Gospodarcze zastosowania algorytmów genetycznych
|
|
- Krystyna Socha
- 9 lat temu
- Przeglądów:
Transkrypt
1 Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym [1] może być stosowana jako narzędzie prognozowania i analizy zjawisk ekonomicznych. Do rozszerzenia możliwości stosowania metod ekonometrycznych niezbędne wydaje się stosowanie coraz to nowszych metod optymalizacyjnych. Dlatego też w pracy niniejszej podjęto próbę zaprezentowania metod optymalizacyjnych, tworzenia modeli matematycznych, a także opisu algorytmów genetycznych, z zastosowaniem do konkretnego problemu praktycznego. 2. Rozważania teoretyczne Rozwój procedur ekonometrycznych możliwy jest dzięki ciągłemu rozwojowi technik informacyjnych, w szczególności zwiększającej się w ostatnich latach prawie nieograniczonej dostępności danych, na podstawie których można przeprowadzić odpowiednią analizę problemu. Warto zaznaczyć, że dokonywanie analiz i prognoz nie mogłoby przebiegać sprawnie bez posługiwania się coraz to nowszymi technikami komputerowymi oraz doskonalszym sprzętem, mogącym wykonywać skomplikowane obliczenia. Sprawia to, że możliwe jest przeprowadzenie dokładnych analiz, pozwalających ekonomistom na przewidywanie zjawisk gospodarczych i tym samym na przeprowadzanie odpowiednich w danej' sytuacji operacji. Przez ekonometrię rozumie się niekiedy teorię podejmowania decyzji. Bada ona zależności i prawidłowości zachodzących procesów w otoczeniu; z którym nierozerwalnie związana jest optymalizacja, czynności diagnozujące oraz analiza procesu produkcyjnego. W praktyce do rozstrzygania problemów optymalizacyjnych należy zbudować model matematyczny, za pomocą którego opisywana jest rzeczywistość. Tworzenie modelu matematycznego (schematycznie przedstawione na ry
2 20 Marta Woźniak sunku 1) i dalsze rozstrzyganie problemu za pomocą metod matematycznych znajduje szczególne uzasadnienie w przypadku, gdy spotykamy się z koniecznością podejmowania więcej niż jednej decyzji, mając na względzie uzyskanie ściśle określonego celu. Problem Cele modelowania Tak Model zweryfikowany Rysunek 1. Schemat tworzenia modelu Źródło: opracowanie własne na podstawie [12], s. 2. Dobór odpowiedniego modelu może również sprawiać pewne kłopoty. Mamy bowiem do wyboru modele liniowe i nieliniowe, deterministyczne (wszystkie zmienne są rzeczywiste) oraz stochastyczne (w których co najmniej jedna zmienna jest losowa). Istnieją także modele, które jedynie opisują rzeczywistość, czyli modele opisowe, bądź modele, w których opis rzeczywistości jest powiązany z dokonaniem wyboru, czyli modele optymalizacyjne. W praktyce większość problemów przedstawiona może zostać zą pomocą modeli liniowych, których bezsprzeczną zaletą jest ich
3 Gospodarcze zastosowania algorytmów genetycznych niski stopień skomplikowania; Kolejną ich zaletą jest istnienie kilku dobrze znanych metod rozwiązywania tego rodzaju zadań. Należy dodać, że zbiór takich metod, czyli metod programowania liniowego stanowi część metod optymalizacji [2, 3,4]. (^bęź^adientowe^) ^^grodientow e^^ (^be^radientowe^) (^^gradientowe^^) Rysunek 2. Podział metod optymalizacyjnych Źródło: opracowanie własne na podstawie [5], s Niezbędne wydaje się podkreślenie, że nie istnieje uniwersalny sposób, który mógłby być zastosowany do rozstrzygania wielu zagadnień. Poszczególne metody powinny być dostosowywane do konkretnej sytuacji, ponieważ tylko właściwie do
4 22: Marta Woźniak brana metoda pozwala na otrzymanie wyniku minimalnym kosztem. Różnorodność metod widoczna jest na rysunku 2, przedstawiającym podział metod optymalizacyjnych. Do dobrania najlepszej metody optymalizacyjnej najczęściej stosuje się precyzyjnie i dokładnie dobrane kryteria [4, 5]: Dokładność przybliżania wyznaczona przy ocenie: - miary zbioru poziomicowego, otaczającego ekstremum, - odległości od poszukiwanego ekstremum, - przybliżenia wartości funkcji w poszukiwanym ekstremum. Odporność na ekstrema lokalne. Koszty symulacji. Nowymi metodami optymalizacyjnymi są metody wykorzystujące sieci neuronowe, a także algorytmy ewolucyjne. W przypadku algorytmów ewolucyjnych, znany jest ich podział na algorytmy genetyczne, programowanie genetyczne, programowanie ewolucyjne oraz strategie ewolucyjne [6, 7]. Algorytmy genetyczne umożliwiają przeszukiwania przestrzeni zakodowanych potencjalnych rozstrzygnięć badanego problemu [6,7,8,9,10]. Naśladując procesy darwinowskiej ewolucji zachodzące w środowisku organizmów żywych, starają się znaleźć najlepsze rozwiązanie, działając w sztucznie zaprojektowanym środowisku. W obrębie przestrzeni poszukiwań między poszczególnymi zakodowanymi potencjalnymi rozwiązaniami dochodzi w kolejnych iteracjach do występowania operacji genetycznych, selekcji i oceny przystosowania. Poszczególne operacje powinny być wcześniej zdefiniowane, zarówno operacje genetyczne (krzyżowanie i mutacja), jak również sposób przeprowadzania selekcji oraz dokładnie określony warunek zatrzymania działania algorytmu. Należy także pamiętać o sformułowaniu funkcji przystosowania, na podstawie której oceniane są znalezione rozwiązania. 3. Zastosowanie algorytmu genetycznego w rozwiązywaniu zadania transportowego i prognozowaniu ryzyka kredytowego Coraz częściej można spotkać się z wykorzystaniem algorytmów ewolucyjnych do rozstrzygania różnych zagadnień praktycznych. Jednym z najczęściej opisywanych jest problem komiwojażera, polegający na zaprojektowaniu trasy przejazdu przez wyznaczone punkty w taki sposób, aby każdy punkt został odwiedzony tylko raz. Trasa powinna zaczynać się i kończyć w tym samym punkcie. W zadaniu tym należy zminimalizować koszty przejazdu. Nieco inna sytuacja występuje w przypadku zadania transportowego. Poszukiwany jest tu plan najtańszego przewozu towaru (jednego rodzaju) z określonej liczby miejsc nadawczych do określonej liczby miejsc odbioru. Konieczne jest podanie
5 Gospodarcze zastosowania algorytmów genetycznych 23 zapasowej ilości towaru w każdym miejscu nadania, jak i określenie zapotrzebowania w miejscach odbioru. Niezbędne jest dokładne podanie kosztów związanych z przewozem towarów pomiędzy każdym z miejsc nadania i odbioru. Na podstawie badań i wyników zawartych w [5] przedstawiona została sytuacja, w której jedna firma dostarcza towar jednego rodzaju z magazynów do punktów odbiorczych. Zostało to pokazane w tabeli 1. Koszty transportu na poszczególnych trasach zostały przedstawione w jednostkach kosztu, natomiast popyt i podaż w jednostkach towaru. Tabela 1. Zestawienie kosztów przewozu n. N. odbioru nadania n. odbioru 1 odbioru 2 odbioru 3 odbioru 4 Podaż Magazyn Magazyn Magazyn ' 560 Magazyn Popyt : 385 Źródło: opracowanie własne na podstaiwie [5], s Tabela 2. Wyniki analizy zagadnienia transportowego ' ^Kryterium Metoda Wartość funkcji kosztów Poprawa wartości w[%] Potrzebna liczba iteracji Badana firma ' AGR ,28 30 AGL ,03 27 AGT ,93 25 Źródło: opracowanie własne na podstawie [5], s W tabeli 2 porównano metodę dotychczas wykorzystywaną przez firmę X ( ręcznie ułożony plan transportu) z metodami wykorzystującymi: AGR, czyli algorytm genetyczny z ruletkową metodą selekcji, AGL, czyli algorytm genetyczny z selekcją rankingu liniowego oraz AGT, czyli algorytm genetyczny z selekcją tur
6 24 Marta Woźniak niejową. Biorąc pod uwagę: wyniki przedstawione w tabelach 1 i 2, można zauważyć, że zastosowanie algorytmów genetycznych umożliwia'obniżenie kosztów w przedstawionym zadaniu transportowym. Innym przykładem praktycznego zastosowania algorytmu genetycznego! jest prognozowanie ryzyka kredytowego. Najczęściej do tego typu zagadnień stosuje się metody statystyczne.: Możliwe jest jednak zastosowanie systemu wykorzystującego programowanie genetyczne do; rozwiązywania tego typu problemów./przykładem tego jest system OMEGA. Podstawą jego działania jest stosowanie programowania genetycznego wspomagającego ocenę i prognozowanie ryzyka kredytowego. Na podstawie zbudowanego przez system modelu przyporządkowuje się składanym wnioskom kredytowym odpowiednią liczbę punktów. Z kolei na podstawie przyznanych punktów dokonuje się wyboru wniosków, które otrzymają pozytywną lub negatywną odpowiedź dotyczącą udzielenia kredytu. i Poszczególne elementy wchodzące w skład systemu oceny ryzyka kredytowego, to OMEGA, GAAF oraz warstwa przetwarzania równoległego. OMEGA pełni tu funkcję elementu zarządzającego. GAAF (Genetic Algorithm for the Aproximation of Formulae) jest algorytmem genetycznym opartym na modelu programowania genetycznego. Składa się on z dwóch etapów [11]. Piervyszy:z nich polega na zdefiniowaniu środowiska, czyli>m.in. postaci chromosomu, funkcji przystosowania, kryterium zatrzymania. Drugi z kolei polega na zastosowaniu algorytmu genetycznego. Ogólny schemat działania algorytmu genetycznego został przedstawiony w artykule Przegląd algorytmów ewolucyjnych i ich zastosowań. Trzeci z wymienionych elementów wchodzących w skład systemu, czyli warstwa przetwarzania rów-: noległego, umożliwia zwiększenie efektywnbści algorytmu poprzez możliwość równoległego przetwarzania chromosomów na wielu procesach [11]. Tabela 3. Porównanie systemu OMEGA z systemem wykorzystującym sieć neuronową > -< System dotychczasowy (sieć neuronowa) OMEGA Poprawa rezultatu Współczynnik CoC; 63,69% : 65,15% -2,31% Moc metody 2,54 ' 2,41, 5,12 Źródło: [U], s Działanie tak skonstruowanego systemu do oceny ryzyka kredytowego zostało sprawdzone w jednym z brytyjskich banków. Efekty, działania systemu OMEGA w porównaniu z systemem^ który stosowany był w tym banku, przedstawione są w tabeli 3. Testy przeprowadzone zostały dla 5640 przypadków, przy uwzględnieniu 17 zmiennych prognozujących [11].
7 Gospodarcze zastosowania algorytmów genetycznych 25 Na podstawie danych z tabeli 2 można zauważyć, że system wykorzystujący algorytm genetyczny daje lepsze rezultaty, w przypadku gdy mamy do czynienia z oceną ryzyka kredytowego. 4. Wnioski końcowe Można zatem stwierdzić, że zastosowanie w ekonometrii rozwijających się metod optymalizacyjnych znajduje swoje uzasadnienie. Na podstawie przytoczonych badań [5], dotyczących zadania transportowego, widać, że możliwe było przeprowadzenie szybkiej analizy opisanego przypadku, a także określenie zmian, po wprowadzeniu których uzyskuje się zmniejszenie kosztów, a więc zwiększenie zysków. Stosowanie algorytmów genetycznych ma swoje uzasadnienia także w przypadku oceny ryzyka kredytowego. Przedstawiony system O M E G A-jak wynika z zamieszczonego wyżej porównania - może być dobrym narzędziem wspomagającym decyzje o tym, czy kredyt ma zostać udzielony, czy też nie. Zaletą stosowania opisanych algorytmów genetycznych jest również uzyskiwanie wyników w czasie krótszym niż w przypadku stosowania tradycyjnych metod badawczych, co jest istotne w rozstrzyganiu problemów decyzyjnych. Bibliografia 1 Lange O., Wstęp do ekonometrii, [w:] Dzieła, t. 5, Warszawa Cegielski A., Programowanie matematyczne, cz. 1: Programowanie liniowe, Zielona Góra Hozer J., Grzesiak S., Zastosowanie programowania matematycznego w ekonomii, Szczecin Miszczyński M., Programowanie liniowe. Elementy teorii i zadania, Łódź Załuski T., Wykorzystanie programowania liniowego oraz algorytmów genetycznych do rozwiązywania liniowych zadań optymalizacyjnych z ograniczeniami, Kraków Arabas J., Wykłady z algorytmów ewolucyjnych, Warszawa Kwaśnicka TH,, Obliczenia ewolucyjne w sztucznej inteligencji, Wrocław Kwaśnicka H., Sztuczna inteligencja. Algorytmy Ewolucyjne - Przykłady Zastosowań, Wrocław Michalewicz Z., Algorytmy genetyczne + struktury danych = programy ewolucyjne, Warszawa Goldberg D.E., Algorytmy genetyczne i ich zastosowania, Warszawa Gwiazda T.D., Algorytmy genetyczne. Zastosowania w finansach, Warszawa
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Specjalność Optymalizacja Decyzji Menedżerskich. Katedra Badań Operacyjnych Uniwersytetu Łódzkiego
Specjalność Optymalizacja Decyzji Menedżerskich Katedra Badań Operacyjnych Uniwersytetu Łódzkiego Kilka słów o nas Katedra Badań Operacyjnych jest częścią Instytutu Ekonomik Stosowanych i Informatyki.
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Specjalność Optymalizacja Decyzji Menedżerskich. Katedra Badań Operacyjnych Uniwersytetu Łódzkiego
Specjalność Optymalizacja Decyzji Menedżerskich Katedra Badań Operacyjnych Uniwersytetu Łódzkiego Kilka słów o nas Katedra Badań Operacyjnych jest częścią Instytutu Ekonomik Stosowanych i Informatyki.
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.
Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Dr Andrzej Podleśny Poznań, dnia r. MODUŁ KSZTAŁCENIA (SYLABUS)
Dr Andrzej Podleśny Poznań, dnia 1.10.2017 r. MODUŁ KSZTAŁCENIA (SYLABUS) dla przedmiotu Informatyka w zarządzaniu na kierunku Zarządzanie i prawo w biznesie I. Informacje ogólne 1. Nazwa modułu : Informatyka
KARTA PRZEDMIOTU. Dyscyplina:
KARTA PRZEDMIOTU Jednostka: WIPiE Dyscyplina: Poziom studiów: 3 Semestr: 3 lub 4 Forma studiów: stacjonarne Język wykładowy: Nazwa przedmiotu: Metody sztucznej inteligencji Symbol przedmiotu: MSI Liczba
Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego
IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,
Ekonometria_FIRJK Arkusz1
Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)
Symbol EKO S2A_W01 S2A_W02, S2A_W03, S2A_W03 S2A_W04 S2A_W05 S2A_W06 S2A_W07 S2A_W08, S2A_W09 S2A_W10
Załącznik do uchwały nr 73 Senatu Uniwersytetu Zielonogórskiego z dnia 30 stycznia 2013 r. Opis zakładanych efektów kształcenia Nazwa kierunku studiów: Administracja 1. Odniesień efektów kierunkowych do
Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
Proces badawczy schemat i zasady realizacji
Proces badawczy schemat i zasady realizacji Agata Górny Zaoczne Studia Doktoranckie z Ekonomii Warszawa, 23 października 2016 Metodologia i metoda naukowa 1 Metodologia Metodologia nauka o metodach nauki
Równoważność algorytmów optymalizacji
Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych
Etapy modelowania ekonometrycznego
Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,
Wyznaczanie optymalnej trasy problem komiwojażera
Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Wady klasycznych modeli input - output
Wady klasycznych modeli input - output 1)modele statyczne: procesy gospodarcze mają najczęściej charakter dynamiczny, 2)modele deterministyczne: procesy gospodarcze mają najczęściej charakter stochastyczny,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt
Proces badawczy schemat i zasady realizacji
Proces badawczy schemat i zasady realizacji Agata Górny Zaoczne Studia Doktoranckie z Ekonomii Warszawa, 14 grudnia 2014 Metodologia i metoda badawcza Metodologia Zadania metodologii Metodologia nauka
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: SYSTEMY WSPOMAGANIA DECYZJI. Kod przedmiotu: Ecs 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny. Kierunek: Mechatronika 5. Specjalność: Techniki Komputerowe
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Efekty kształcenia dla kierunku FINANSE i RACHUNKOWOŚĆ
Efekty kształcenia dla kierunku FINANSE i RACHUNKOWOŚĆ studia drugiego stopnia profil ogólnoakademicki Forma studiów: stacjonarne i niestacjonarne Wydział Ekonomii Uniwersytetu Ekonomicznego w Poznaniu
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
PROPOZYCJA ZAGADNIEŃ NA EGZAMIN LICENCJACKI NA KIERUNKU ANALITYKA GOSPODARCZA. 1.Modele wielorównaniowe. Ich rodzaje i zalecane metody estymacji
PROPOZYCJA ZAGADNIEŃ NA EGZAMIN LICENCJACKI NA KIERUNKU ANALITYKA GOSPODARCZA 1.Modele wielorównaniowe. Ich rodzaje i zalecane metody estymacji 2.Problem niesferyczności składnika losowego w modelach ekonometrycznych.
BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych
BADANIA OPERACYJNE i teoria optymalizacji Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych e-mail: tpisula@prz.edu.pl 1 Literatura podstawowa wykorzystywana podczas zajęć wykładowych: 1. Gajda J.,
Z-LOGN Ekonometria Econometrics. Przedmiot wspólny dla kierunku Obowiązkowy polski Semestr IV
bbbbkarta MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOGN1-0184 Ekonometria Econometrics Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE
K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz
K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie
MATRYCA EFEKTÓW KSZTAŁCENIA (Przedmioty podstawowe)
MATRYCA EFEKTÓW KSZTAŁCENIA (Przedmioty podstawowe) NAZWA PRZEDMIOTU SYMBOL KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA EFEKTY KSZTAŁCENIA Mikroekonomia 1 Mikroekonomia 2 Makroekonomia 1 Makroekonomia 2 Matematyka
Opis przedmiotu: Badania operacyjne
Opis : Badania operacyjne Kod Nazwa Wersja TR.SIK306 Badania operacyjne 2013/14 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
MIĘDZYNARODOWE STOSUNKI GOSPODARCZE
Efekty kształcenia dla kierunku MIĘDZYNARODOWE STOSUNKI GOSPODARCZE - studia pierwszego stopnia - profil ogólnoakademicki Forma Studiów: stacjonarne i niestacjonarne Wydział Gospodarki Międzynarodowej
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 9 Anna Skowrońska-Szmer lato 2016/2017 Ekonometria (Gładysz B., Mercik J., Modelowanie ekonometryczne. Studium przypadku, Wydawnictwo PWr., Wrocław 2004.) 2
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 Anna Landowska KLASYCZNY ALGORYTM GENETYCZNY W DYNAMICZNEJ OPTYMALIZACJI MODELU
Objaśnienie oznaczeń:
Efekty kształcenia na Wydziale Ekonomicznym Uniwersytetu Gdańskiego studia pierwszego stopnia profil ogólnoakademicki studia drugiego stopnia profil ogólnoakademicki Objaśnienie oznaczeń: S1A symbol efektów
Spis treści 377 379 WSTĘP... 9
Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...
Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
ANALITYKA GOSPODARCZA, STUDIA LICENCJACKIE WIEDZA
ANALITYKA GOSPODARCZA, STUDIA LICENCJACKIE WIEDZA Ma podstawową wiedzę o charakterze nauk ekonomicznych oraz ich miejscu w AG1_W01 systemie nauk społecznych i w relacjach do innych nauk. Ma wiedzę o sposobach
Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
przetworzonego sygnału
Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego
GOSPODARKA TURYSTYCZNA
Efekty kształcenia dla kierunku GOSPODARKA TURYSTYCZNA - studia pierwszego stopnia - profil ogólnoakademicki Forma studiów: stacjonarne i niestacjonarne Wydział Gospodarki Międzynarodowej Uniwersytetu
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi
Uchwała Nr 22/2017/V Senatu Politechniki Lubelskiej z dnia 25 maja 2017 r.
Uchwała Nr 22/2017/V Senatu Politechniki Lubelskiej z dnia 25 maja 2017 r. w sprawie określenia efektów kształcenia dla studiów podyplomowych Analiza danych prowadzonych przez Wydział Zarządzania Na podstawie
STRESZCZENIE. rozprawy doktorskiej pt. Zmienne jakościowe w procesie wyceny wartości rynkowej nieruchomości. Ujęcie statystyczne.
STRESZCZENIE rozprawy doktorskiej pt. Zmienne jakościowe w procesie wyceny wartości rynkowej nieruchomości. Ujęcie statystyczne. Zasadniczym czynnikiem stanowiącym motywację dla podjętych w pracy rozważań
6. Projektowanie składu chemicznego stali szybkotn cych o wymaganej twardo ci i odporno ci na p kanie
6. Projektowanie składu chemicznego stali szybkotn cych o wymaganej twardo ci i odporno ci na p kanie Do projektowania składu chemicznego stali szybkotn cych, które jest zadaniem optymalizacyjnym, wykorzystano
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Badania eksploracyjne Badania opisowe Badania wyjaśniające (przyczynowe)
Proces badawczy schemat i zasady realizacji Agata Górny Demografia Wydział Nauk Ekonomicznych UW Warszawa, 4 listopada 2008 Najważniejsze rodzaje badań Typy badań Podział wg celu badawczego Badania eksploracyjne
Przedmowa... 7 1. System zarządzania jakością w przygotowaniu projektów informatycznych...11
Spis treści Przedmowa... 7 1. System zarządzania jakością w przygotowaniu projektów informatycznych...11 1.1. Wprowadzenie...11 1.2. System zarządzania jakością...11 1.3. Standardy jakości w projekcie
Opis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.SIK306 Nazwa przedmiotu Badania operacyjne Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
EFEKTY KSZTAŁCENIA ORAZ MACIERZE POKRYCIA KIERUNKU ANALITYKA GOSPODARCZA STUDIA LICENCJACKIE
EFEKTY KSZTAŁCENIA ORAZ MACIERZE POKRYCIA KIERUNKU ANALITYKA GOSPODARCZA STUDIA LICENCJACKIE ------------------------------------------------------------------------------------------------- WIEDZA AG1_W01
MIĘDZYNARODOWE STOSUNKI GOSPODARCZE
Efekty kształcenia dla kierunku MIĘDZYNARODOWE STOSUNKI GOSPODARCZE - studia drugiego stopnia - profil ogólnoakademicki Forma Studiów: stacjonarne i niestacjonarne Wydział Gospodarki Międzynarodowej Uniwersytetu
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
aktualizacja Nazwa kierunku: Ekonomia
1. Nazwa kierunku: Ekonomia Efekty kształcenia na Wydziale Ekonomicznym Uniwersytetu Gdańskiego studia pierwszego stopnia profil ogólnoakademicki studia drugiego stopnia profil ogólnoakademicki aktualizacja
METODY ILOŚCIOWE W ZARZĄDZANIU
1.1.1 Metody ilościowe w zarządzaniu I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE METODY ILOŚCIOWE W ZARZĄDZANIU Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: RiAF_PS5 Wydział Zamiejscowy
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
Proces badawczy schemat i zasady realizacji
Proces badawczy schemat i zasady realizacji Agata Górny Wydział Nauk Ekonomicznych UW Warszawa, 28 października 2014 Najważniejsze rodzaje badań Typy badań Podział wg celu badawczego Kryteria przyczynowości
UCHWAŁA NR 50 Senatu Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie z dnia 28 maja 2012 r.
UCHWAŁA NR 50 Senatu Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie z dnia 28 maja 2012 r. w sprawie określenia opisu efektów kształcenia dla kierunku studiów ekonomia pierwszego i drugiego
Spis treści Przedmowa
Spis treści Przedmowa 1. Wprowadzenie do problematyki konstruowania - Marek Dietrich (p. 1.1, 1.2), Włodzimierz Ozimowski (p. 1.3 -i-1.7), Jacek Stupnicki (p. l.8) 1.1. Proces konstruowania 1.2. Kryteria
Kierunek Zarządzanie II stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych
Kierunek Zarządzanie II stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych Objaśnienie oznaczeń: Z efekty kierunkowe dla Zarządzania W wiedza
Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz
Obliczenia równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 15 czerwca 2001 Spis treści Przedmowa............................................
Ekonomia menedżerska William F. Samuelson, Stephen G. Marks
Ekonomia menedżerska William F. Samuelson, Stephen G. Marks Ekonomia menedżerska to doskonale opracowany podręcznik, w którym przedstawiono najważniejsze problemy decyzyjne, przed jakimi stają współcześni
METODY WSPOMAGANIA DECYZJI MENEDŻERSKICH
PREZENTACJA SEPCJALNOŚCI: METODY WSPOMAGANIA DECYZJI MENEDŻERSKICH WYDZIAŁ INFORMATYKI I KOMUNIKACJI KIERUNEK INFORMATYKA I EKONOMETRIA SEKRETARIAT KATEDRY BADAŃ OPERACYJNYCH Budynek D, pok. 621 e-mail
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Po ukończeniu studiów pierwszego stopnia na kierunku ekonomia absolwent:
Efekty kształcenia dla kierunku studiów ekonomia Studia pierwszego stopnia profil praktyczny 1. Umiejscowienie kierunku w obszarze. Kierunek studiów ekonomia należy do dziedziny nauk ekonomicznych w ramach
Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej
Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych
Spis treści. Przedmowa 11
Podstawy konstrukcji maszyn. T. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 2 dodr.
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 Anna LANDOWSKA ROZWIĄZANIE PROBLEMU OPTYMALNEGO PRZYDZIAŁU ZA POMOCĄ KLASYCZNEGO
EFEKTY KSZTAŁCENIA INWESTYCJE I NIERUCHOMOŚCI
EFEKTY KSZTAŁCENIA KIERUNEK: INWESTYCJE I NIERUCHOMOŚCI (studia drugiego stopnia) Łódź, 2014 12. Określenie kierunkowych efektów kształcenia wraz z odniesieniem do obszarowych efektów określonych dla danego
Dodatkowo planowane jest przeprowadzenie oceny algorytmów w praktycznym wykorzystaniu przez kilku niezależnych użytkowników ukończonej aplikacji.
Spis Treści 1. Wprowadzenie... 2 1.1 Wstęp... 2 1.2 Cel pracy... 2 1.3 Zakres pracy... 2 1.4 Użyte technologie... 2 1.4.1 Unity 3D... 3 2. Sztuczna inteligencja w grach komputerowych... 4 2.1 Zadanie sztucznej
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO rekrutacja w roku akademickim 2011/2012 Zatwierdzono:
Summary in Polish. Fatimah Mohammed Furaiji. Application of Multi-Agent Based Simulation in Consumer Behaviour Modeling
Summary in Polish Fatimah Mohammed Furaiji Application of Multi-Agent Based Simulation in Consumer Behaviour Modeling Zastosowanie symulacji wieloagentowej w modelowaniu zachowania konsumentów Streszczenie
Algorytmy wspomagania decyzji Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.
Algorytmy wspomagania decyzji Czyli co i jak 2013 andrzej.rusiecki@pwr.wroc.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 911/D-20 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
PROGRAM KSZTAŁCENIA NA STUDIACH III STOPNIA Informatyka (nazwa kierunku)
PROGRAM KSZTAŁCENIA NA STUDIACH III STOPNIA Informatyka (nazwa kierunku) 1. OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA: 1) Tabela odniesień kierunkowych efektów kształcenia (EKK) do obszarowych efektów kształcenia
PROGRAM KSZTAŁCENIA NA KIERUNKU STUDIÓW WYŻSZYCH
Załącznik nr 1 do Zarządzenia Rektora nr 1/01 z 11 stycznia 01 r. PROGRAM KSZTAŁCENIA NA KIERUNKU STUDIÓW WYŻSZYCH NAZWA WYDZIAŁU: Zarządzania i Ekonomii NAZWA KIERUNKU: Informatyka i Ekonometria POZIOM
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH
MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.
Algorytmy wspomagania decyzji Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3
Algorytmy wspomagania decyzji Czyli co i jak 2018 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi