4. Zależności między współrzędnymi tłowymi i terenowymi

Wielkość: px
Rozpocząć pokaz od strony:

Download "4. Zależności między współrzędnymi tłowymi i terenowymi"

Transkrypt

1 4. Zależności między wsółrzędnymi tłowymi i terenowymi Oracowanie zdjęć fotogrametrycznych, srowadzające się do określenia terenowych wsółrzędnych omierzonych unktów, może yć rzerowadzone - jak już wiadomo - metodą ciągłą (autogrametryczną) lu unktową. Punktowe rozwiązanie jest oarte o omiar wsółrzędnych tłowych (za omocą stereokomaratora lu monokomaratora); do omiaru wsółrzędnych tłowych można wykorzystać również cyfrową stację fotogrametryczną. Stoień złożoności oliczeń zależy od rodzaju zdjęć. Poszczególne warianty, oczynając od najrostszego do najardziej ogólnego, zostaną rozatrzone w odrozdziałach Naziemne wcięcia kątowe Przyrównaliśmy orzednio fotogrametryczne wyznaczanie ołożenia unktu do rzestrzennego wcięcia w rzód. Różnica rzede wszystkim srowadza się do ominięcia kątów, ale w szczególnych wyadkach i ta droga oliczeń ywa stosowana. Dlatego rzedstawimy zależności omiędzy wsółrzędnymi tłowymi (zdjęcia oziomego) i kątami : oziomym - α i ionowym β Z rysunku 4.1 wynikają zależności: tg α = x c k z cosα tgβ = /4.1/ c k c k Rys Odwzorowanie unktu na zdjęciu oziomym, jego wsółrzędne tłowe i kąty. Znając orientację osi kamery - na rzykład jej azymut - można oliczyć wsółrzędne, stosując rzestrzenne wcięcie w rzód. Nie tym jednak sosoem rzerowadza się oliczenia fotogrametryczne; można je wykonać ardziej rosto, o czym mówią nastęne rozdziały Zdjęcia normalne W rzyadku zdjęć oziomych, normalnych, wcięcie w rzód rozwiązujemy w oarciu o zależności wynikające z rys Przyjmujemy ortogonalny układ wsółrzędnych o oczątku w unkcie O 1 (środek rzutów na stanowisku lewym), oś Y skierowaną zgodnie z osią kamery, oś X rosnącą w rawo, oś Z - ionowo w górę. 43

2 Rys Odwzorowanie unktu P na zdjęciu normalnym - rzut oziomy. Znając wsółrzędne tłowe x, z (zdjęcie lewe), i x (zdjęcie rawe) możemy zaisać dla unktu P: Y : c k = :, gdzie = x - x, X : x = Y :c k Z : z = Y : c k z czego wynikają zależności: Y = c k X = x' Z = z' /4.2/ W rzyadku analogicznych zdjęć lotniczych (gdyy udało się wykonać zdjęcia ściśle ionowe, oydwa z tej samej wysokości), wzory 4.2 rzyjmą ostać: Z = c k X = x' Y = y' /4.3/ 4.3. Zdjęcia oziome, zwrócone Rys Odwzorowanie unktu P na zdjęciach oziomych, zwróconych w lewo. W rzyadku zdjęć oziomych, gdy osie kamer - wzajemnie równoległe - nie są rostoadłe do azy, można dla unktu P zaisać zależność: Y : c k = (O L K + KL) : 44

3 gdzie: O L K = cosψ, KL = x.. sinψ : c k skąd: x" sinψ Y = cos ψ + lu: Y Y Y = ( cosψ + x" sinψ ) X = x' Z = z' /4.4/ W rzyadku zdjęć zwróconych w rawo, w nawiasie wzoru na Y należy zmienić znak (+) na (- ). Dla analogicznych zdjęć lotniczych: Z Z Z = ( cosψ + x" sinψ ) X = x' Y = y' /4.5/ Z ionowymi zdjęciami lotniczymi, równoległymi, nierostoadłymi do azy mieliyśmy do czynienia wtedy, gdyy zostały wykonane z różnej wysokości Przestrzenne wsółrzędne tłowe W rzyadku zdjęć o dowolnej orientacji, rzestrzenne wcięcie w rzód staje się ardziej złożone, ale stosunkowo rosto można je rozwiązać sosoami fotogrametrii analitycznej. W tym celu wrowadzimy ojęcie rzestrzennych wsółrzędnych tłowych (rys.4.4, 4.5). Rys Odwzorowanie unktu P na zdjęciu oziomym, r - wektor wodzący unktu P i jego składowe (x, y, z) - rzestrzenne wsółrzędne tłowe unktu P. Znając wsółrzędne tłowe (x, z ) unktu P (rys. 4.4) możemy określić składowe wektora r : x = x, y = c k, z = z, co można zaisać macierzowo: x' r = z' /4.6/ Macierz ta zawiera rzestrzenne wsółrzędne tłowe unktu na zdjęciu oziomym. Analogicznie można zaisać rzestrzenne wsółrzędne tłowe zdjęcia ionowego (wg. rys. 4.5): x' r = y' c k /4.7/ 45

4 Rys Odwzorowanie unktu P na zdjęciu ionowym, wektor wodzący unktu P i jego składowe (x, y, z) - rzestrzenne wsółędne tłowe unktu P 4.5. Macierz transformacji W rzyadku zdjęć lotniczych o dowolnej orientacji (w raktyce - dla zdjęć rawie ionowych ), określenie składowych wektora r w rzestrzennym układzie tłowym (x, y, z) wymaga uwzględnienia kątów: ω, ϕ, κ (rys. 4.7). Składowe te można oliczyć wg. zależności macierzowej: x x' = y M y' /4.8/ z c k gdzie M oznacza macierz orotu (3x3), zwaną także macierzą transformacji; zawiera ona funkcje sinus i cosinus kątów ω, ϕ, κ. Rys.4.6. Przestrzenny układ wsółrzędnych tłowych zdjęcia nieionowego. 46

5 Z z κ y y x x κ z z ϕ y y ω ϕ κ ϕ ω x x y x z ω Rys.4.7. Elementy transformacji rzestrzennych wsółrzędnych tłowych. x κ x ϕ z ω Postać macierzy transformacji M można wyrowadzić, dokonując kolejno trzech transformacji łaskich, zgodnie z rys Orót o kąt κ (wokół osi z, w łaszczyżnie x, y) : x κ = x cosκ + y y κ = y cosκ - x z κ = z analogicznie o kolejnym orocie o kąt ϕ (wokół osi y, w łaszczyżnie xz): x κϕ = x κ cos ϕ + y κ y κϕ = y κ z κϕ = z κ cosϕ - x κ i wreszcie - o kolejnym orocie - o kąt ω (orót wokół osi x w łaszczyżnie yz), otrzymamy wartości : x κϕω, y κϕω, z κϕω, które ędą szukanymi składowymi wektora r (x, y, z), co można zaisać: x cosκ cosϕ = y sinω cosκ + cosω z cosω cosκ + sinω cosϕ sinω + cosω cosκ cosω + sinω cosκ x' sinω cosϕ y' cosω cosϕ c k /4.9/ Zaisana owyżej macierz orotu M, jest macierzą ortogonalną, co oznacza że suma kwadratów elementów każdej kolumny jest równa 1, zaś suma iloczynów odowiadających soie elementów w każdych dwu kolumnach jest równa Warunki: kolinearności i komlanarności Jeśli umiemy określić składowe wektora r (wg. wzoru 4.7), to możemy rozwiązać wcięcie w rzód, zaisując wielkości znane (x, y, c k ), oraz szukane wsółrzedne terenowe unktu P (X, Y, Z) w zależności zwanej równaniem kolinearności lu warunkiem kolinearności (czyli wsółliniowości - wektorów r i R wg. rys. 4.8): R = λ. M. r (4.10) gdzie: λ- skalar stanowiący wsółczynnik skalowy (łatwy do eliminacji w trakcie oliczeń), zaś macierzowy zais wsółrzędnych wektora R zawiera wsółrzędne terenowe unktu P: X R = Y Z /4.11/ 47

6 Jest oczywiste, że wcięcie w rzód wymaga zaisania równań kolinearności dla oydwu zdjęć rzedstawionych na rys Na ogół do rozwiązania wcięcia w rzód stosuje się równanie komlanarności (czyli wsółłaszczyznowości wektorów: azy B, R 1 i R 2 ). Jak wiadomo, warunkiem wsółłaszczyznowości wektorów jest zerowa wartość ich iloczynu mieszanego, czyli r r r B R R 0 (4.12) 1 2 = Rys.4.8. Wektory równań kolinearności i komlanarności. Zais warunku kolinearności najczęściej jest wykorzystywany do fotogrametrycznego wcięcia wstecz - określenia elementów orientacji zewnętrznej (a więc nie tylko wsółrzędnych środka rzutów X o, Y o, Z o, ale także kątów κ, ϕ, ω ). Danymi do wcięcia wstecz są wsółrzędne fotounktów - zidentyfikowanych na zdjęciach unktów o znanych wsółrzędnych terenowych (X, Y, Z). W tym rzyadku równanie 1.11 rozisujemy ardziej szczegółowo: X X Y Yo Z Z o o r = λ M /4.13/ Powyższe informacje o stosowanych w fotogrametrii metodach analitycznych, należy uzuełnić kilkoma uwagami końcowymi. Oisane metody analityczne zakładają ostęowanie oliczeniowe w którym określa się elementy orientacji oszczególnych zdjęć, ay nastęnie wyliczyć wsółrzędne terenowe unktów. Odmienne ostęowanie jest raktykowane w rzyadku samokaliracyjnego rozwiązywania sieci wiązek: już na etaie ustalania elementów orientacji wiązki są łączone w jedną, wsólną, rzestrzenną sieć geometryczną, rzy uwzględnieniu warunków rzecinania się wszystkich jednoimiennych romieni do unktów oiektu omiaru. W jednym etaie wylicza się zarówno elementy orientacji zdjęć (wraz z łędami orazowania), jak i szukane wsółrzędne 48

7 unktów. Dla wielu zdjęć tworzy się rzestrzenną sieć rzecinających się kierunków - do unktów znanych jak i wyznaczanych. Takie ostęowanie rzynosi znaczne korzyści: orzez silne związanie geometryczne sieci rzestrzennej można ograniczyć liczę unktów kontrolnych; także z unktu widzenia zasad wyrównania oserwacji, takie ostęowanie jest ardziej orawne. Niewiadome (w tym łędy orazowania) są wyznaczane nie tylko na odstawie unktów kontrolnych, ale z wszystkich unktów mierzonych na wielu zdjęciach. Ten sosó rozwiązania sieci wiązek nosi nazwę samokaliracji Charakteryzuje go złożoność algorytmów i orogramowania. Wymagana jest znaczna licza nadliczowych zdjęć. Na otrzey oracowania zdjęć niemetrycznych (lu metrycznych o nieewnych elementach orientacji) stworzono metodę kaliracji w trakcie rozwiązywania zadania omiarowego ( ng. on the jo calliration). Jej zasady oisano w literaturze [ ]. Podstawę ostęowania oliczeniowego stanowią jak wiadomo unkty kontrolne. Licza i rozmieszczenie unktów kontrolnych zależą od zastosowanej metody. Bez unktów kontrolnych oywają się oczywiście najmniej racochłonne - metody oarte na danych nominalnych; oliczenie wsółrzędnych rzerowadza się o wrowadzeniu danych olowych do odowiednich wzorów. Wśród metod zakładających korekcję, najoularniejsze są korekcje kątowych elementów orientacji kamery wystarczają do tego 3 unkty kontrolne (dla każdego zdjęcia); w rzyadku korekcji łędów orazu niezędna jest znajomość 5 8 unktów (dla każdego zdjęcia). Najmniejsze wymagania wziąwszy od uwagę liczę stosowanych zdjęć mają rozwiązania sieci wiązek rozwiązywane na drodze samokaliracji 3 unkty XYZ. Jak wynika z wcześniejszych rozważań, w klasycznych rozwiązaniach oierających się na geometrii odoieństw ewien rolem stwarza znalezienie wartości kątowych elementów orientacji wiązki, uwikłanych w funkcje wyrazów ortogonalnej macierzy orotu. Z tego owodu, większość oeracji oliczeniowych wymagała ostęowania iteracyjnego. Niedogodność ta nie wystęuje w rozwiązaniach analitycznych wywodzących się z geometrii rzutowej, którym oświęcono nastęny rozdział Przekształcenia oarte o geometrię rzutową Geometria rzutowa zajmuje się rzekształceniami utworów geometrycznych w rzestrzeni rzutowej. Za rzestrzeń rzutową uważa się rzestrzeń euklidesową wzogaconą o elementy niewłaściwe: unkt niewłaściwy (rostej), rostą niewłaściwą (łaszczyzny), łaszczyznę niewłaściwą (rzestrzeni). Przekształcenia rzutowe są rezultatem: rzutowania (z unktu dla nas najważniejsze, alo z rostej), lu rzecinania (łaszczyzną dla nas najważniejsze, lu rostą). Utwory to ziory elementów zasadniczych (unktów, rostych, łaszczyzn); dla nas najważniejszymi utworami są: łaszczyzna unktów (ziór unktów należących do tej samej łaszczyzny), wiązka rostych (ziór rostych rzestrzeni mających jeden wsólny unkt), rzestrzeń unktów (ziór unktów rzestrzeni). Pojęcie elementów niewłaściwych należy rozumieć nastęująco: roste równoległe mają wsólny unkt niewłaściwy (w ± ), łaszczyzny równoległe rzecinają się we wsólnej rostej niewłaściwej (w ), rzestrzeń unktów osiada łaszczyznę niewłaściwą (w ). Utworami wzajemnie rzutowymi nazywamy takie utwory, które owstały w wyniku skończonej liczy rzekształceń rzutowych (rzutowań, lu rzecinań); dadzą się one zawsze srowadzić do ołożenia ersektywicznego tzn. do ołożenia w którym jeden jest rzutem lu rzecięciem drugiego; rzykład takich rzekształceń ilustuje rys

8 Fotomaa Zdjęcie lotnicze Maa Teren Rys Łańcuch rzekształceń rzutowych omiędzy terenem a fotomaą Wzajemną rzutowość dwóch łaszczyzn unktów (n. łaszczyzny fotogramu i łaskiej owierzchni elewacji udynku, czy łaskiego terenu) określają cztery elementy homologiczne w naszym rzyadku cztery ary odowiadających soie unktów, od warunkiem, że żadne trzy nie leżą na tej samej rostej. Zaisem matematycznym który określa wzajemną rzutowość tych utworów są równania: x = ax + Y + c dx + ey +1 fx + gy + h y = /4.14/ dx + ey +1 Licza wystęujących wsółczynników (a... h) otwierdza wcześniejsze twierdzenie - cztery ary unktów, dla których możemy zaisać (łącznie) 8 równań, ozwalają oliczyć wartości 8 wsółczynników. Zależności te oatruje się zastrzeżeniem matematycznym wykluczającym rzynależność trzech unktów do jednej rostej. We wzorach tych, XY i xy to ortokartezjańskie układy wsółrzędnych (n. wsółrzędne tłowe i terenowe). Inną arę utworów, których wzajemna rzutowość może mieć raktyczne znaczenie stanowią: łaszczyzna unktów (fotogramu) i rzestrzeń unktów (mierzonego oiektu). Zais matematyczny tej zależności jest znany od nazwą DLT (ang. Direct Linear Transformation ezośrednia transformacja liniowa): x = ax + Y + cz + d ex + fy + gz +1 hx + jy + kz + l y = /4.15/ ex + fy + gz +1 Ze względu na liczę wsółczynników (11) zależność ta nazywana jest także jedenastoarametrową. 50

Orientacja zewnętrzna pojedynczego zdjęcia

Orientacja zewnętrzna pojedynczego zdjęcia Orientacja zewnętrzna pojedynczego zdjęcia Proces opracowania fotogrametrycznego zdjęcia obejmuje: 1. Rekonstrukcję kształtu wiązki promieni rzutujących (orientacja wewnętrzna ck, x, y punktu głównego)

Bardziej szczegółowo

4. Analityczne metody stosowane w fotogrametrii inżynieryjnej

4. Analityczne metody stosowane w fotogrametrii inżynieryjnej 4. Analityczne metody stosowane w fotogrametrii inżynieryjnej Większość pomiarów zaliczanych do geodezji inżynieryjnej, czy fotogrametrii inżynieryjnej ma na celu wyznaczenie współrzędnych punktów kontrolowanych,

Bardziej szczegółowo

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego Uniwersytet Rolniczy w Krakowie Wydział InŜynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

Bardziej szczegółowo

Podstawy fotogrametrii i teledetekcji

Podstawy fotogrametrii i teledetekcji Podstawy fotogrametrii i teledetekcji Józef Woźniak Zakład Geodezji i Geoinformatyki Wrocław, 2013 Fotogrametria analityczna Metody pozyskiwania danych przestrzennych Plan prezentacji bezpośrednie pomiary

Bardziej szczegółowo

Aerotriangulacja. 1. Aerotriangulacja z niezależnych wiązek. 2. Aerotriangulacja z niezależnych modeli

Aerotriangulacja. 1. Aerotriangulacja z niezależnych wiązek. 2. Aerotriangulacja z niezależnych modeli Aerotriangulacja 1. Aerotriangulacja z niezależnych wiązek 2. Aerotriangulacja z niezależnych modeli Definicja: Cel: Kameralne zagęszczenie osnowy fotogrametrycznej + wyznaczenie elementów orientacji zewnętrznej

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami 8 Liczba 9 jest równa A. B. C. D. 9 5 C Przykładowe zadania z matematyki na oziomie odstawowym wraz z rozwiązaniami Zadanie. (0-) Liczba log jest równa A. log + log 0 B. log 6 + log C. log 6 log D. log

Bardziej szczegółowo

Aerotriangulacja metodą niezależnych wiązek w programie AEROSYS. blok Bochnia

Aerotriangulacja metodą niezależnych wiązek w programie AEROSYS. blok Bochnia Aerotriangulacja metodą niezależnych wiązek w programie AEROSYS blok Bochnia - 2014 Zdjęcia lotnicze okolic Bochni wykonane kamerą cyfrową DMCII-230 w dn.21.10.2012r Parametry zdjęć: Ck = 92.0071mm, skala

Bardziej szczegółowo

FOTOMAPA I ORTOFOTOMAPA NUMERYCZNY MODEL TERENU

FOTOMAPA I ORTOFOTOMAPA NUMERYCZNY MODEL TERENU FTMAPA I RTFTMAPA Zdjęcie lotnicze a mapa Zniekształcenia zdjęć lotniczych wpływ nachylenia zdjęcia wpływ rzeźby terenu Modele rzutu środkowego Przetwarzanie rzutowe rtorektyfikacja Terminologia Aspekty

Bardziej szczegółowo

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimiady Matematycznej Gimnazjalistów Liga zadaniowa 01/01 Seria VII styczeń 01 rozwiązania zadań 1. Udowodnij, że dla dowolnej dodatniej liczby całkowitej n liczba n! jest odzielna rzez n!

Bardziej szczegółowo

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 Fotogrametria to technika pomiarowa oparta na obrazach fotograficznych. Wykorzystywana jest ona do opracowywani map oraz do różnego rodzaju zadań pomiarowych.

Bardziej szczegółowo

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,

Bardziej szczegółowo

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w

Bardziej szczegółowo

Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar i ocena hałasu w pomieszczeniu

Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar i ocena hałasu w pomieszczeniu nstrukcja do laboratorium z fizyki budowli Ćwiczenie: Pomiar i ocena hałasu w omieszczeniu 1 1.Wrowadzenie. 1.1. Energia fali akustycznej. Podstawowym ojęciem jest moc akustyczna źródła, która jest miarą

Bardziej szczegółowo

ANALIZA ZALEśNOŚCI KĄTA PODNIESIENIA LUFY OD WZAJEMNEGO POŁOśENIA CELU I STANOWISKA OGNIOWEGO

ANALIZA ZALEśNOŚCI KĄTA PODNIESIENIA LUFY OD WZAJEMNEGO POŁOśENIA CELU I STANOWISKA OGNIOWEGO ZESZYTY NAUKOWE WSOWL Nr (148) 8 ISSN 1731-8157 Sławomir KRZYśANOWSKI ANALIZA ZALEśNOŚI KĄTA PODNIESIENIA LUFY OD WZAJEMNEGO POŁOśENIA ELU I STANOWISKA OGNIOWEGO Jednym z ierwszych etaów nauczania rzedmiotu

Bardziej szczegółowo

3. Kinematyka podstawowe pojęcia i wielkości

3. Kinematyka podstawowe pojęcia i wielkości 3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY

GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY Instytut Geologii, Uniwersytet im. A. Mickiewicza w oznaniu GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY prof. UAM, dr hab. Jędrze Wierzbicki racownia Geologii Inżynierskie i Geotechniki p. 251, e-mail: wi@amu.edu.pl

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Temat ćwiczenia: Opracowanie stereogramu zdjęć naziemnych na VSD.

Temat ćwiczenia: Opracowanie stereogramu zdjęć naziemnych na VSD. Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Opracowanie stereogramu zdjęć naziemnych na VSD. Instrukcja do ćwiczeń dla

Bardziej szczegółowo

Elementy geometrii analitycznej w R 3

Elementy geometrii analitycznej w R 3 Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski

Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

INTERPRETACJA WYNIKÓW BADANIA WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA

INTERPRETACJA WYNIKÓW BADANIA WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA Górnictwo i Geoinżynieria Rok 3 Zeszyt 008 Janusz aczmarek* INTERPRETACJA WYNIÓW BADANIA WSPÓŁCZYNNIA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA 1. Wstę oncecję laboratoryjnego

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD IX

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD IX TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD IX to technika pomiarowa oparta na obrazach fotograficznych. Taki obraz uzyskiwany jest dzięki wykorzystaniu kamery lub aparatu. Obraz powstaje na specjalnym

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,

Bardziej szczegółowo

Przekształcenia geometryczne w grafice komputerowej. Marek Badura

Przekształcenia geometryczne w grafice komputerowej. Marek Badura Przekształcenia geometryczne w grafice komputerowej Marek Badura PRZEKSZTAŁCENIA GEOMETRYCZNE W GRAFICE KOMPUTEROWEJ Przedstawimy podstawowe przekształcenia geometryczne na płaszczyźnie R 2 (przestrzeń

Bardziej szczegółowo

( n) Łańcuchy Markowa X 0, X 1,...

( n) Łańcuchy Markowa X 0, X 1,... Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład II

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład II Wykład II I. Algebra wektorów 2.1 Iloczyn wektorowy pary wektorów. 2.1.1 Orientacja przestrzeni Załóżmy, że trójka wektorów a, b i c jest niekomplanarna. Wynika z tego, że żaden z tych wektorów nie jest

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

Geometria w R 3. Iloczyn skalarny wektorów

Geometria w R 3. Iloczyn skalarny wektorów Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia: KONWEKCJA SWOBODNA W POWIETRZU OD RURY Konwekcja swobodna od rury

Bardziej szczegółowo

Matematyka z kluczem

Matematyka z kluczem Matematyka z kluczem Ois założonych osiągnięć ucznia Ogólny ois osiągnięć Ois ogólnych lanowanych osiągnięć ucznia odajemy z odziałem na oszczególne oziomy. Ułatwi to nauczycielom określenie szczegółowych

Bardziej szczegółowo

6 6.1 Projektowanie profili

6 6.1 Projektowanie profili 6 Niwelacja rofilów 6.1 Projektowanie rofili Niwelacja rofilów Niwelacja rofilów olega na określeniu wysokości ikiet niwelacją geometryczną, trygonometryczną lub tachimetryczną usytuowanych wzdłuŝ osi

Bardziej szczegółowo

MECHANIK NR 3/2015 59

MECHANIK NR 3/2015 59 MECHANIK NR 3/2015 59 Bogusław PYTLAK 1 toczenie, owierzchnia mimośrodowa, tablica krzywych, srzężenie osi turning, eccentric surface, curve table, axis couling TOCZENIE POWIERZCHNI MIMOŚRODOWYCH W racy

Bardziej szczegółowo

Lista nr 1 - Liczby zespolone

Lista nr 1 - Liczby zespolone Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Ćwiczenia nr 4. TEMATYKA: Rzutowanie

Ćwiczenia nr 4. TEMATYKA: Rzutowanie TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej

Bardziej szczegółowo

FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.

FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. FUNKCJA LINIOWA Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. Jakie znaki mają współczynniki a i b? R: Przedstawiona prosta, jest wykresem funkcji

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

ciężkości. Długości celowych d są wtedy jednakowe. Do wstępnych i przybliżonych analiz dokładności można wykorzystywać wzór: m P [cm] = ± 0,14 m α

ciężkości. Długości celowych d są wtedy jednakowe. Do wstępnych i przybliżonych analiz dokładności można wykorzystywać wzór: m P [cm] = ± 0,14 m α ciężkości. Długości celowych d są wtedy jednakowe. Do wstępnych i przybliżonych analiz dokładności można wykorzystywać wzór: m [cm] = ±,4 m α [cc] d [km] * (9.5) β d 9.7. Zadanie Hansena β d Rys. 9.7.

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

Geometria Lista 0 Zadanie 1

Geometria Lista 0 Zadanie 1 Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio

Bardziej szczegółowo

Instytut Fizyki Politechniki Wrocławskiej. Laboratorium Fizyki Cienkich Warstw. Ćwiczenie nr 9

Instytut Fizyki Politechniki Wrocławskiej. Laboratorium Fizyki Cienkich Warstw. Ćwiczenie nr 9 Instytut Fizyki Politechniki Wrocławskiej Laboratorium Fizyki Cienkich Warstw Ćwiczenie nr 9 Wyznaczanie stałych otycznych cienkich warstw metali metodą elisometryczną Oracowanie: dr Krystyna Żukowska

Bardziej szczegółowo

Elastyczność popytu. Rodzaje elastyczności popytu. e p = - Pamiętajmy, że rozpatrujemy wielkości względne!!! Wzory na elastyczność cenową popytu D

Elastyczność popytu. Rodzaje elastyczności popytu. e p = - Pamiętajmy, że rozpatrujemy wielkości względne!!! Wzory na elastyczność cenową popytu D lastyczność oytu Rodzaje elastyczności oytu > lastyczność cenowa oytu - lastyczność mieszana oytu - e m = < lastyczność dochodowa oytu - e i lastyczność cenowa oytu - lastyczność cenowa oytu jest to stosunek

Bardziej szczegółowo

WYKŁAD 1 WPROWADZENIE DO STATYKI PŁYNÓW 1/23

WYKŁAD 1 WPROWADZENIE DO STATYKI PŁYNÓW 1/23 WYKŁAD 1 WPROWADZENIE DO STATYKI PŁYNÓW 1/23 RÓWNOWAGA SIŁ Siła owierzchniowa FS nds Siła objętościowa FV f dv Warunek konieczny równowagi łynu F F 0 S Całkowa ostać warunku równowagi łynu V nds f dv 0

Bardziej szczegółowo

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. Badanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Etap 1. Rysunek: Układy odniesienia

Etap 1. Rysunek: Układy odniesienia Wprowadzenie. Jaś i Małgosia kręcą się na karuzeli symetrycznej dwuramiennej. Siedzą na karuzeli zwróceni do siebie twarzami, symetrycznie względem osi obrotu karuzeli. Jaś ma dropsa, którego chce dać

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

GLOBALNE OBLICZANIE CAŁEK PO OBSZARZE W PURC DLA DWUWYMIAROWYCH ZAGADNIEŃ BRZEGOWYCH MODELOWANYCH RÓWNANIEM NAVIERA-LAMEGO I POISSONA

GLOBALNE OBLICZANIE CAŁEK PO OBSZARZE W PURC DLA DWUWYMIAROWYCH ZAGADNIEŃ BRZEGOWYCH MODELOWANYCH RÓWNANIEM NAVIERA-LAMEGO I POISSONA MODELOWANIE INŻYNIERSKIE ISSN 896-77X 33, s.8-86, Gliwice 007 GLOBALNE OBLICZANIE CAŁEK PO OBSZARZE W PURC DLA DWUWYMIAROWYCH ZAGADNIEŃ BRZEGOWYCH MODELOWANYCH RÓWNANIEM NAVIERA-LAMEGO I POISSONA EUGENIUSZ

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Algebra linowa w pigułce

Algebra linowa w pigułce Algebra Algebra linowa w pigułce Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Algebra

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. adanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.

Bardziej szczegółowo

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Bangkok, Thailand, March 011 W-3 (Jaroszewicz) 0 slajdów Na odstawie rezentacji rof. J. Rutkowskiego Fizyka kwantowa fale rawdoodobieństwa funkcja falowa aczki falowe materii zasada nieoznaczoności równanie

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"

Układ współrzędnych dwu trój Wykład 2 Układ współrzędnych, system i układ odniesienia Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane

Bardziej szczegółowo

Układy równań liniowych, macierze, Google

Układy równań liniowych, macierze, Google Układ równań linowych { x+2y = 6, 3x y = 4 (0) Spotkania z Matematyka Układy równań liniowych, macierze, Google Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cieplnej i Procesowej Zakład Termodynamiki i Pomiarów Maszyn Cieplnych

POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cieplnej i Procesowej Zakład Termodynamiki i Pomiarów Maszyn Cieplnych Laboratorium Termodynamiki i Pomiarów Maszyn Cielnych Przeływomierze zwężkowe POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cielnej i Procesowej Zakład Termodynamiki i Pomiarów Maszyn Cielnych LABORATORIUM

Bardziej szczegółowo

Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne

Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne 46 III. Przekształcenia w przestrzeni trójwymiarowej Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne Złożone obiekty trójwymiarowe można uważać,

Bardziej szczegółowo

Jakobiany. Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu

Jakobiany. Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu Wstęp do Robotyki c W. Szynkiewicz, 29 1 Jakobiany Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu ( t )z(t)=k(x(t)) Ponieważ funkcje w powyższym równaniu są

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Fotogrametryczny pomiar lin odciągowych z wykorzystaniem przekształceń rzutowych

Fotogrametryczny pomiar lin odciągowych z wykorzystaniem przekształceń rzutowych rchiwum Fotogrametrii, Kartografii i Teledetekcji Vol., Kraków 00 ISBN 3-73-0-7 Fotogrametryczny pomiar lin odciągowych z wykorzystaniem przekształceń rzutowych Regina Tokarczyk, Władysław Mierzwa kademia

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku.

W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku. W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku. Nie wolno dzielić przez zero i należy sprawdzić, czy dzielna nie jest równa zeru. W dziedzinie liczb

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo