Algorytmy heurystyczne w UCB dla DVRP
|
|
- Janusz Mazur
- 8 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy heurystyczne w UCB dla DVRP Seminarium IO na MiNI Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527
2 Plan prezentacji Definicja problemu DVRP UCB na potrzeby DVRP Algorytmy heurystyczne dla VRP Wyniki i wnioski based on the decision DEC-2012/07/B/ST6/
3 WPROWADZENIE based on the decision DEC-2012/07/B/ST6/
4 DVRP Dane Flota pojazdów Ładowność Magazyn Położenie Godziny otwarcia Lista zamówień Położenie Wielkość Godzina pojawienia się zamówienia Czas wyładunku based on the decision DEC-2012/07/B/ST6/
5 DVRP Cel Znalezienie sumarycznie najkrótszej trasy dla floty pojazdów Zrealizowanie każdego zamówienia w ciągu dnia roboczego Powrót pojazdów do magazynu przed jego zamknięciem based on the decision DEC-2012/07/B/ST6/
6 Ogólny schemat rozwiązywania based on the decision DEC-2012/07/B/ST6/
7 Rozwiązywanie DVRP metodą MC W kolejnych krokach czasowych generujemy kilkukrotnie nieznane zamówienia na podstawie znajomości: obszaru, na którym mogą pojawiać się zamówienia rozmiaru części zamówień częstotliwości pojawiania się zamówień Znajdujemy rozwiązania problemów sztucznych algorytmem heurystycznym Z najlepszego rozwiązania odrzucamy zamówienia sztuczne i optymalizujemy trasy Wybieramy najlepsze spośród najlepszych based on the decision DEC-2012/07/B/ST6/
8 ALGORYTMY HEURYSTYCZNE based on the decision DEC-2012/07/B/ST6/
9 Hierarchiczna analiza skupień 3 rodzaje linkage-criterion: Najbliższe elementy skupisk (=min. las rozpinający) Średnia odległość elementów w skupiskach Największa odległość elementów w skupiskach Opcja: Nie łączenie skupisk znajdujących się dalej od siebie nawzajem niż każde z nich od zajezdni Zasada: Nie łączenie skupisk, których suma wielkości zamówień przekracza pojemność pojazdu based on the decision DEC-2012/07/B/ST6/
10 Zachłanne wstawianie Dla każdego zamówienia na liście i dla każdego pojazdu Znajdź miejsce w trasach, które spowoduje najmniejsze wydłużenie trasy Wstaw tam zamówienie based on the decision DEC-2012/07/B/ST6/
11 λ-interchange(k,l) Dla każdej pary pojazdów: Wyjmij k zamówień z pierwszego pojazdu Wyjmij l zamówień z drugiego pojazdu Wstaw zachłannie l zamówień do pierwszego pojazdu Wstaw zachłannie k zamówień do drugiego pojazdu Jeżeli suma tras się skróciła, pozostaw nowy przydział Wykorzystuję (w kolejności): λ-interchange(1,0) λ-interchange(1,1) based on the decision DEC-2012/07/B/ST6/
12 2-OPT Dla każdej pary niezatwierdzonych zamówień w pojeździe Zamień połączenia parami tak, aby nie rozspójnić trasy Jeżeli trasa się skróciła pozostaw nową kolejność based on the decision DEC-2012/07/B/ST6/
13 WYKORZYSTANIE HEURYSTYK based on the decision DEC-2012/07/B/ST6/
14 Schemat rozwiązywania DVRP Do połowy dnia roboczego: k razy dogeneruj sztuczne zamówienia Dla każdego zestawu zamówień znajdź najlepsze rozwiązanie z wykorzystaniem hierarchicznej klasteryzacji, 2-OPT i wymian Dla każdego z k rozwiązań i dla każdego z k zestawów zamówień Rozwiąż problem przyjmując za ustalone zamówienia znane Jako rozwiązanie zwróć przydział zamówień, który średnio dawał najlepszy wynik Usuń zamówienia sztuczne Optymalizuj trasy algorytmem 2-OPT Po połowie dnia: Optymalizuj trasy z wykorzystaniem np. algorytmu 2MPSO lub hierarchicznej klasteryzacji based on the decision DEC-2012/07/B/ST6/
15 Wyniki Tree2OPT MC Tree2OPT MCx10 Tree2OPT MCx10 2MPSO 2OPT (10) 2MSPO 2OPT Min. Śr. Min. Śr. Min. Śr. Min. Śr. Min. Śr. Średnia 1,11 1,17 1,12 1,14 1,10 1,13 1,06 1,05 1,00 1,00 Suma c100b c c c c c c f f tai100a tai100b tai100c tai100d tai150a tai150b tai150c tai150d tai75a tai75b tai75c tai75d based on the decision DEC-2012/07/B/ST6/
16 Wstępne wyniki dla λ-wymian Tree 2OPT Tree Lambda 2OPT Suma c100b c c c c c c f f tai100a tai100b tai100c tai100d tai150a tai150b tai150c tai150d tai75a tai75b tai75c tai75d based on the decision DEC-2012/07/B/ST6/
17 Wnioski Nawet proste sztuczne wygenerowanie zamówień w trakcie dnia roboczego poprawia wyniki finalnych tras Wielokrotne generowanie sztucznych zamówień poprawia, ale już niewiele Wymiany zastosowane bezpośrednio w problemie dynamicznym mogą pomóc (brak ostatecznych wniosków) based on the decision DEC-2012/07/B/ST6/
18 Dalszy rozwój Zbadać: czy wybierać najlepszy spośród niezależnych propozycji czy ten o najlepszej średniej (średnie nieporównywalne) Rozszerzyć: Model VRP with Time Windows (przy zamówieniach sztucznych) Zoptymalizować: Zrezygnować z wielokrotnego przeglądanie tych samych zamówień i pojazdów w algorytmie wymian Rozszerzyć: UCB sterujące sprawdzeniem większej liczby sztucznych zestawów zamówień Rozszerzyć: UCT bazujące na zachłannej hierarchii propozycji rozwiązań based on the decision DEC-2012/07/B/ST6/
19 Rozwój metod poza MC/UCB Hiperheurystyka dla 2MPSO/MEMSO Zagęszczenie dnia roboczego do 50 TS Techniczna poprawa wydajności (przejście z wątków na procesy obejście problemu tzw. false sharing) Usprawnienie poprawiania (2-OPT po wstawieniu zamówienia w przypadku znalezienie rozwiązania niedopuszczalnego) based on the decision DEC-2012/07/B/ST6/
20 Literatura Application of Particle Swarm Optimization to Dynamic Vehicle Routing Problem, Okulewicz and Mańdziuk, 2013, LNAI, vol. 7895, pp Multi-Swarm Optimization for Dynamic Combinatorial Problems: A Case Study on Dynamic Vehicle Routing Problem, Khouadjia et al., 2010, LNCS, vol. 6234, pp A comparative study between dynamic adapted PSO and VNS for the vehicle routing problem with dynamic requests, Khouadjia et al., Applied Soft Computing 12 (2012) Capacitated clustering problems by hybrid simulated annealing and tabu search, I. H. Osman and N. Christofides International Transactions in Operational Research, vol. 1, no. 3, pp , 1994 A method for solving traveling salesman problems, G. Croes, Operations Res. 6, pp , On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem, J. B. Kruskal, Proceedings of the American Mathematical Society, p. 4850, DVRP Benchmarks, based on the decision DEC-2012/07/B/ST6/
Analiza stanów gry na potrzeby UCT w DVRP
Analiza stanów gry na potrzeby UCT w DVRP Seminarium IO na MiNI 04.11.2014 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP DVRP na potrzeby UCB Analiza
Seminarium IO. Zastosowanie wielorojowej metody PSO w Dynamic Vehicle Routing Problem. Michał Okulewicz
Seminarium IO Zastosowanie wielorojowej metody PSO w Dynamic Vehicle Routing Problem Michał Okulewicz 26.02.2013 Plan prezentacji Przypomnienie Problem DVRP Algorytm PSO Podejścia DAPSO, MAPSO 2PSO, 2MPSO
Seminarium IO. Zastosowanie metody PSO w Dynamic Vehicle Routing Problem (kontynuacja) Michał Okulewicz
Seminarium IO Zastosowanie metody PSO w Dynamic Vehicle Routing Problem (kontynuacja) Michał Okulewicz 26.10.2012 Plan prezentacji Problem VRP+DR Algorytm PSO Podejścia MAPSO + 2-Opt 2-phase PSO Wyniki
Seminarium IO. Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem. Michał Okulewicz
Seminarium IO Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem Michał Okulewicz 05.11.2013 Plan prezentacji Przypomnienie Problem DVRP Algorytm UCT Zastosowanie algorytmu UCT/PSO w DVRP Zastosowanie
Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski
Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle
ALGORYTM KLASTERYZACJI W ZASTOSOWANIU DO PROBLEMU TRASOWANIA POJAZDÓW
Logistyka - nauka Tomasz AMBROZIAK *, Roland JACHIMOWSKI * ALGORYTM KLASTERYZACJI W ZASTOSOWANIU DO PROBLEMU TRASOWANIA POJAZDÓW Streszczenie W artykule scharakteryzowano problematykę klasteryzacji punktów
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Heurystyczne metody przeszukiwania
Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.
Zastosowanie UCT w problemach transportowych ze zmiennym zakorkowaniem ulic
Zastosowanie UCT w problemach transportowych ze zmiennym zakorkowaniem ulic MACIEJ ŚWIECHOWSKI PROMOTOR: PROF. JACEK MAŃDZIUK TEMAT W RAMACH GRANTU NCN NA PODSTAWIE DECYZJI DEC-2012/07/B/ST6/01527 Plan
Techniki optymalizacji
Techniki optymalizacji Wprowadzenie Maciej Hapke maciej.hapke at put.poznan.pl Literatura D.E. Goldberg Algorytmy genetyczne i zastosowania, WNT, 1995 Z. Michalewicz Algorytmy genetyczne + struktury danych
POLITECHNIKA WARSZAWSKA
POLITECHNIKA WARSZAWSKA Wydział Matematyki i Nauk Informacyjnych ROZPRAWA DOKTORSKA mgr inż. Michał Okulewicz Zastosowanie populacyjnych metaheurystyk uwzględniających rozkład danych problemu do rozwiązywania
Algorytm perturbacyjny dla problemu minimalizacji maksymalnego żalu minimalnego drzewa rozpinającego
Algorytm perturbacyjny dla problemu minimalizacji maksymalnego żalu minimalnego drzewa rozpinającego Mariusz MAKUCHOWSKI Politechnika Wrocławska, Instytut Informatyki Automatyki i Robotyki 50-370 Wrocław,
Optymalizacja problemów transportowych: planowanie operacyjne i strategiczne a wizualna atrakcyjność rozwiązań
Optymalizacja problemów transportowych: planowanie operacyjne i strategiczne a wizualna atrakcyjność rozwiązań Michał Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Plan prezentacji 1
Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP
Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Łukasz Strąk lukasz.strak@gmail.com Uniwersytet Śląski, Instytut Informatyki, Będzińska 39, 41-205 Sosnowiec 9 grudnia
Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska
Algorytmy rozpoznawania obrazów 11. Analiza skupień dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Analiza skupień Określenia: analiza skupień (cluster analysis), klasteryzacja (clustering), klasyfikacja
Zadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
Zastosowanie algorytmów heurystycznych do rozwiązywania problemu układania tras pojazdów
Roland Jachimowski 1 Wydział Transportu, Politechnika Warszawska Zastosowanie algorytmów heurystycznych do rozwiązywania problemu układania tras pojazdów 1. WPROWADZENIE Szybki rozwój wymiany handlowej,
Techniki optymalizacji
Techniki optymalizacji Dokładne algorytmy optymalizacji Maciej Hapke maciej.hapke at put.poznan.pl Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem minimalizacji
Wykorzystanie algorytmów mrówkowych w dynamicznym problem
Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 18 stycznia 2013 Przedmiot i cele pracy dyplomowej
Algorytmy mrówkowe. Plan. » Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji» Testowanie
Algorytmy mrówkowe w środowiskach dynamicznych Dariusz Maksim, promotor: prof. nzw. dr hab. Jacek Mańdziuk 1/51 Plan» Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji»
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Metoda UCT w stochastycznych problemach transportowych
Metoda UCT w stochastycznych problemach transportowych mgr inż. Maciej Świechowski promotor: prof. Jacek Mańdziuk Seminarium Metody Inteligencji Obliczeniowej 25.06.2015 Plan prezentacji Krótkie przypomnienie
Risk-Aware Project Scheduling. SimpleUCT
Risk-Aware Project Scheduling SimpleUCT DEFINICJA ZAGADNIENIA Resource-Constrained Project Scheduling (RCPS) Risk-Aware Project Scheduling (RAPS) 1 tryb wykonywania działań Czas trwania zadań jako zmienna
ZASTOSOWANIE PROGRAMOWANIA MATEMATYCZNEGO DO WYBORU TRAS DOSTAW W SIECI DYSTRYBUCJI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XV/3, 2014, str. 199 207 ZASTOSOWANIE PROGRAMOWANIA MATEMATYCZNEGO DO WYBORU TRAS DOSTAW W SIECI DYSTRYBUCJI Mirosław Liana, Tomasz Pisula Katedra Metod Ilościowych
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
Zaawansowane programowanie
Zaawansowane programowanie wykład 3: inne heurystyki prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Heurystyką nazywamy algorytm (metodę) zwracający rozwiązanie przybliżone.
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym, kontynuacja badań Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Algorytmy i struktury danych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
ROZWIĄZYWANIE ZAGADNIEŃ UKŁADANIA TRAS POJAZDÓW Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH. Wstęp
B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 2005 Radosław JADCZAK* ROZWIĄZYWANIE ZAGADNIEŃ UKŁADANIA TRAS POJAZDÓW Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH W artykule poruszono zagadnienie
MAGICIAN. czyli General Game Playing w praktyce. General Game Playing
MAGICIAN czyli General Game Playing w praktyce General Game Playing 1 General Game Playing? Cel: stworzenie systemu umiejącego grać/nauczyć się grać we wszystkie gry Turniej w ramach AAAI National Conference
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
Zastosowanie sztucznej inteligencji w testowaniu oprogramowania
Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie
Techniki optymalizacji
Techniki optymalizacji Metaheurystyki oparte na algorytmach lokalnego przeszukiwania Maciej Hapke maciej.hapke at put.poznan.pl GRASP Greedy Randomized Adaptive Search Procedure T.A. Feo, M.G.C. Resende,
Algorytmika Problemów Trudnych
Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.
ASPEKT PRZYDZIAŁU ODBIORCÓW W PROBLEMIE INTEGRACJI HIERARCHICZNEGO SYSTEMU DYSTRYBUCJI
Tomasz Ambroziak Politechnika Warszawska, Wydział Transportu Roland Jachimowski Politechnika Warszawska, Wydział Transportu ASPEKT PRZYDZIAŁU ODBIORCÓW W PROBLEMIE INTEGRACJI HIERARCHICZNEGO SYSTEMU DYSTRYBUCJI
POŁĄCZENIE ALGORYTMÓW SYMULACYJNYCH ORAZ DZIEDZINOWYCH METOD HEURYSTYCZNYCH W ZAGADNIENIACH DYNAMICZNEGO PODEJMOWANIA DECYZJI
POŁĄCZENIE ALGORYTMÓW SYMULACYJNYCH ORAZ DZIEDZINOWYCH METOD HEURYSTYCZNYCH W ZAGADNIENIACH DYNAMICZNEGO PODEJMOWANIA DECYZJI mgr inż. Karol Walędzik k.waledzik@mini.pw.edu.pl prof. dr hab. inż. Jacek
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca
RÓWNOLEGŁY ALGORYTM POSZUKIWANIA Z ZABRONIENIAMI UKŁADANIA PLANU ZAJĘĆ
RÓWNOLEGŁY ALGORYTM POSZUKIWANIA Z ZABRONIENIAMI UKŁADANIA PLANU ZAJĘĆ Wojciech BOŻEJKO, Łukasz GNIEWKOWSKI Streszczenie: Praca dotyczy zastosowania równoległego algorytmu poszukiwania z zabronieniami
ZASTOSOWANIE SZTUCZNEGO SYSTEMU IMMUNOLOGICZNEGO DO ROZWIĄZANIA WIELOKRYTERIALNEGO PROBLEMU DYSTRYBUCJI DOSTAW
PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 117 Transport 2017 Bogna Mrówczyńska Politechnika Śląska, Wydział Transportu, Katedra Logistyki i Transportu Przemysłowego ZASTOSOWANIE SZTUCZNEGO SYSTEMU IMMUNOLOGICZNEGO
Przeszukiwanie lokalne
Przeszukiwanie lokalne 1. Klasyfikacja algorytmów 2. Przeszukiwanie lokalne 1. Klasyfikacja algorytmów Algorytmy dokładne znajdują rozwiązanie optymalne, 1. Klasyfikacja algorytmów Algorytmy dokładne znajdują
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie
Metody Programowania
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie
ALGORYTM RÓWNOLEGŁY DLA PROBLEMU MARSZRUTYZACJI
ALGORYTM RÓWNOLEGŁY DLA PROBLEMU MARSZRUTYZACJI Szymon JAGIEŁŁO, Dominik ŻELAZNY Streszczenie: Transport odgrywa znaczącą rolę zarówno w produkcji jak i usługach przemysłowych. W dzisiejszych czasach,
MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem
MODELE SIECIOWE 1. Drzewo rozpinające (spanning tree) w grafie liczącym n wierzchołków to zbiór n-1 jego krawędzi takich, że dowolne dwa wierzchołki grafu można połączyć za pomocą krawędzi należących do
Symulowane wyżarzanie dla problemu harmonogramowania projektu z ograniczonymi zasobami. Marcin Klimek *
Zeszyty Naukowe WWSI, No 15, Vol. 10, 2016, s. 53-65 Symulowane wyżarzanie dla problemu harmonogramowania projektu z ograniczonymi zasobami Marcin Klimek * Państwowa Szkoła Wyższa w Białej Podlaskiej,
ALGORYTM PRZESZUKIWANIA Z ZABRONIENIAMI DLA DWUKRYTERIALNEGO PROBLEMU PRZEPŁYWOWEGO
ALGORYTM PRZESZUKIWANIA Z ZABRONIENIAMI DLA DWUKRYTERIALNEGO PROBLEMU PRZEPŁYWOWEGO Jarosław PEMPERA, Dominik ŻELAZNY Streszczenie: Praca poświęcona jest problemowi przepływowemu z dwukryterialną funkcją
ROZWIĄZANIE PROBLEMU DOSTAW Z OKNAMI CZASOWYMI ZA POMOCĄ SYMULOWANEGO WYŻARZANIA
STUDIA INFORMATICA 2004 Volume 25 Number 2 (58) Marcin WOCH Politechnika Śląska, Instytut Informatyki ROZWIĄZANIE PROBLEMU DOSTAW Z OKNAMI CZASOWYMI ZA POMOCĄ SYMULOWANEGO WYŻARZANIA Streszczenie. Artykuł
Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski
Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej Adam Żychowski Definicja problemu Każdy z obiektów może należeć do więcej niż jednej kategorii. Alternatywna definicja Zastosowania
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.
Zestaw A-1: Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb i.ads)!!! Zad. 1: 4,3,3 2,2,1 Zad. 2: 3,3,3 Zad.
Zestaw A-1: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb i.ads)!!! Zad. 1: Napisać pakiet rodzajowy udostępniający: typ Sznur będący dynamiczną listą łączoną, której elementy przechowują
Testowanie modeli predykcyjnych
Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności
Minimalne drzewa rozpinające
KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam
Zadanie 1: Piętnastka
Informatyka, studia dzienne, inż. I st. semestr VI Sztuczna Inteligencja i Systemy Ekspertowe 2010/2011 Prowadzący: mgr Michał Pryczek piątek, 12:00 Data oddania: Ocena: Grzegorz Graczyk 150875 Marek Rogalski
Systemy wbudowane. Cel syntezy systemowej. Wykład 12: Przykłady kosyntezy systemów wbudowanych
Systemy wbudowane Wykład 12: Przykłady kosyntezy systemów wbudowanych Cel syntezy systemowej minimalizacja kosztu: jaka jest najtańsza architektura spełniająca nałożone wymagania (minimalna szybkość, max.
Modele całkowitoliczbowe zagadnienia komiwojażera (TSP)
& Zagadnienie komowojażera 1 Modele całkowitoliczbowe zagadnienia komiwojażera (TSP) Danych jest miast oraz macierz odległości pomiędzy każdą parą miast. Komiwojażer wyjeżdża z miasta o numerze 1 chce
Temat: Algorytmy zachłanne
Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje się w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymalną możliwość w nadziei,
Algorytm hybrydowy dla problemu pakowania
Adam Stawowy Algorytm hybrydowy dla problemu pakowania Summary: We present a meta-heuristic to combine simulated annealing (SA) with local search technique for Bin Packing Problem. The main idea is to
ALGORYTM HYBRYDOWY WIELOKROTNEGO STARTU DLA ROZWIĄZYWANIA PROBLEMU SEKWENCYJNEGO UPORZĄDKOWANIA
STUDIA INFORMATICA 2014 Volume 35 Number 1 (115) Jacek WIDUCH, Artur KLYTA Politechnika Śląska, Instytut Informatyki ALGORYTM HYBRYDOWY WIELOKROTNEGO STARTU DLA ROZWIĄZYWANIA PROBLEMU SEKWENCYJNEGO UPORZĄDKOWANIA
dr inż. Jarosław Forenc
Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 7 (24.01.2011) dr inż. Jarosław Forenc Rok akademicki
Znajdowanie wyjścia z labiryntu
Znajdowanie wyjścia z labiryntu Zadanie to wraz z problemem pakowania najcenniejszego plecaka należy do problemów optymalizacji, które dotyczą znajdowania najlepszego rozwiązania wśród wielu możliwych
Programowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Tabu Search (Poszukiwanie z zakazami)
Tabu Search (Poszukiwanie z zakazami) Heurystyka - technika znajdująca dobre rozwiązanie problemu (np. optymalizacji kombinatorycznej) przy rozsądnych (akceptowalnych z punktu widzenia celu) nakładach
Grupowanie Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633
Grupowanie Grupowanie 7 6 5 4 y 3 2 1 0-3 -2-1 0 1 2 3 4 5-1 -2-3 -4 x Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633 Wprowadzenie Celem procesu grupowania jest podział zbioru
Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Metoda poszukiwania TABU w zastosowaniu do optymalizacji harmonogramu dostaw sieci dystrybucji towarów. Przykład przemysłu meblarskiego
Metoda poszukiwania TABU w zastosowaniu do optymalizacji harmonogramu dostaw sieci dystrybucji towarów. Przykład przemysłu meblarskiego POLLOCO Olgierd Dziamski Olgierd.Dziamski@gs1pl.org 23-11-2005 1
Przestrzeń algorytmów klastrowania
20 listopada 2008 Plan prezentacji 1 Podstawowe pojęcia Przykłady algorytmów klastrowania 2 Odległość algorytmów klastrowania Odległość podziałów 3 Dane wejściowe Eksperymenty Praca źródłowa Podstawowe
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 12. PRZESZUKIWANIE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ROZWIĄZYWANIE PROBLEMÓW JAKO PRZESZUKIWANIE Istotną rolę podczas
Wprowadzenie do programu RapidMiner Studio 7.6, część 4 Michał Bereta
Wprowadzenie do programu RapidMiner Studio 7.6, część 4 Michał Bereta www.michalbereta.pl W tej części: Zachowanie wytrenowanego modelu w celu późniejszego użytku Filtrowanie danych (brakujące etykiety
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 282 (60), 71 76
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer Univ Technol Stetin 2, Oeconomica 22 (), Anna Landowska ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO ROZWIĄZANIA PROBLEMU OPTYMALNEGO PRZYDZIAŁU
Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:
Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,
O dwóch modyfikacjach algorytmu PSO
Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Seminarium: Inteligencja Obliczeniowa 24 listopada 2011 Plan prezentacji 1 Wprowadzenie 2 3 4 5 6 Definicja problemu Wprowadzenie Definicja
Michał Kozielski Łukasz Warchał. Instytut Informatyki, Politechnika Śląska
Michał Kozielski Łukasz Warchał Instytut Informatyki, Politechnika Śląska Algorytm DBSCAN Algorytm OPTICS Analiza gęstego sąsiedztwa w grafie Wstępne eksperymenty Podsumowanie Algorytm DBSCAN Analiza gęstości
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski
Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum
1 Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum Zagadnienia, które uczeń powinien znać przy rozwiązywaniu opisanych zadań: zastosowanie równań w zadaniach tekstowych, funkcje i ich monotoniczność,
Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne
Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia
Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki
Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First
Algorytm FIREFLY. Michał Romanowicz Piotr Wasilewski
Algorytm FIREFLY Michał Romanowicz Piotr Wasilewski Struktura prezentacji 1. Twórca algorytmu 2. Inspiracja w przyrodzie 3. Algorytm 4. Zastosowania algorytmu 5. Krytyka algorytmu 6. Porównanie z PSO Twórca
Co to jest grupowanie
Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie
Algorytmy mrówkowe w dynamicznych problemach transportowych
y w dynamicznych problemach transportowych prof. dr hab Jacek Mandziuk MiNI, PW 3 czerwca 2013 Cel pracy Zbadanie zachowania algorytmu go zwykłego oraz z zaimplementowanymi optymalizacjami dla problemów
Algorytmy metaheurystyczne podsumowanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja
dr inż. Jarosław Forenc
Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2009/2010 Wykład nr 8 (29.01.2009) dr inż. Jarosław Forenc Rok akademicki
PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM
Mostefa Mohamed-Seghir Akademia Morska w Gdyni PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM W artykule przedstawiono propozycję zastosowania programowania dynamicznego do rozwiązywania
Obliczenie pola wieloboku na podstawie współrzędnych wierzchołków
Obliczenie pola wieloboku na podstawie współrzędnych wierzchołków Algorytmy 1. Metoda pierwsza wzory Gaussa - dla każdego punktu mnożymy współrzędną przez różnicę drugich współrzędnych punktu następnego
dr inŝ. Jarosław Forenc
Rok akademicki 2009/2010, Wykład nr 8 2/19 Plan wykładu nr 8 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2009/2010
LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 opracował:
Rozdział 9 PROGRAMOWANIE DYNAMICZNE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 9 PROGRAMOWANIE DYNAMICZNE 9.2. Ćwiczenia komputerowe Ćwiczenie 9.1 Wykorzystując
9. Schematy aproksymacyjne
9. Schematy aproksymacyjne T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Wprowadzenie do algorytmów, WNT (2004) O.H. Ibarra, C.E. Kim Fast approximation algorithms for the knapsack and sum of subset
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
Autoreferat. Dariusz Barbucha Katedra Systemów Informacyjnych Akademia Morska w Gdyni. 30 czerwca 2014
Autoreferat Dariusz Barbucha Katedra Systemów Informacyjnych Akademia Morska w Gdyni 30 czerwca 2014 1. Posiadane dyplomy, stopnie naukowe/ artystyczne z podaniem nazwy, miejsca i roku ich uzyskania oraz
MINIMALIZACJA LICZBY PRZYSTANKÓW AUTOBUSOWYCH W PROBLEMIE ZARZĄDZANIA TRANSPORTEM SZKOLNYM
Z E S Z Y T Y N A K O W E O L I T E C H N I K I O Z N A Ń S K I E J Nr 72 Organizacja i Zarządzanie 27 Kazimierz WORWA * MINIMALIZACJA LICZBY RZYSTANKÓW ATOBSOWYCH W ROBLEMIE ZARZĄDZANIA TRANSORTEM SZKOLNYM
RISK-AWARE PROJECT SCHEDULING
RISK-AWARE PROJECT SCHEDULING METODA GRASP KAROL WALĘDZIK DEFINICJA ZAGADNIENIA RESOURCE-CONSTRAINED PROJECT SCHEDULING (RCPS) Karol Walędzik - RAPS 3 RISK-AWARE PROJECT SCHEDULING (RAPS) 1 tryb wykonywania