Sieci Neuronowe Laboratorium 2
|
|
- Irena Muszyńska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Sieci Neuronowe Zadania i problemy algorytmiczne dla sieci neuronowych, programowania logicznego i sztucznej inteligencji według zasad i kryteriów laboratoriów. pdf Laboratorium 2 Zapisać następujące stwierdzenia w języku logiki predykatów, wprowadzając niezbędne symbole i ustalając ich interpretację: - ojciec każdego człowieka jest jego bezpośrednim przodkiem, - jeśli ktoś jest przodkiem bezpośredniego przodka pewnej osoby, to jest także przodkiem tej osoby, - każdy jest spokrewniony z każdym swoim przodkiem, - każdy jest spokrewniony ze swoim bratem i siostrą, - każdy jest spokrewniony z braćmi i siostrami wszystkich osób spokrewnionych ze sobą. Dla bazy wiedzy dotyczącej świata klocków podanej w przykładzie wnioskowania znaleźć wyprowadzenia (jeśli istnieją) następujących formuł: 3. Sprawdzić, czy z bazy wiedzy Γ można wyprowadzić formuły β i dla poniższych Γ i β. W razie potrzeby można wprowadzić dodatkowe reguły wnioskowania, sprawdzając uprzednio ich poprawność.
2 3. Które z następujących reguł wnioskowania są poprawne: Zadanie 5. Sprowadzić następujące formuły do postaci CNF: Zadanie 6. Sprowadzić następujące formuły do postaci standardowej Skolema: Zadanie 7. Dokonać unifikacji następujących par formuł:
3 Zadanie 8. Zweryfikować przedstawiony niżej przebieg wnioskowania prowadzonego przez człowieka zapisując bazę wiedzy w postaci formuł logiki predykatów i sprawdzając poprawność kroków dowodu. - Wszystkie liczby podzielne przez 2 są parzyste. - Dowolna liczba o 1 większa od liczby parzystej nie jest parzysta. - Żadna liczba parzysta nie jest podzielna przez 3. - Niektóre liczby nieparzyste są podzielne przez 3. - Z powyższego wynika, że każda liczba podzielna przez 3 jest o 1 większa od pewnej liczby podzielnej przez - Nie wszystkie trójki punktów na płaszczyźnie są współliniowe. - Jeżeli trzy punkty na płaszczyźnie nie są współliniowe, to są wierzchołkami pewnego trójkąta. - Jeśli z czterech punktów żadne trzy nie są współliniowe, to są one wierzchołkami pewnego czworokąta. - Z powyższego wynika, że: - istnieje trójkąt, - istnieje czworokąt, - jeśli ABC, BCD, ABD i ACD są trójkątami, to ABCD jest czworokątem. Laboratorium 3 Napisać program/predykat obliczający potęgę. Napisać program/predykat obliczający silnię. Napisać program/predykat obliczający nwd dwóch liczb. Napisać program/predykat obliczający długość listy. Zadanie 5. Napisać program/predykat sprawdzający czy dany element należy do listy. Zadanie 6. Napisać program/predykat usuwający wybrany element z listy. Zadanie 7. Napisać program/predykat łączący ze sobą dwie listy. Zadanie 8. Napisać program/predykat zwracający ostatni element z listy. Zadanie 9. Napisać program/predykat odwracający listę.
4 Laboratorium 4 Wykonać drzewa decyzyjne grafy wnioskowania dla: m_kr(miasto, Kraj) m_st(miasto, Kraj) m_ko(miasto, Kontynent) kr_ko(kraj, Kontynent) Napisać program/predykat wnioskowania wszerz. Napisać program/predykat wnioskowania wgłąb. Laboratorium 5 Napisać program/predykat rozwiązujący problem plecakowy. Napisać program/predykat rozwiązujący problem najkrótszej drogi w grafie. Rozważmy drzewo genealogiczne. Załóżmy, że krawędzie są skierowane od rodziców w kierunku dzieci. W którym kierunku - zgodnie czy przeciwnie do skierowania krawędzi - lepiej jest prowadzić przeszukiwanie drzewa, chcąc stwierdzić, że X jest prapradziadkiem Y? Zdefiniować (i naszkicować jej graf) przestrzeń przeszukiwań i sformułować funkcję celu dla przykładowego zadania sortowania tablicy zawierającej 4 elementy Laboratorium 6 Napisać program/algorytm aproksymujący funkcje na podstawie danego zbioru uczącego i kreślący aproksymację oraz zbiór uczący. Aproksymować następujące zbiory uczące: [(1,0.33),(5,0.66),(2,0.99),(5,0.66),(3,0.33),(3.5,0),(4,-0.33),(4.5,-0.66),(5,-0.99),(5.5,- 0.66),(6,-0.33),(7,0)] Π 3Π [(0,0),(,1),(Π,-0.1),(,-1),(2 Π,0.1)] 2 2 Π 3Π 3. [(0,0.9),(,-0.1),(Π,-1),(,-0.1),(2 Π,1)] 2 2
5 Laboratorium 7 W poniższej tabeli zostały przedstawione wyniki jakie osiąga student podczas wykonywania zadań z danego zagadnienia. Liczba wykonanych zadań Popełnione błędy Zbadać związki jakie zachodzą pomiędzy danymi przedstawionymi w tabeli, a następnie dla danych przedstawić prognozę w oparciu o wykres regresji liniowej. Obliczyć kowariancję zmiennych X i Y a następnie ocenić kierunek zależności liniowej pomiędzy nimi (y=ax+b) i wyznaczyć linię regresji. X Y Na podstawie poniższych danych dotyczących wytrzymałości na złamanie (zmienna X wyrażona w kg) spawanych prętów o różnej średnicy (zmienna Y wyrażona w 0.01 mm) ustalić, czy średnica spawanych prętów ma wpływ na wytrzymałość na złamanie. Określić rodzaj, siłę i kierunek tej zależności. X Y Obliczyć kowariancję zmiennych X i Y oraz ocenić siłę i kierunek zależności liniowej pomiędzy tymi zmiennymi, wyznaczyć odpowiednie wykresy i ocenić ewentualne zachowanie w przyszłości. X Y Zadanie 5. Na podstawie danych dotyczących wydajności pracy Y i stażu pracy X 10 robotników ustalić czy między zmiennymi X i Y istnieje zależność korelacyjna. Jeśli tak, to określić jej kierunek. X Y Sporządzić wykres korelacyjny oraz uporządkować wartości cechy X i odpowiadające im
6 wartości cechy Y. Zadanie 6. Dla 13 robotników zanotowano następujące wartości dwóch cech: X - staż pracy w latach, Y -liczba braków. Ocenić czy istnieje korelacja pomiędzy tymi cechami i jaki jest jej kierunek. X Y Laboratorium 8 Rozwiązać zadanie i napisać program/arkusz kalkulacyjny dla niego. W śledztwie dotyczącym zabójstwa inspektor Bayes rozważa dwie hipotezy: h że główny podejrzany zabił, ~h że główny podejrzany nie zabił oraz następujące możliwe fakty: f 1 że na miejscu zbrodni znaleziono odciski palców głównego podejrzanego, f 2 że główny podejrzany nie ma alibi na czas popełnienia zabójstwa, f 3 że główny podejrzany miał motyw zabicia ofiary, f 4 że główny podejrzany był widziany w sądziedztwie miejsca, w którym mieszka nielegalny handlarz bronią, f 5 że świadek zbrodni podał rysopis zabójcy nie pasujący do głównego podejrzanego. Zależności między takimi faktami a hipotezami opisują następujące prawdopodobieństwa: W którym przypadku prawdopodobieństwo popełnienia zabójstwa byłoby największe: - gdyby znaleziono na miejscu zbrodni jego odciski palców, - gdyby stwierdzono, że nie miał alibi i miał motyw, - gdyby znaleziono na miejscu zbrodni jego odciski palców oraz stwierdzono, że był widziany w sąsiedztwie miejsca, w którym mieszka nielegalny handlarz bronią, ale świadek zbrodni podał rysopis zabójcy nie pasujący do głównego podejrzanego. Rozwiązać zadanie i napisać program/arkusz kalkulacyjny dla niego. W śledztwie dotyczącym zabójstwa inspektor Bayes wyłonił trzech podejrzanych A, B i C, w konsekwencji czego rozważa trzy możliwe hipotezy, wzajemnie wykluczające się i wyczerpujące wszystkie możliwości: h A zabił A, h B zabił B, h C zabił C oraz następujące możliwe fakty: f 1A, f 1B, f 1C że na miejscu zbrodni znaleziono odciski palców podejrzanego A, B, C,
7 f 2A, f 2B, f 2C że podejrzany A, B, C nie ma alibi na czas popełnienia zabójstwa, f 3A, f 3B, f 3C że podejrzany A, B, C miał oczywisty motyw zabicia ofiary, f 4A, f 4B, f 4C że świadek zbrodni podał rysopis zabójcy nie pasujący do podejrzanego A. B, C, f 5A, f 5B, f 5C że podejrzany A, B, C jest szanowanym obywatelem nie budzącym u nikogo żadnych podejrzeń. Zależności między takimi faktami a hipotezami opisują następujące prawdopodobieństwa dla x=a, B, C. Wstępnie inspektor założył, że prawdopodobieństwo popełnienia zbrodni przez każdego z podejrzanych jest jednakowe. W wyniku śledztwa ustalono, że: - podejrzani A i B nie mają alibi, - podejrzany C miał oczywisty motyw, - rysopis zabójcy podany przez świadka nie pasuje do podejrzanych B i C, - podejrzany A jest szanowanym obywatelem nie budzącym u nikogo żadnych podejrzeń. Którego z podejrzanych powinien aresztować inspektor Bayes jako najbardziej prawdopodobnego zabójcę? Rozważmy zastosowanie wnioskowania bayesowskiego do pewnej dziedziny, w której rozważa się dwie wykluczające się wzajemnie i wyczerpujące wszystkie możliwości hipotezy h i ~h oraz m możliwych faktów f 1,, f m. Prawdopodobieństwa Pr(f j h) dla j=1,2,, m określone są jako kolejne liczby z ciągu arytmetycznego 0.1+(j-1)*( )/(m-1), zaś prawdopodobieństwa Pr(f j ~h) odpowiednio jako kolejne liczby z ciągu geometrycznego 0.9*(0.1/0.9)*(j-1)/(m-1). Obie hipotezy są jednakowo prawdopodobne a priori. Fakty są warunkowo niezależne względem hipotez. Liczba faktów m jest parzysta. Która hipoteza jest bardziej prawdopodobna a posteriori, jeśli: wiadomo, że zachodzą wszystkie fakty f 1,, f m, wiadomo, że zachodzą tylko fakty f 1,, f m/2, 3. wiadomo, że zachodzą tylko fakty f m/2,, f m. Laboratorium 9 Napisać program/algorytm obliczający wartość neuronu przy funkcji aktywacji: - funkcja liniowa - obcięta funkcja liniowa - funkcja progowa unipolarna - funkcja progowa bipolarna - funkcja sigmoidalna unipolarna - funkcja sigmoidalna bipolarna - tangens hiperboliczny Napisać program/algorytm obliczający sieć neuronową z dwoma warstwami ukrytymi dla - funkcja liniowa - obcięta funkcja liniowa - funkcja progowa unipolarna - funkcja progowa bipolarna
8 - funkcja sigmoidalna unipolarna - funkcja sigmoidalna bipolarna - tangens hiperboliczny Napisać program/algorytm uczenia perceptronu. Napisać program/algorytm uczenia perceptronu z momentem bezwładności. Laboratorium 10 Napisać program/algorytm obliczający wartość neuronu sigmoidalnego. Napisać program/algorytm obliczający wartość neuronu adaline. Napisać program/algorytm uczący sieć według schematu Grossberga. Laboratorium 11 Napisać program/algorytm uczenia sieci neuronowej z nauczycielem. Napisać program/algorytm uczenia sieci bez nauczyciela. Napisać program/algorytm uczenia sieci Hebba. Napisać program/algorytm uczenia sieci WTA. Zadanie 5. Napisać program/algorytm uczenia sieci WTM. Laboratorium 12 uczący ją dla algorytmu wstecznej propagacji BP wstecznej uczący ją dla algorytmu LM Levenberga-Marquardta uczący ją dla algorytmu RLS
9 Laboratorium 13 uczący ją dla algorytmu Hopfielda. uczący ją dla algorytmu Haminnga.
Zadania. SiOD Cwiczenie 1 ;
1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A
art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny (Dz. U. Nr 16, poz. 93 ze zm.),
Istota umów wzajemnych Podstawa prawna: Księga trzecia. Zobowiązania. Dział III Wykonanie i skutki niewykonania zobowiązań z umów wzajemnych. art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny
Konspekt lekcji otwartej
Konspekt lekcji otwartej Przedmiot: Temat lekcji: informatyka Modelowanie i symulacja komputerowa prawidłowości w świecie liczb losowych Klasa: 2 g Data zajęć: 21.12.2004. Nauczyciel: Roman Wyrwas Czas
POMOC PSYCHOLOGICZNO-PEDAGOGICZNA Z OPERONEM. Vademecum doradztwa edukacyjno-zawodowego. Akademia
POMOC PSYCHOLOGICZNO-PEDAGOGICZNA Z OPERONEM PLANOWANIE DZIAŁAŃ Określanie drogi zawodowej to szereg różnych decyzji. Dobrze zaplanowana droga pozwala dojechać do określonego miejsca w sposób, który Ci
ZASADY WYPEŁNIANIA ANKIETY 2. ZATRUDNIENIE NA CZĘŚĆ ETATU LUB PRZEZ CZĘŚĆ OKRESU OCENY
ZASADY WYPEŁNIANIA ANKIETY 1. ZMIANA GRUPY PRACOWNIKÓW LUB AWANS W przypadku zatrudnienia w danej grupie pracowników (naukowo-dydaktyczni, dydaktyczni, naukowi) przez okres poniżej 1 roku nie dokonuje
Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW
Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest
Roczne zeznanie podatkowe 2015
skatteetaten.no Informacje dla pracowników zagranicznych Roczne zeznanie podatkowe 2015 W niniejszej broszurze znajdziesz skrócony opis tych pozycji w zeznaniu podatkowym, które dotyczą pracowników zagranicznych
Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3
Kurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
7. REZONANS W OBWODACH ELEKTRYCZNYCH
OBWODY SYGNAŁY 7. EZONANS W OBWODAH EEKTYZNYH 7.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód
Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.
Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.
Do Rzecznika Praw Obywatelskich wpływają skargi od studentów kwestionujące
RZECZPOSPOLITA POLSKA Rzecznik Praw Obywatelskich Irena LIPOWICZ RPO-686330-I/11/ST/KJ 00-090 Warszawa Tel. centr. 22 551 77 00 Al. Solidarności 77 Fax 22 827 64 53 Pani Barbara Kudrycka Minister Nauki
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
KLAUZULE ARBITRAŻOWE
KLAUZULE ARBITRAŻOWE KLAUZULE arbitrażowe ICC Zalecane jest, aby strony chcące w swych kontraktach zawrzeć odniesienie do arbitrażu ICC, skorzystały ze standardowych klauzul, wskazanych poniżej. Standardowa
RZECZPOSPOLITA POLSKA. Prezydent Miasta na Prawach Powiatu Zarząd Powiatu. wszystkie
RZECZPOSPOLITA POLSKA Warszawa, dnia 11 lutego 2011 r. MINISTER FINANSÓW ST4-4820/109/2011 Prezydent Miasta na Prawach Powiatu Zarząd Powiatu wszystkie Zgodnie z art. 33 ust. 1 pkt 2 ustawy z dnia 13 listopada
1. Rozwiązać układ równań { x 2 = 2y 1
Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,
Automatyczne przetwarzanie recenzji konsumenckich dla oceny użyteczności produktów i usług
Uniwersytet Ekonomiczny w Poznaniu Wydział Informatyki i Gospodarki Elektronicznej Katedra Informatyki Ekonomicznej Streszczenie rozprawy doktorskiej Automatyczne przetwarzanie recenzji konsumenckich dla
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
Strategia rozwoju kariery zawodowej - Twój scenariusz (program nagrania).
Strategia rozwoju kariery zawodowej - Twój scenariusz (program nagrania). W momencie gdy jesteś studentem lub świeżym absolwentem to znajdujesz się w dobrym momencie, aby rozpocząć planowanie swojej ścieżki
Warunki Oferty PrOmOcyjnej usługi z ulgą
Warunki Oferty PrOmOcyjnej usługi z ulgą 1. 1. Opis Oferty 1.1. Oferta Usługi z ulgą (dalej Oferta ), dostępna będzie w okresie od 16.12.2015 r. do odwołania, jednak nie dłużej niż do dnia 31.03.2016 r.
Warszawska Giełda Towarowa S.A.
KONTRAKT FUTURES Poprzez kontrakt futures rozumiemy umowę zawartą pomiędzy dwoma stronami transakcji. Jedna z nich zobowiązuje się do kupna, a przeciwna do sprzedaży, w ściśle określonym terminie w przyszłości
WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ
WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ Anna Gutt- Kołodziej ZASADY OCENIANIA Z MATEMATYKI Podczas pracy
Przedmiotowe zasady oceniania. zgodne z Wewnątrzszkolnymi Zasadami Oceniania. obowiązującymi w XLIV Liceum Ogólnokształcącym.
Przedmiotowe zasady oceniania zgodne z Wewnątrzszkolnymi Zasadami Oceniania obowiązującymi w XLIV Liceum Ogólnokształcącym. Przedmiot: biologia Nauczyciel przedmiotu: Anna Jasztal, Anna Woch 1. Formy sprawdzania
ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ. KORELACJA zmiennych jakościowych (niemierzalnych)
ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ KORELACJA zmiennych jakościowych (niemierzalnych) Zadanie 1 Zapytano 180 osób (w tym 120 mężczyzn) o to czy rozpoczynają dzień od wypicia kawy czy też może preferują herbatę.
Motywuj świadomie. Przez kompetencje.
styczeń 2015 Motywuj świadomie. Przez kompetencje. Jak wykorzystać gamifikację i analitykę HR do lepszego zarządzania zasobami ludzkimi w organizacji? 2 Jak skutecznie motywować? Pracownik, który nie ma
D.01.01.01. ODTWORZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH
D.01.01.01. ODTWORZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH 1. WSTĘP 1.1.Przedmiot SST Przedmiotem niniejszej szczegółowej specyfikacji technicznej (SST) są wymagania dotyczące wykonania i odbioru robót związanych
Komentarz technik ochrony fizycznej osób i mienia 515[01]-01 Czerwiec 2009
Strona 1 z 19 Strona 2 z 19 Strona 3 z 19 Strona 4 z 19 Strona 5 z 19 Strona 6 z 19 Strona 7 z 19 W pracy egzaminacyjnej oceniane były elementy: I. Tytuł pracy egzaminacyjnej II. Założenia do projektu
MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.
INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję
KRYTERIA OCENIANIA WYPOWIEDZI PISEMNYCH KRÓTKA I DŁUŻSZA FORMA UŻYTKOWA
KRYTERIA OCENIANIA WYPOWIEDZI PISEMNYCH KRÓTKA I DŁUŻSZA FORMA UŻYTKOWA 1. Krótka forma użytkowa 1.1. Kryteria oceniania 1.2. Uściślenie kryteriów oceniania Treść Poprawność językowa 2. Dłuższa forma użytkowa
Twierdzenie Bayesa. Indukowane Reguły Decyzyjne Jakub Kuliński Nr albumu: 53623
Twierdzenie Bayesa Indukowane Reguły Decyzyjne Jakub Kuliński Nr albumu: 53623 Niniejszy skrypt ma na celu usystematyzowanie i uporządkowanie podstawowej wiedzy na temat twierdzenia Bayesa i jego zastosowaniu
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź
Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu
Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na
Mechanizm zawarty w warunkach zamówienia podstawowego. Nie wymaga aneksu do umowy albo udzielenia nowego zamówienia. -
Załącznik nr 1a Lista sprawdzająca dot. ustalenia stosowanego trybu zwiększenia wartości zamówień podstawowych na roboty budowlane INFORMACJE PODLEGAJĄCE SPRAWDZENIU Analiza ryzyka Działanie Uwagi Czy
Harmonogramowanie projektów Zarządzanie czasem
Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania
Druk nr 1013 Warszawa, 9 lipca 2008 r.
Druk nr 1013 Warszawa, 9 lipca 2008 r. SEJM RZECZYPOSPOLITEJ POLSKIEJ VI kadencja Komisja Nadzwyczajna "Przyjazne Państwo" do spraw związanych z ograniczaniem biurokracji NPP-020-51-2008 Pan Bronisław
Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:
Matematyka ubezpieczeń majątkowych 5.2.2008 r. Zadanie. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Pr ( N = k) = 0 dla k = 0,, K, 9. Liczby szkód w
Ćwiczenie: "Ruch harmoniczny i fale"
Ćwiczenie: "Ruch harmoniczny i fale" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:
Kurs wyrównawczy dla kandydatów i studentów UTP
Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno
UMOWA O ŚWIADCZENIU USŁUG W PUNKCIE PRZEDSZKOLNYM TĘCZOWA KRAINA. Zawarta dnia..w Cieszynie pomiędzy
UMOWA O ŚWIADCZENIU USŁUG W PUNKCIE PRZEDSZKOLNYM TĘCZOWA KRAINA Zawarta dnia..w Cieszynie pomiędzy.właścicielką Punktu Przedszkolnego Tęczowa Kraina w Cieszynie przy ulicy Hallera 145 A, a Panem/Panią......
HAŚKO I SOLIŃSKA SPÓŁKA PARTNERSKA ADWOKATÓW ul. Nowa 2a lok. 15, 50-082 Wrocław tel. (71) 330 55 55 fax (71) 345 51 11 e-mail: kancelaria@mhbs.
HAŚKO I SOLIŃSKA SPÓŁKA PARTNERSKA ADWOKATÓW ul. Nowa 2a lok. 15, 50-082 Wrocław tel. (71) 330 55 55 fax (71) 345 51 11 e-mail: kancelaria@mhbs.pl Wrocław, dnia 22.06.2015 r. OPINIA przedmiot data Praktyczne
KOMISJA WSPÓLNOT EUROPEJSKICH. Wniosek DECYZJA RADY
KOMISJA WSPÓLNOT EUROPEJSKICH Bruksela, dnia 13.12.2006 KOM(2006) 796 wersja ostateczna Wniosek DECYZJA RADY w sprawie przedłużenia okresu stosowania decyzji 2000/91/WE upoważniającej Królestwo Danii i
Sprawa numer: BAK.WZP.230.2.2015.34 Warszawa, dnia 27 lipca 2015 r. ZAPROSZENIE DO SKŁADANIA OFERT
Sprawa numer: BAK.WZP.230.2.2015.34 Warszawa, dnia 27 lipca 2015 r. ZAPROSZENIE DO SKŁADANIA OFERT 1. Zamawiający: Skarb Państwa - Urząd Komunikacji Elektronicznej ul. Kasprzaka 18/20 01-211 Warszawa 2.
NUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
Zamawiający potwierdza, że zapis ten należy rozumieć jako przeprowadzenie audytu z usług Inżyniera.
Pytanie nr 1 Bardzo prosimy o wyjaśnienie jak postrzegają Państwo możliwość przeliczenia walut obcych na PLN przez Oferenta, który będzie składał ofertę i chciał mieć pewność, iż spełnia warunki dopuszczające
Wiedza niepewna i wnioskowanie (c.d.)
Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu
Klasa I szkoły ponadgimnazjalnej język polski
Klasa I szkoły ponadgimnazjalnej język polski 1. Informacje ogólne Badanie osiągnięć uczniów I klas odbyło się 16 września 2009 r. Wyniki badań nadesłało 12 szkół. Analizie poddano wyniki 990 uczniów z
Regulamin rekrutacji. do II Liceum Ogólnokształcącego w Jaśle im. ppłk J.Modrzejewskiego. na rok szkolny 2014/2015
Zarządzenie nr 6/2014 Dyrektora II Liceum Ogólnokształcącego w Jaśle im. ppłk J.Modrzejewskiego z dnia 27 lutego 2014r w sprawie: regulaminu rekrutacji na rok szkolny 2014/2015 na podstawie: ustawy z dnia
Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych ul. Koszykowa 75, 00-662 Warszawa
Zamawiający: Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej 00-662 Warszawa, ul. Koszykowa 75 Przedmiot zamówienia: Produkcja Interaktywnej gry matematycznej Nr postępowania: WMiNI-39/44/AM/13
D-01.01.01. wysokościowych
D-01.01.01 Odtworzenie nawierzchni i punktów wysokościowych 32 Spis treści 1. WSTĘP... 34 1.1. Przedmiot SST... 34 1.2. Zakres stosowania SST... 34 1.3. Zakres robót objętych SST... 34 1.4. Określenia
Zawarta w Warszawie w dniu.. pomiędzy: Filmoteką Narodową z siedzibą przy ul. Puławskiej 61, 00-975 Warszawa, NIP:, REGON:.. reprezentowaną przez:
Załącznik nr 6 Nr postępowania: 30/2010 UMOWA Nr... Zawarta w Warszawie w dniu.. pomiędzy: Filmoteką Narodową z siedzibą przy ul. Puławskiej 61, 00-975 Warszawa, NIP:, REGON:.. reprezentowaną przez:..
WYMAGANIA EDUKACYJNE Z PRZEDMIOTÓW ZAWODOWYCH ODBYWAJĄCYCH SIĘ W SZKOLNYM LABORATORIUM CHEMICZNYM
WYMAGANIA EDUKACYJNE Z PRZEDMIOTÓW ZAWODOWYCH ODBYWAJĄCYCH SIĘ W SZKOLNYM LABORATORIUM CHEMICZNYM PSO jest uzupełnieniem Wewnątrzszkolnego Systemu Oceniania obowiązującego w GCE. Precyzuje zagadnienia
PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3
PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 29/2 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!
Zarządzanie Zasobami by CTI. Instrukcja
Zarządzanie Zasobami by CTI Instrukcja Spis treści 1. Opis programu... 3 2. Konfiguracja... 4 3. Okno główne programu... 5 3.1. Narzędzia do zarządzania zasobami... 5 3.2. Oś czasu... 7 3.3. Wykres Gantta...
INSTRUKCJA DLA UCZESTNIKÓW ZAWODÓW ZADANIA
INSTRUKCJA DLA UCZESTNIKÓW ZAWODÓW 1. Zawody III stopnia trwają 150 min. 2. Arkusz egzaminacyjny składa się z 2 pytań otwartych o charakterze problemowym, 1 pytania opisowego i 1 mini testu składającego
Szczegółowe wyjaśnienia dotyczące definicji MŚP i związanych z nią dylematów
1 Autor: Aneta Para Szczegółowe wyjaśnienia dotyczące definicji MŚP i związanych z nią dylematów Jak powiedział Günter Verheugen Członek Komisji Europejskiej, Komisarz ds. przedsiębiorstw i przemysłu Mikroprzedsiębiorstwa
WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO I MATEMATYCZNEGO
Nr ćwiczenia: 101 Prowadzący: Data 21.10.2009 Sprawozdanie z laboratorium Imię i nazwisko: Wydział: Joanna Skotarczyk Informatyki i Zarządzania Semestr: III Grupa: I5.1 Nr lab.: 1 Przygotowanie: Wykonanie:
Fed musi zwiększać dług
Fed musi zwiększać dług Autor: Chris Martenson Źródło: mises.org Tłumaczenie: Paweł Misztal Fed robi, co tylko może w celu doprowadzenia do wzrostu kredytu (to znaczy długu), abyśmy mogli powrócić do tego,
Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Umowa o pracę zawarta na czas nieokreślony
Umowa o pracę zawarta na czas nieokreślony Uwagi ogólne Definicja umowy Umowa o pracę stanowi dokument stwierdzający zatrudnienie w ramach stosunku pracy. Według ustawowej definicji jest to zgodne oświadczenie
Ogólna charakterystyka kontraktów terminowych
Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do
ZAPYTANIE OFERTOWE. Nazwa zamówienia: Wykonanie usług geodezyjnych podziały nieruchomości
Znak sprawy: GP. 271.3.2014.AK ZAPYTANIE OFERTOWE Nazwa zamówienia: Wykonanie usług geodezyjnych podziały nieruchomości 1. ZAMAWIAJĄCY Zamawiający: Gmina Lubicz Adres: ul. Toruńska 21, 87-162 Lubicz telefon:
nie zdałeś naszej próbnej matury z matematyki?
Szanowny Maturzysto, nie zdałeś naszej próbnej matury z matematyki? To prawie niemożliwe, ale jeżeli jednak tak, to Pewnie sądzisz, że przyczyna tkwi w bardzo trudnym arkuszu! Zobaczmy, jak to wygląda
Logowanie do systemu Faktura elektroniczna
Logowanie do systemu Faktura elektroniczna Dostęp do Systemu Faktury Elektronicznej możliwy jest poprzez kliknięcie odnośnika Moja faktura w prawym górnym rogu strony www.wist.com.pl, a następnie przycisku
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Edycja geometrii w Solid Edge ST
Edycja geometrii w Solid Edge ST Artykuł pt.: " Czym jest Technologia Synchroniczna a czym nie jest?" zwracał kilkukrotnie uwagę na fakt, że nie należy mylić pojęć modelowania bezpośredniego i edycji bezpośredniej.
Zadania ćwiczeniowe do przedmiotu Makroekonomia I
Dr. Michał Gradzewicz Zadania ćwiczeniowe do przedmiotu Makroekonomia I Ćwiczenia 3 i 4 Wzrost gospodarczy w długim okresie. Oszczędności, inwestycje i wybrane zagadnienia finansów. Wzrost gospodarczy
dr inż. Cezary Wiśniewski Płock, 2006
dr inż. Cezary Wiśniewski Płock, 26 Gra z naturą polega na tym, że przeciwnikiem jest osoba, zjawisko naturalne, obiekt itp. nie zainteresowany wynikiem gry. Strategia, którą podejmie przeciwnik ma charakter
WYŚCIG ORTOGRAFICZNY INSTRUKCJA. gra edukacyjna dla 2-3 osób rekomendowany wiek: od lat 7
INSTRUKCJA WYŚCIG ORTOGRAFICZNY gra edukacyjna dla 2-3 osób rekomendowany wiek: od lat 7 zawartość pudełka: 1) tabliczki z obrazkami - 32 szt. 2) pionek - 1 szt. 3) plansza 4) kostka 5) żetony - 30 szt.
REGULAMIN przeprowadzania okresowych ocen pracowniczych w Urzędzie Miasta Mława ROZDZIAŁ I
Załącznik Nr 1 do zarządzenia Nr169/2011 Burmistrza Miasta Mława z dnia 2 listopada 2011 r. REGULAMIN przeprowadzania okresowych ocen pracowniczych w Urzędzie Miasta Mława Ilekroć w niniejszym regulaminie
SPRAWDZIANY Z MATEMATYKI
SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla
Umowy o pracę zawarte na czas określony od 22 lutego 2016 r.
ANTERIS Fundacja Pomocy Prawnej 2015 r. Umowy o pracę zawarte na czas określony od 22 lutego 2016 r. /Porady prawne/ dr Magdalena Kasprzak Publikacja sfinansowana ze środków własnych Fundacji ANTERIS Stan
Lepsze samopoczucie to lepsze oceny. Jaka jest korzyść dla dziecka?
Lepsze samopoczucie to lepsze oceny Jaka jest korzyść dla dziecka? Gdy dziecko przebywa w szkole, warunki nauki znacząco wpływają na jego samopoczucie i skuteczność przyswajania wiedzy. Uczenie się może
PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY KLASA CZWARTA, PIĄTA I SZÓSTA
PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY KLASA CZWARTA, PIĄTA I SZÓSTA PROGRAM: Przyrodo, witaj! WSiP, PODRĘCZNIK, ZESZYT UCZNIA, ZESZYT ĆWICZEŃ (tylko klasa piąta) Przyrodo, witaj! E.Błaszczyk, E.Kłos
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
RAPORT NA TEMAT STANU STOSOWANIA PRZEZ SPÓŁKĘ ZALECEŃ I REKOMENDACJI ZAWARTYCH W ZBIORZE DOBRE PRAKTYKI SPÓŁEK NOTOWANYCH NA GPW 2016
Kiełpin, dnia 1 lutego 2016 r. WITTCHEN S.A. (spółka akcyjna z siedzibą w Kiełpinie, adres: ul. Ogrodowa 27/29, 05-092 Łomianki, wpisana do rejestru przedsiębiorców prowadzonego przez Sąd Rejonowy dla
ZAPROSZENIE DO SKŁADANIA OFERT
1 Centrum Doradztwa Unijnego Wioletta Piotrowska Tarapacz, Jacek Frankowski s.c. 61-815 Poznań, ul. Ratajczaka 26/3, Poznań, 16.10.2013 ZAPROSZENIE DO SKŁADANIA OFERT CENTRUM DORADZTWA UNIJNEGO S.C. zaprasza
Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części z języka francuskiego
Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części z języka francuskiego Egzamin gimnazjalny z języka francuskiego miał formę pisemną i został przeprowadzony 26
ZAPYTANIE OFERTOWE. Tłumaczenie pisemne dokumentacji rejestracyjnej ZAPYTANIE OFERTOWE
ZAPYTANIE OFERTOWE Tłumaczenie pisemne dokumentacji rejestracyjnej Biofarm sp. z o.o. ul. Wałbrzyska 13 60-198 Poznań Poznań, 09 grudnia 2015r. ZAPYTANIE OFERTOWE I. Nazwa i adres Zamawiającego: Biofarm
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są
Statystyka matematyczna 2015/2016
Statystyka matematyczna 2015/2016 nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe Opis sylabusu Nazwa przedmiotu Statystyka matematyczna Kod przedmiotu 0600-FS2-2SM Nazwa jednostki
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale
Komentarz do prac egzaminacyjnych w zawodzie technik administracji 343[01] ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE
Komentarz do prac egzaminacyjnych w zawodzie technik administracji 343[01] ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE OKE Kraków 2012 Zadanie egzaminacyjne zostało opracowane
Aneks nr 8 z dnia 24.07.2013 r. do Regulaminu Świadczenia Krajowych Usług Przewozu Drogowego Przesyłek Towarowych przez Raben Polska sp. z o.o.
Aneks nr 8 z dnia 24.07.2013 r. do Regulaminu Świadczenia Krajowych Usług Przewozu Drogowego Przesyłek Towarowych przez Raben Polska sp. z o.o. 1 Z dniem 24 lipca 2013 r. wprowadza się w Regulaminie Świadczenia
Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07
Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07 2 Podatek przemysłowy (lokalny podatek od działalności usługowo-wytwórczej) Podatek przemysłowy (lokalny podatek
Co zrobić, jeśli uważasz, że decyzja w sprawie zasiłku mieszkaniowego lub zasiłku na podatek lokalny jest niewłaściwa
Polish Co zrobić, jeśli uważasz, że decyzja w sprawie zasiłku mieszkaniowego lub zasiłku na podatek lokalny jest niewłaściwa (What to do if you think the decision about your Housing Benefit or Council
Objaśnienia wartości, przyjętych do Projektu Wieloletniej Prognozy Finansowej Gminy Golina na lata 2012-2015
Załącznik Nr 2 do Uchwały Nr XIX/75/2011 Rady Miejskiej w Golinie z dnia 29 grudnia 2011 r. Objaśnienia wartości, przyjętych do Projektu Wieloletniej Prognozy Finansowej Gminy Golina na lata 2012-2015
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
Projektowanie bazy danych
Projektowanie bazy danych Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeo wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana
Stypendium ministra za osiągnięcia w nauce może otrzymać student, który spełnia łącznie następujące warunki:
Stypendia Ministra na rok akademicki 2006/2007 Z uwagi na liczne zapytania w sprawie składania wniosków o stypendia ministra na rok akademicki 2006/2007, Ministerstwo Nauki i Szkolnictwa Wyższego informuje,
Komentarz Sesja letnia 2012 zawód: technik eksploatacji portów i terminali 342[03] 1. Treść zadania egzaminacyjnego wraz z załączoną dokumentacją
Komentarz Sesja letnia 2012 zawód: technik eksploatacji portów i terminali 342[03] 1. Treść zadania egzaminacyjnego wraz z załączoną dokumentacją 1 2 3 4 Oceniane elementy zadania egzaminacyjnego: I. Tytuł
ZAPYTANIE OFERTOWE. Nr sprawy 15/2016r.
Załącznik nr 1/1... nazwa i adres wykonawcy... pieczęć zamawiającego...... ZAPYTANIE OFERTOWE Nr sprawy 15/2016r. 1. Towarzystwo Budownictwa Społecznego Sp. z o. o. ogłasza zapytanie ofertowe na wynajem
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Przedmiot: Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Nr ćwiczenia: 2 Temat: Problem transportowy Cel ćwiczenia: Nabycie umiejętności formułowania zagadnienia transportowego
OIGD 89/2013 Kraków, 8 lipca 2013 r. Pani/Pan Prezes Członkowie Ogólnopolskiej Izby Gospodarczej Drogownictwa
31-542 Kraków Biuro w Warszawie ul. Mogilska 25 03-302 Warszawa www.oigd.com.pl tel.: 12 413 80 83 ul. Instytutowa 1 tel./fax.: 22 811 92 74 e-mail: oigd@oigd.com.pl fax.:12 413 76 25 e-mail: oigdwars@atcom.net.pl
Główne wyniki badania
1 Nota metodologiczna Badanie Opinia publiczna na temat ubezpieczeń przeprowadzono w Centrum badania Opinii Społecznej na zlecenie Urzędu Ochrony Konkurencji i Konsumentów w dniach od 13 do 17 maja 2004
Jakie są te obowiązki wg MSR 41 i MSR 1, a jakie są w tym względzie wymagania ustawy o rachunkowości?
Jakie są te obowiązki wg MSR 41 i MSR 1, a jakie są w tym względzie wymagania ustawy o rachunkowości? Obowiązki sprawozdawcze według ustawy o rachunkowości i MSR 41 Przepisy ustawy o rachunkowości w zakresie
Audyt SEO. Elementy oraz proces przygotowania audytu. strona
Audyt SEO Elementy oraz proces przygotowania audytu 1 Spis treści Kim jesteśmy? 3 Czym jest audyt SEO 4 Główne elementy audytu 5 Kwestie techniczne 6 Słowa kluczowe 7 Optymalizacja kodu strony 8 Optymalizacja