskonały

Bardziej szczegółowo

Przerwa energetyczna w germanie

Przerwa energetyczna w germanie Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

Prąd elektryczny 1/37

Prąd elektryczny 1/37 Prąd elektryczny 1/37 Prąd elektryczny Prądem elektrycznym w przewodniku metalowym nazywamy uporządkowany ruch elektronów swobodnych pod wpływem sił pola elektrycznego. Prąd elektryczny może również płynąć

Bardziej szczegółowo

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2. Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 3 Janusz Andrzejewski Prąd elektryczny Prąd elektryczny to uporządkowany ruch swobodnych ładunków. Ruchowi chaotycznemu nie towarzyszy przepływ prądu. Strzałki szare - to nieuporządkowany(chaotyczny)

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

Teoria pasmowa. Anna Pietnoczka

Teoria pasmowa. Anna Pietnoczka Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach

Bardziej szczegółowo

Zaburzenia periodyczności sieci krystalicznej

Zaburzenia periodyczności sieci krystalicznej Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom

Bardziej szczegółowo

PRĄD STAŁY. Prąd elektryczny to uporządkowany ruch ładunków wewnątrz przewodnika pod wpływem przyłożonego pola elektrycznego.

PRĄD STAŁY. Prąd elektryczny to uporządkowany ruch ładunków wewnątrz przewodnika pod wpływem przyłożonego pola elektrycznego. PĄD STAŁY Prąd elektryczny to uporządkowany ruch ładunków wewnątrz przewodnika pod wpływem przyłożonego pola elektrycznego. ŁADUNEK SWOBODNY byłby w stałym polu elektrycznym jednostajnie przyspieszany

Bardziej szczegółowo

E3. Badanie temperaturowej zależności oporu elektrycznego ciał stałych 1/5

E3. Badanie temperaturowej zależności oporu elektrycznego ciał stałych 1/5 1/5 Celem ćwiczenia jest poznanie temperaturowej zależności przepływu prądu elektrycznego przez przewodnik i półprzewodnik oraz doświadczalne wyznaczenie energii aktywacji przewodnictwa dla półprzewodnika

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 3 Janusz Andrzejewski Prawo Coulomba a prawo Newtona Janusz Andrzejewski 2 Natężenie i potencjał pola elektrycznego A q A B q A D q A C q A q 0 D B C A E E E E r r r r 0 0 + + + + + + D

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

W1. Właściwości elektryczne ciał stałych

W1. Właściwości elektryczne ciał stałych W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury. WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale

Bardziej szczegółowo

POLE ELEKTRYCZNE PRAWO COULOMBA

POLE ELEKTRYCZNE PRAWO COULOMBA POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim

Bardziej szczegółowo

Wykład IV. Półprzewodniki samoistne i domieszkowe

Wykład IV. Półprzewodniki samoistne i domieszkowe Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent

Bardziej szczegółowo

P R A C O W N I A

P R A C O W N I A P R A C O W N I A www.tremolo.pl M E T O D Y B A D A Ń M A T E R I A Ł Ó W (WŁAŚCIWOŚCI ELEKTRYCZNE, MAGNETYCZNE I AKUSTYCZNE) Ewelina Broda Robert Gabor ĆWICZENIE NR 3 WYZNACZANIE ENERGII AKTYWACJI I

Bardziej szczegółowo

Przepływ prądu przez przewodnik. jest opisane przez natężenie prądu. Przez przewodnik nie płynie prąd.

Przepływ prądu przez przewodnik. jest opisane przez natężenie prądu. Przez przewodnik nie płynie prąd. PRĄD ELEKTRYCZNY - Przez przewodnik nie płynie prąd. Przepływ prądu przez przewodnik E Gdy E = 0. Elektrony poruszają się (dzięki energii cieplnej) przypadkowo we wszystkich kierunkach. Elektrony swobodne

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Elektryczne właściwości materii Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki I

Bardziej szczegółowo

Różne dziwne przewodniki

Różne dziwne przewodniki Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich

Bardziej szczegółowo

Źródła siły elektromotorycznej = pompy prądu

Źródła siły elektromotorycznej = pompy prądu Źródła siły elektromotorycznej = pompy prądu komórki elektrochemiczne ogniwo Volty akumulator generatory elektryczne baterie I urządzenia termoelektryczne E I I Prądnica (dynamo) termopara fotoogniwa ogniwa

Bardziej szczegółowo

Podstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych

Podstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych Podstawy elektrotechniki V1 Na potrzeby wykładu z Projektowania systemów pomiarowych 1 Elektrotechnika jest działem nauki zajmującym się podstawami teoretycznymi i zastosowaniami zjawisk fizycznych z dziedziny

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI OPÓR OBWODY Z PRADEM STAŁYM. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI OPÓR OBWODY Z PRADEM STAŁYM. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI PRAD OPÓR OBWODY Z PRADEM STAŁYM Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Najważniejsze

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch

Bardziej szczegółowo

Badanie charakterystyki diody

Badanie charakterystyki diody Badanie charakterystyki diody Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk prądowo napięciowych różnych diod półprzewodnikowych. Wstęp Dioda jest jednym z podstawowych elementów elektronicznych,

Bardziej szczegółowo

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz

Bardziej szczegółowo

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,

Bardziej szczegółowo

ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY

ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY I.. Prąd elektryczny Dla dużej grupy przewodników prądu elektrycznego (metale, półprzewodniki i inne) spełnione jest prawo Ohma,

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Prąd elektryczny stały

Prąd elektryczny stały Rozdział 3 Prąd elektryczny stały 3.1 Natężenie i gęstość prądu. Równanie ciągłości W poprzednich rozdziałach były rozpatrywane zjawiska związane z nieruchomymi ładunkami elektrycznymi. Omówimy obecnie

Bardziej szczegółowo

znak minus wynika z faktu, że wektor F jest zwrócony

znak minus wynika z faktu, że wektor F jest zwrócony Wykład 6 : Pole grawitacyjne. Pole elektrostatyczne. Prąd elektryczny Pole grawitacyjne Każde dwa ciała o masach m 1 i m 2 przyciągają się wzajemnie siłą grawitacji wprost proporcjonalną do iloczynu mas,

Bardziej szczegółowo

WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA

WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA Idealny przewodnik to materiał zawierająca nieskończony zapas zupełnie swobodnych ładunków. Z tej definicji wynikają podstawowe własności elektrostatyczne idealnych przewodników:

Bardziej szczegółowo

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r. Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

Strumień pola elektrycznego

Strumień pola elektrycznego Powierzchnia Gaussa Właściwości : - jest to powierzchnia hipotetyczna matematyczna konstrukcja myślowa, - jest dowolną powierzchnią zamkniętą w praktyce powinna mieć kształt związany z symetrią pola, -

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW.

Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW. Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW. 1. Elektromagnes 2. Zasilacz stabilizowany do elektromagnesu 3.

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora

Bardziej szczegółowo

Wykład Pole elektryczne na powierzchniach granicznych 8.10 Gęstość energii pola elektrycznego

Wykład Pole elektryczne na powierzchniach granicznych 8.10 Gęstość energii pola elektrycznego Wykład 7 8.9 Pole elektryczne na powierzchniach granicznych 8.0 Gęstość energii pola elektrycznego 9. Prąd elektryczny 9. Natężenie prądu, wektor gęstości prądu 9. Prawo zachowania ładunku 9.3 Model przewodnictwa

Bardziej szczegółowo

średnia droga swobodna L

średnia droga swobodna L PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 13 Janusz Andrzejewski Scaledlugości Janusz Andrzejewski 2 Scaledługości Simple molecules

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

Przewodniki, półprzewodniki i izolatory

Przewodniki, półprzewodniki i izolatory Przewodniki, półprzewodniki i izolatory Według współczesnego poglądu na budowę materii zawiera ona w stanie normalnym albo inaczej - obojętnym, równe ilości elektryczności dodatniej i ujemnej. JeŜeli takie

Bardziej szczegółowo

3.4 Badanie charakterystyk tranzystora(e17)

3.4 Badanie charakterystyk tranzystora(e17) 152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,

Bardziej szczegółowo

Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY 1.WIADOMOŚCI OGÓLNE

Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY 1.WIADOMOŚCI OGÓLNE Laboratorium z Fizyki Materiałów 00 Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY.WIADOMOŚCI OGÓLNE Przewodnictwo elektryczne ciał stałych można opisać korzystając

Bardziej szczegółowo

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki

Bardziej szczegółowo

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F. Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności

Bardziej szczegółowo

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Prawo Ohma. qnv. E ρ U I R U>0V. v u E +

Prawo Ohma. qnv. E ρ U I R U>0V. v u E + Prawo Ohma U>0V J v u J qnv u - E + J qne d J gęstość prądu [A/cm 2 ] n koncentracja elektronów [cm -3 ] ρ rezystywność [Ωcm] σ - przewodność [S/cm] E natężenie pola elektrycznego [V/cm] I prąd [A] R rezystancja

Bardziej szczegółowo

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA 3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA Złącze p-n jest to obszar półprzewodnika monokrystalicznego utworzony przez dwie graniczące ze sobą warstwy jedną typu p i drugą typu n. Na rysunku 3.1 przedstawiono uproszczony

Bardziej szczegółowo

21 ELEKTROSTATYKA. KONDENSATORY

21 ELEKTROSTATYKA. KONDENSATORY Włodzimierz Wolczyński Pojemność elektryczna 21 ELEKTROSTATYKA. KONDENSATORY - dla przewodników - dla kondensatorów C pojemność elektryczna Q ładunek V potencjał, U napięcie jednostka farad 1 r Pojemność

Bardziej szczegółowo

Prąd i opór elektryczny

Prąd i opór elektryczny Prąd i opór elektryczny Prąd elektryczny to przepływ ładunków elektrycznych Ilustracją jest rysunek przedstawiający strumieo ładunków płynących prostopadle do powierzchni A Natężenie prądu elektrycznego

Bardziej szczegółowo

Pole przepływowe prądu stałego

Pole przepływowe prądu stałego Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Klasyczny efekt Halla

Klasyczny efekt Halla Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp

Bardziej szczegółowo

EFEKT HALLA W PÓŁPRZEWODNIKACH.

EFEKT HALLA W PÓŁPRZEWODNIKACH. Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Andrzej Kubiaczyk 30 EFEKT HALLA W PÓŁPRZEWODNIKACH. 1. Podstawy fizyczne 1.1. Ruch ładunku w polu elektrycznym i magnetycznym Na ładunek

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

ZJAWISKA TERMOELEKTRYCZNE

ZJAWISKA TERMOELEKTRYCZNE Wstęp W ZJAWISKA ERMOELEKRYCZNE W.1. Wstęp Do zjawisk termoelektrycznych zaliczamy: zjawisko Seebecka - efekt powstawania różnicy potencjałów elektrycznych na styku metali lub półprzewodników, zjawisko

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo