Sieci Neuronowe Laboratorium 2

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sieci Neuronowe Laboratorium 2"

Transkrypt

1 Sieci Neuronowe Zadania i problemy algorytmiczne dla sieci neuronowych, programowania logicznego i sztucznej inteligencji według zasad i kryteriów laboratoriów. pdf Laboratorium 2 Zapisać następujące stwierdzenia w języku logiki predykatów, wprowadzając niezbędne symbole i ustalając ich interpretację: - ojciec każdego człowieka jest jego bezpośrednim przodkiem, - jeśli ktoś jest przodkiem bezpośredniego przodka pewnej osoby, to jest także przodkiem tej osoby, - każdy jest spokrewniony z każdym swoim przodkiem, - każdy jest spokrewniony ze swoim bratem i siostrą, - każdy jest spokrewniony z braćmi i siostrami wszystkich osób spokrewnionych ze sobą. Dla bazy wiedzy dotyczącej świata klocków podanej w przykładzie wnioskowania znaleźć wyprowadzenia (jeśli istnieją) następujących formuł: 3. Sprawdzić, czy z bazy wiedzy Γ można wyprowadzić formuły β i dla poniższych Γ i β. W razie potrzeby można wprowadzić dodatkowe reguły wnioskowania, sprawdzając uprzednio ich poprawność.

2 3. Które z następujących reguł wnioskowania są poprawne: Zadanie 5. Sprowadzić następujące formuły do postaci CNF: Zadanie 6. Sprowadzić następujące formuły do postaci standardowej Skolema: Zadanie 7. Dokonać unifikacji następujących par formuł:

3 Zadanie 8. Zweryfikować przedstawiony niżej przebieg wnioskowania prowadzonego przez człowieka zapisując bazę wiedzy w postaci formuł logiki predykatów i sprawdzając poprawność kroków dowodu. - Wszystkie liczby podzielne przez 2 są parzyste. - Dowolna liczba o 1 większa od liczby parzystej nie jest parzysta. - Żadna liczba parzysta nie jest podzielna przez 3. - Niektóre liczby nieparzyste są podzielne przez 3. - Z powyższego wynika, że każda liczba podzielna przez 3 jest o 1 większa od pewnej liczby podzielnej przez - Nie wszystkie trójki punktów na płaszczyźnie są współliniowe. - Jeżeli trzy punkty na płaszczyźnie nie są współliniowe, to są wierzchołkami pewnego trójkąta. - Jeśli z czterech punktów żadne trzy nie są współliniowe, to są one wierzchołkami pewnego czworokąta. - Z powyższego wynika, że: - istnieje trójkąt, - istnieje czworokąt, - jeśli ABC, BCD, ABD i ACD są trójkątami, to ABCD jest czworokątem. Laboratorium 3 Napisać program/predykat obliczający potęgę. Napisać program/predykat obliczający silnię. Napisać program/predykat obliczający nwd dwóch liczb. Napisać program/predykat obliczający długość listy. Zadanie 5. Napisać program/predykat sprawdzający czy dany element należy do listy. Zadanie 6. Napisać program/predykat usuwający wybrany element z listy. Zadanie 7. Napisać program/predykat łączący ze sobą dwie listy. Zadanie 8. Napisać program/predykat zwracający ostatni element z listy. Zadanie 9. Napisać program/predykat odwracający listę.

4 Laboratorium 4 Wykonać drzewa decyzyjne grafy wnioskowania dla: m_kr(miasto, Kraj) m_st(miasto, Kraj) m_ko(miasto, Kontynent) kr_ko(kraj, Kontynent) Napisać program/predykat wnioskowania wszerz. Napisać program/predykat wnioskowania wgłąb. Laboratorium 5 Napisać program/predykat rozwiązujący problem plecakowy. Napisać program/predykat rozwiązujący problem najkrótszej drogi w grafie. Rozważmy drzewo genealogiczne. Załóżmy, że krawędzie są skierowane od rodziców w kierunku dzieci. W którym kierunku - zgodnie czy przeciwnie do skierowania krawędzi - lepiej jest prowadzić przeszukiwanie drzewa, chcąc stwierdzić, że X jest prapradziadkiem Y? Zdefiniować (i naszkicować jej graf) przestrzeń przeszukiwań i sformułować funkcję celu dla przykładowego zadania sortowania tablicy zawierającej 4 elementy Laboratorium 6 Napisać program/algorytm aproksymujący funkcje na podstawie danego zbioru uczącego i kreślący aproksymację oraz zbiór uczący. Aproksymować następujące zbiory uczące: [(1,0.33),(5,0.66),(2,0.99),(5,0.66),(3,0.33),(3.5,0),(4,-0.33),(4.5,-0.66),(5,-0.99),(5.5,- 0.66),(6,-0.33),(7,0)] Π 3Π [(0,0),(,1),(Π,-0.1),(,-1),(2 Π,0.1)] 2 2 Π 3Π 3. [(0,0.9),(,-0.1),(Π,-1),(,-0.1),(2 Π,1)] 2 2

5 Laboratorium 7 W poniższej tabeli zostały przedstawione wyniki jakie osiąga student podczas wykonywania zadań z danego zagadnienia. Liczba wykonanych zadań Popełnione błędy Zbadać związki jakie zachodzą pomiędzy danymi przedstawionymi w tabeli, a następnie dla danych przedstawić prognozę w oparciu o wykres regresji liniowej. Obliczyć kowariancję zmiennych X i Y a następnie ocenić kierunek zależności liniowej pomiędzy nimi (y=ax+b) i wyznaczyć linię regresji. X Y Na podstawie poniższych danych dotyczących wytrzymałości na złamanie (zmienna X wyrażona w kg) spawanych prętów o różnej średnicy (zmienna Y wyrażona w 0.01 mm) ustalić, czy średnica spawanych prętów ma wpływ na wytrzymałość na złamanie. Określić rodzaj, siłę i kierunek tej zależności. X Y Obliczyć kowariancję zmiennych X i Y oraz ocenić siłę i kierunek zależności liniowej pomiędzy tymi zmiennymi, wyznaczyć odpowiednie wykresy i ocenić ewentualne zachowanie w przyszłości. X Y Zadanie 5. Na podstawie danych dotyczących wydajności pracy Y i stażu pracy X 10 robotników ustalić czy między zmiennymi X i Y istnieje zależność korelacyjna. Jeśli tak, to określić jej kierunek. X Y Sporządzić wykres korelacyjny oraz uporządkować wartości cechy X i odpowiadające im

6 wartości cechy Y. Zadanie 6. Dla 13 robotników zanotowano następujące wartości dwóch cech: X - staż pracy w latach, Y -liczba braków. Ocenić czy istnieje korelacja pomiędzy tymi cechami i jaki jest jej kierunek. X Y Laboratorium 8 Rozwiązać zadanie i napisać program/arkusz kalkulacyjny dla niego. W śledztwie dotyczącym zabójstwa inspektor Bayes rozważa dwie hipotezy: h że główny podejrzany zabił, ~h że główny podejrzany nie zabił oraz następujące możliwe fakty: f 1 że na miejscu zbrodni znaleziono odciski palców głównego podejrzanego, f 2 że główny podejrzany nie ma alibi na czas popełnienia zabójstwa, f 3 że główny podejrzany miał motyw zabicia ofiary, f 4 że główny podejrzany był widziany w sądziedztwie miejsca, w którym mieszka nielegalny handlarz bronią, f 5 że świadek zbrodni podał rysopis zabójcy nie pasujący do głównego podejrzanego. Zależności między takimi faktami a hipotezami opisują następujące prawdopodobieństwa: W którym przypadku prawdopodobieństwo popełnienia zabójstwa byłoby największe: - gdyby znaleziono na miejscu zbrodni jego odciski palców, - gdyby stwierdzono, że nie miał alibi i miał motyw, - gdyby znaleziono na miejscu zbrodni jego odciski palców oraz stwierdzono, że był widziany w sąsiedztwie miejsca, w którym mieszka nielegalny handlarz bronią, ale świadek zbrodni podał rysopis zabójcy nie pasujący do głównego podejrzanego. Rozwiązać zadanie i napisać program/arkusz kalkulacyjny dla niego. W śledztwie dotyczącym zabójstwa inspektor Bayes wyłonił trzech podejrzanych A, B i C, w konsekwencji czego rozważa trzy możliwe hipotezy, wzajemnie wykluczające się i wyczerpujące wszystkie możliwości: h A zabił A, h B zabił B, h C zabił C oraz następujące możliwe fakty: f 1A, f 1B, f 1C że na miejscu zbrodni znaleziono odciski palców podejrzanego A, B, C,

7 f 2A, f 2B, f 2C że podejrzany A, B, C nie ma alibi na czas popełnienia zabójstwa, f 3A, f 3B, f 3C że podejrzany A, B, C miał oczywisty motyw zabicia ofiary, f 4A, f 4B, f 4C że świadek zbrodni podał rysopis zabójcy nie pasujący do podejrzanego A. B, C, f 5A, f 5B, f 5C że podejrzany A, B, C jest szanowanym obywatelem nie budzącym u nikogo żadnych podejrzeń. Zależności między takimi faktami a hipotezami opisują następujące prawdopodobieństwa dla x=a, B, C. Wstępnie inspektor założył, że prawdopodobieństwo popełnienia zbrodni przez każdego z podejrzanych jest jednakowe. W wyniku śledztwa ustalono, że: - podejrzani A i B nie mają alibi, - podejrzany C miał oczywisty motyw, - rysopis zabójcy podany przez świadka nie pasuje do podejrzanych B i C, - podejrzany A jest szanowanym obywatelem nie budzącym u nikogo żadnych podejrzeń. Którego z podejrzanych powinien aresztować inspektor Bayes jako najbardziej prawdopodobnego zabójcę? Rozważmy zastosowanie wnioskowania bayesowskiego do pewnej dziedziny, w której rozważa się dwie wykluczające się wzajemnie i wyczerpujące wszystkie możliwości hipotezy h i ~h oraz m możliwych faktów f 1,, f m. Prawdopodobieństwa Pr(f j h) dla j=1,2,, m określone są jako kolejne liczby z ciągu arytmetycznego 0.1+(j-1)*( )/(m-1), zaś prawdopodobieństwa Pr(f j ~h) odpowiednio jako kolejne liczby z ciągu geometrycznego 0.9*(0.1/0.9)*(j-1)/(m-1). Obie hipotezy są jednakowo prawdopodobne a priori. Fakty są warunkowo niezależne względem hipotez. Liczba faktów m jest parzysta. Która hipoteza jest bardziej prawdopodobna a posteriori, jeśli: wiadomo, że zachodzą wszystkie fakty f 1,, f m, wiadomo, że zachodzą tylko fakty f 1,, f m/2, 3. wiadomo, że zachodzą tylko fakty f m/2,, f m. Laboratorium 9 Napisać program/algorytm obliczający wartość neuronu przy funkcji aktywacji: - funkcja liniowa - obcięta funkcja liniowa - funkcja progowa unipolarna - funkcja progowa bipolarna - funkcja sigmoidalna unipolarna - funkcja sigmoidalna bipolarna - tangens hiperboliczny Napisać program/algorytm obliczający sieć neuronową z dwoma warstwami ukrytymi dla - funkcja liniowa - obcięta funkcja liniowa - funkcja progowa unipolarna - funkcja progowa bipolarna

8 - funkcja sigmoidalna unipolarna - funkcja sigmoidalna bipolarna - tangens hiperboliczny Napisać program/algorytm uczenia perceptronu. Napisać program/algorytm uczenia perceptronu z momentem bezwładności. Laboratorium 10 Napisać program/algorytm obliczający wartość neuronu sigmoidalnego. Napisać program/algorytm obliczający wartość neuronu adaline. Napisać program/algorytm uczący sieć według schematu Grossberga. Laboratorium 11 Napisać program/algorytm uczenia sieci neuronowej z nauczycielem. Napisać program/algorytm uczenia sieci bez nauczyciela. Napisać program/algorytm uczenia sieci Hebba. Napisać program/algorytm uczenia sieci WTA. Zadanie 5. Napisać program/algorytm uczenia sieci WTM. Laboratorium 12 uczący ją dla algorytmu wstecznej propagacji BP wstecznej uczący ją dla algorytmu LM Levenberga-Marquardta uczący ją dla algorytmu RLS

9 Laboratorium 13 uczący ją dla algorytmu Hopfielda. uczący ją dla algorytmu Haminnga.

Zadania. SiOD Cwiczenie 1 ;

Zadania. SiOD Cwiczenie 1 ; 1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A

Bardziej szczegółowo

art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny (Dz. U. Nr 16, poz. 93 ze zm.),

art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny (Dz. U. Nr 16, poz. 93 ze zm.), Istota umów wzajemnych Podstawa prawna: Księga trzecia. Zobowiązania. Dział III Wykonanie i skutki niewykonania zobowiązań z umów wzajemnych. art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny

Bardziej szczegółowo

Konspekt lekcji otwartej

Konspekt lekcji otwartej Konspekt lekcji otwartej Przedmiot: Temat lekcji: informatyka Modelowanie i symulacja komputerowa prawidłowości w świecie liczb losowych Klasa: 2 g Data zajęć: 21.12.2004. Nauczyciel: Roman Wyrwas Czas

Bardziej szczegółowo

POMOC PSYCHOLOGICZNO-PEDAGOGICZNA Z OPERONEM. Vademecum doradztwa edukacyjno-zawodowego. Akademia

POMOC PSYCHOLOGICZNO-PEDAGOGICZNA Z OPERONEM. Vademecum doradztwa edukacyjno-zawodowego. Akademia POMOC PSYCHOLOGICZNO-PEDAGOGICZNA Z OPERONEM PLANOWANIE DZIAŁAŃ Określanie drogi zawodowej to szereg różnych decyzji. Dobrze zaplanowana droga pozwala dojechać do określonego miejsca w sposób, który Ci

Bardziej szczegółowo

ZASADY WYPEŁNIANIA ANKIETY 2. ZATRUDNIENIE NA CZĘŚĆ ETATU LUB PRZEZ CZĘŚĆ OKRESU OCENY

ZASADY WYPEŁNIANIA ANKIETY 2. ZATRUDNIENIE NA CZĘŚĆ ETATU LUB PRZEZ CZĘŚĆ OKRESU OCENY ZASADY WYPEŁNIANIA ANKIETY 1. ZMIANA GRUPY PRACOWNIKÓW LUB AWANS W przypadku zatrudnienia w danej grupie pracowników (naukowo-dydaktyczni, dydaktyczni, naukowi) przez okres poniżej 1 roku nie dokonuje

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest

Bardziej szczegółowo

Roczne zeznanie podatkowe 2015

Roczne zeznanie podatkowe 2015 skatteetaten.no Informacje dla pracowników zagranicznych Roczne zeznanie podatkowe 2015 W niniejszej broszurze znajdziesz skrócony opis tych pozycji w zeznaniu podatkowym, które dotyczą pracowników zagranicznych

Bardziej szczegółowo

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

7. REZONANS W OBWODACH ELEKTRYCZNYCH

7. REZONANS W OBWODACH ELEKTRYCZNYCH OBWODY SYGNAŁY 7. EZONANS W OBWODAH EEKTYZNYH 7.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

Do Rzecznika Praw Obywatelskich wpływają skargi od studentów kwestionujące

Do Rzecznika Praw Obywatelskich wpływają skargi od studentów kwestionujące RZECZPOSPOLITA POLSKA Rzecznik Praw Obywatelskich Irena LIPOWICZ RPO-686330-I/11/ST/KJ 00-090 Warszawa Tel. centr. 22 551 77 00 Al. Solidarności 77 Fax 22 827 64 53 Pani Barbara Kudrycka Minister Nauki

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9

Bardziej szczegółowo

KLAUZULE ARBITRAŻOWE

KLAUZULE ARBITRAŻOWE KLAUZULE ARBITRAŻOWE KLAUZULE arbitrażowe ICC Zalecane jest, aby strony chcące w swych kontraktach zawrzeć odniesienie do arbitrażu ICC, skorzystały ze standardowych klauzul, wskazanych poniżej. Standardowa

Bardziej szczegółowo

RZECZPOSPOLITA POLSKA. Prezydent Miasta na Prawach Powiatu Zarząd Powiatu. wszystkie

RZECZPOSPOLITA POLSKA. Prezydent Miasta na Prawach Powiatu Zarząd Powiatu. wszystkie RZECZPOSPOLITA POLSKA Warszawa, dnia 11 lutego 2011 r. MINISTER FINANSÓW ST4-4820/109/2011 Prezydent Miasta na Prawach Powiatu Zarząd Powiatu wszystkie Zgodnie z art. 33 ust. 1 pkt 2 ustawy z dnia 13 listopada

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

Automatyczne przetwarzanie recenzji konsumenckich dla oceny użyteczności produktów i usług

Automatyczne przetwarzanie recenzji konsumenckich dla oceny użyteczności produktów i usług Uniwersytet Ekonomiczny w Poznaniu Wydział Informatyki i Gospodarki Elektronicznej Katedra Informatyki Ekonomicznej Streszczenie rozprawy doktorskiej Automatyczne przetwarzanie recenzji konsumenckich dla

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

Strategia rozwoju kariery zawodowej - Twój scenariusz (program nagrania).

Strategia rozwoju kariery zawodowej - Twój scenariusz (program nagrania). Strategia rozwoju kariery zawodowej - Twój scenariusz (program nagrania). W momencie gdy jesteś studentem lub świeżym absolwentem to znajdujesz się w dobrym momencie, aby rozpocząć planowanie swojej ścieżki

Bardziej szczegółowo

Warunki Oferty PrOmOcyjnej usługi z ulgą

Warunki Oferty PrOmOcyjnej usługi z ulgą Warunki Oferty PrOmOcyjnej usługi z ulgą 1. 1. Opis Oferty 1.1. Oferta Usługi z ulgą (dalej Oferta ), dostępna będzie w okresie od 16.12.2015 r. do odwołania, jednak nie dłużej niż do dnia 31.03.2016 r.

Bardziej szczegółowo

Warszawska Giełda Towarowa S.A.

Warszawska Giełda Towarowa S.A. KONTRAKT FUTURES Poprzez kontrakt futures rozumiemy umowę zawartą pomiędzy dwoma stronami transakcji. Jedna z nich zobowiązuje się do kupna, a przeciwna do sprzedaży, w ściśle określonym terminie w przyszłości

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ

WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ Anna Gutt- Kołodziej ZASADY OCENIANIA Z MATEMATYKI Podczas pracy

Bardziej szczegółowo

Przedmiotowe zasady oceniania. zgodne z Wewnątrzszkolnymi Zasadami Oceniania. obowiązującymi w XLIV Liceum Ogólnokształcącym.

Przedmiotowe zasady oceniania. zgodne z Wewnątrzszkolnymi Zasadami Oceniania. obowiązującymi w XLIV Liceum Ogólnokształcącym. Przedmiotowe zasady oceniania zgodne z Wewnątrzszkolnymi Zasadami Oceniania obowiązującymi w XLIV Liceum Ogólnokształcącym. Przedmiot: biologia Nauczyciel przedmiotu: Anna Jasztal, Anna Woch 1. Formy sprawdzania

Bardziej szczegółowo

ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ. KORELACJA zmiennych jakościowych (niemierzalnych)

ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ. KORELACJA zmiennych jakościowych (niemierzalnych) ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ KORELACJA zmiennych jakościowych (niemierzalnych) Zadanie 1 Zapytano 180 osób (w tym 120 mężczyzn) o to czy rozpoczynają dzień od wypicia kawy czy też może preferują herbatę.

Bardziej szczegółowo

Motywuj świadomie. Przez kompetencje.

Motywuj świadomie. Przez kompetencje. styczeń 2015 Motywuj świadomie. Przez kompetencje. Jak wykorzystać gamifikację i analitykę HR do lepszego zarządzania zasobami ludzkimi w organizacji? 2 Jak skutecznie motywować? Pracownik, który nie ma

Bardziej szczegółowo

D.01.01.01. ODTWORZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH

D.01.01.01. ODTWORZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH D.01.01.01. ODTWORZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH 1. WSTĘP 1.1.Przedmiot SST Przedmiotem niniejszej szczegółowej specyfikacji technicznej (SST) są wymagania dotyczące wykonania i odbioru robót związanych

Bardziej szczegółowo

Komentarz technik ochrony fizycznej osób i mienia 515[01]-01 Czerwiec 2009

Komentarz technik ochrony fizycznej osób i mienia 515[01]-01 Czerwiec 2009 Strona 1 z 19 Strona 2 z 19 Strona 3 z 19 Strona 4 z 19 Strona 5 z 19 Strona 6 z 19 Strona 7 z 19 W pracy egzaminacyjnej oceniane były elementy: I. Tytuł pracy egzaminacyjnej II. Założenia do projektu

Bardziej szczegółowo

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

KRYTERIA OCENIANIA WYPOWIEDZI PISEMNYCH KRÓTKA I DŁUŻSZA FORMA UŻYTKOWA

KRYTERIA OCENIANIA WYPOWIEDZI PISEMNYCH KRÓTKA I DŁUŻSZA FORMA UŻYTKOWA KRYTERIA OCENIANIA WYPOWIEDZI PISEMNYCH KRÓTKA I DŁUŻSZA FORMA UŻYTKOWA 1. Krótka forma użytkowa 1.1. Kryteria oceniania 1.2. Uściślenie kryteriów oceniania Treść Poprawność językowa 2. Dłuższa forma użytkowa

Bardziej szczegółowo

Twierdzenie Bayesa. Indukowane Reguły Decyzyjne Jakub Kuliński Nr albumu: 53623

Twierdzenie Bayesa. Indukowane Reguły Decyzyjne Jakub Kuliński Nr albumu: 53623 Twierdzenie Bayesa Indukowane Reguły Decyzyjne Jakub Kuliński Nr albumu: 53623 Niniejszy skrypt ma na celu usystematyzowanie i uporządkowanie podstawowej wiedzy na temat twierdzenia Bayesa i jego zastosowaniu

Bardziej szczegółowo

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

Mechanizm zawarty w warunkach zamówienia podstawowego. Nie wymaga aneksu do umowy albo udzielenia nowego zamówienia. -

Mechanizm zawarty w warunkach zamówienia podstawowego. Nie wymaga aneksu do umowy albo udzielenia nowego zamówienia. - Załącznik nr 1a Lista sprawdzająca dot. ustalenia stosowanego trybu zwiększenia wartości zamówień podstawowych na roboty budowlane INFORMACJE PODLEGAJĄCE SPRAWDZENIU Analiza ryzyka Działanie Uwagi Czy

Bardziej szczegółowo

Harmonogramowanie projektów Zarządzanie czasem

Harmonogramowanie projektów Zarządzanie czasem Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania

Bardziej szczegółowo

Druk nr 1013 Warszawa, 9 lipca 2008 r.

Druk nr 1013 Warszawa, 9 lipca 2008 r. Druk nr 1013 Warszawa, 9 lipca 2008 r. SEJM RZECZYPOSPOLITEJ POLSKIEJ VI kadencja Komisja Nadzwyczajna "Przyjazne Państwo" do spraw związanych z ograniczaniem biurokracji NPP-020-51-2008 Pan Bronisław

Bardziej szczegółowo

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Matematyka ubezpieczeń majątkowych 5.2.2008 r. Zadanie. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Pr ( N = k) = 0 dla k = 0,, K, 9. Liczby szkód w

Bardziej szczegółowo

Ćwiczenie: "Ruch harmoniczny i fale"

Ćwiczenie: Ruch harmoniczny i fale Ćwiczenie: "Ruch harmoniczny i fale" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

UMOWA O ŚWIADCZENIU USŁUG W PUNKCIE PRZEDSZKOLNYM TĘCZOWA KRAINA. Zawarta dnia..w Cieszynie pomiędzy

UMOWA O ŚWIADCZENIU USŁUG W PUNKCIE PRZEDSZKOLNYM TĘCZOWA KRAINA. Zawarta dnia..w Cieszynie pomiędzy UMOWA O ŚWIADCZENIU USŁUG W PUNKCIE PRZEDSZKOLNYM TĘCZOWA KRAINA Zawarta dnia..w Cieszynie pomiędzy.właścicielką Punktu Przedszkolnego Tęczowa Kraina w Cieszynie przy ulicy Hallera 145 A, a Panem/Panią......

Bardziej szczegółowo

HAŚKO I SOLIŃSKA SPÓŁKA PARTNERSKA ADWOKATÓW ul. Nowa 2a lok. 15, 50-082 Wrocław tel. (71) 330 55 55 fax (71) 345 51 11 e-mail: kancelaria@mhbs.

HAŚKO I SOLIŃSKA SPÓŁKA PARTNERSKA ADWOKATÓW ul. Nowa 2a lok. 15, 50-082 Wrocław tel. (71) 330 55 55 fax (71) 345 51 11 e-mail: kancelaria@mhbs. HAŚKO I SOLIŃSKA SPÓŁKA PARTNERSKA ADWOKATÓW ul. Nowa 2a lok. 15, 50-082 Wrocław tel. (71) 330 55 55 fax (71) 345 51 11 e-mail: kancelaria@mhbs.pl Wrocław, dnia 22.06.2015 r. OPINIA przedmiot data Praktyczne

Bardziej szczegółowo

KOMISJA WSPÓLNOT EUROPEJSKICH. Wniosek DECYZJA RADY

KOMISJA WSPÓLNOT EUROPEJSKICH. Wniosek DECYZJA RADY KOMISJA WSPÓLNOT EUROPEJSKICH Bruksela, dnia 13.12.2006 KOM(2006) 796 wersja ostateczna Wniosek DECYZJA RADY w sprawie przedłużenia okresu stosowania decyzji 2000/91/WE upoważniającej Królestwo Danii i

Bardziej szczegółowo

Sprawa numer: BAK.WZP.230.2.2015.34 Warszawa, dnia 27 lipca 2015 r. ZAPROSZENIE DO SKŁADANIA OFERT

Sprawa numer: BAK.WZP.230.2.2015.34 Warszawa, dnia 27 lipca 2015 r. ZAPROSZENIE DO SKŁADANIA OFERT Sprawa numer: BAK.WZP.230.2.2015.34 Warszawa, dnia 27 lipca 2015 r. ZAPROSZENIE DO SKŁADANIA OFERT 1. Zamawiający: Skarb Państwa - Urząd Komunikacji Elektronicznej ul. Kasprzaka 18/20 01-211 Warszawa 2.

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

Zamawiający potwierdza, że zapis ten należy rozumieć jako przeprowadzenie audytu z usług Inżyniera.

Zamawiający potwierdza, że zapis ten należy rozumieć jako przeprowadzenie audytu z usług Inżyniera. Pytanie nr 1 Bardzo prosimy o wyjaśnienie jak postrzegają Państwo możliwość przeliczenia walut obcych na PLN przez Oferenta, który będzie składał ofertę i chciał mieć pewność, iż spełnia warunki dopuszczające

Bardziej szczegółowo

Wiedza niepewna i wnioskowanie (c.d.)

Wiedza niepewna i wnioskowanie (c.d.) Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu

Bardziej szczegółowo

Klasa I szkoły ponadgimnazjalnej język polski

Klasa I szkoły ponadgimnazjalnej język polski Klasa I szkoły ponadgimnazjalnej język polski 1. Informacje ogólne Badanie osiągnięć uczniów I klas odbyło się 16 września 2009 r. Wyniki badań nadesłało 12 szkół. Analizie poddano wyniki 990 uczniów z

Bardziej szczegółowo

Regulamin rekrutacji. do II Liceum Ogólnokształcącego w Jaśle im. ppłk J.Modrzejewskiego. na rok szkolny 2014/2015

Regulamin rekrutacji. do II Liceum Ogólnokształcącego w Jaśle im. ppłk J.Modrzejewskiego. na rok szkolny 2014/2015 Zarządzenie nr 6/2014 Dyrektora II Liceum Ogólnokształcącego w Jaśle im. ppłk J.Modrzejewskiego z dnia 27 lutego 2014r w sprawie: regulaminu rekrutacji na rok szkolny 2014/2015 na podstawie: ustawy z dnia

Bardziej szczegółowo

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych ul. Koszykowa 75, 00-662 Warszawa

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych ul. Koszykowa 75, 00-662 Warszawa Zamawiający: Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej 00-662 Warszawa, ul. Koszykowa 75 Przedmiot zamówienia: Produkcja Interaktywnej gry matematycznej Nr postępowania: WMiNI-39/44/AM/13

Bardziej szczegółowo

D-01.01.01. wysokościowych

D-01.01.01. wysokościowych D-01.01.01 Odtworzenie nawierzchni i punktów wysokościowych 32 Spis treści 1. WSTĘP... 34 1.1. Przedmiot SST... 34 1.2. Zakres stosowania SST... 34 1.3. Zakres robót objętych SST... 34 1.4. Określenia

Bardziej szczegółowo

Zawarta w Warszawie w dniu.. pomiędzy: Filmoteką Narodową z siedzibą przy ul. Puławskiej 61, 00-975 Warszawa, NIP:, REGON:.. reprezentowaną przez:

Zawarta w Warszawie w dniu.. pomiędzy: Filmoteką Narodową z siedzibą przy ul. Puławskiej 61, 00-975 Warszawa, NIP:, REGON:.. reprezentowaną przez: Załącznik nr 6 Nr postępowania: 30/2010 UMOWA Nr... Zawarta w Warszawie w dniu.. pomiędzy: Filmoteką Narodową z siedzibą przy ul. Puławskiej 61, 00-975 Warszawa, NIP:, REGON:.. reprezentowaną przez:..

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTÓW ZAWODOWYCH ODBYWAJĄCYCH SIĘ W SZKOLNYM LABORATORIUM CHEMICZNYM

WYMAGANIA EDUKACYJNE Z PRZEDMIOTÓW ZAWODOWYCH ODBYWAJĄCYCH SIĘ W SZKOLNYM LABORATORIUM CHEMICZNYM WYMAGANIA EDUKACYJNE Z PRZEDMIOTÓW ZAWODOWYCH ODBYWAJĄCYCH SIĘ W SZKOLNYM LABORATORIUM CHEMICZNYM PSO jest uzupełnieniem Wewnątrzszkolnego Systemu Oceniania obowiązującego w GCE. Precyzuje zagadnienia

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 29/2 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

Zarządzanie Zasobami by CTI. Instrukcja

Zarządzanie Zasobami by CTI. Instrukcja Zarządzanie Zasobami by CTI Instrukcja Spis treści 1. Opis programu... 3 2. Konfiguracja... 4 3. Okno główne programu... 5 3.1. Narzędzia do zarządzania zasobami... 5 3.2. Oś czasu... 7 3.3. Wykres Gantta...

Bardziej szczegółowo

INSTRUKCJA DLA UCZESTNIKÓW ZAWODÓW ZADANIA

INSTRUKCJA DLA UCZESTNIKÓW ZAWODÓW ZADANIA INSTRUKCJA DLA UCZESTNIKÓW ZAWODÓW 1. Zawody III stopnia trwają 150 min. 2. Arkusz egzaminacyjny składa się z 2 pytań otwartych o charakterze problemowym, 1 pytania opisowego i 1 mini testu składającego

Bardziej szczegółowo

Szczegółowe wyjaśnienia dotyczące definicji MŚP i związanych z nią dylematów

Szczegółowe wyjaśnienia dotyczące definicji MŚP i związanych z nią dylematów 1 Autor: Aneta Para Szczegółowe wyjaśnienia dotyczące definicji MŚP i związanych z nią dylematów Jak powiedział Günter Verheugen Członek Komisji Europejskiej, Komisarz ds. przedsiębiorstw i przemysłu Mikroprzedsiębiorstwa

Bardziej szczegółowo

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO I MATEMATYCZNEGO

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO I MATEMATYCZNEGO Nr ćwiczenia: 101 Prowadzący: Data 21.10.2009 Sprawozdanie z laboratorium Imię i nazwisko: Wydział: Joanna Skotarczyk Informatyki i Zarządzania Semestr: III Grupa: I5.1 Nr lab.: 1 Przygotowanie: Wykonanie:

Bardziej szczegółowo

Fed musi zwiększać dług

Fed musi zwiększać dług Fed musi zwiększać dług Autor: Chris Martenson Źródło: mises.org Tłumaczenie: Paweł Misztal Fed robi, co tylko może w celu doprowadzenia do wzrostu kredytu (to znaczy długu), abyśmy mogli powrócić do tego,

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Umowa o pracę zawarta na czas nieokreślony

Umowa o pracę zawarta na czas nieokreślony Umowa o pracę zawarta na czas nieokreślony Uwagi ogólne Definicja umowy Umowa o pracę stanowi dokument stwierdzający zatrudnienie w ramach stosunku pracy. Według ustawowej definicji jest to zgodne oświadczenie

Bardziej szczegółowo

Ogólna charakterystyka kontraktów terminowych

Ogólna charakterystyka kontraktów terminowych Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do

Bardziej szczegółowo

ZAPYTANIE OFERTOWE. Nazwa zamówienia: Wykonanie usług geodezyjnych podziały nieruchomości

ZAPYTANIE OFERTOWE. Nazwa zamówienia: Wykonanie usług geodezyjnych podziały nieruchomości Znak sprawy: GP. 271.3.2014.AK ZAPYTANIE OFERTOWE Nazwa zamówienia: Wykonanie usług geodezyjnych podziały nieruchomości 1. ZAMAWIAJĄCY Zamawiający: Gmina Lubicz Adres: ul. Toruńska 21, 87-162 Lubicz telefon:

Bardziej szczegółowo

nie zdałeś naszej próbnej matury z matematyki?

nie zdałeś naszej próbnej matury z matematyki? Szanowny Maturzysto, nie zdałeś naszej próbnej matury z matematyki? To prawie niemożliwe, ale jeżeli jednak tak, to Pewnie sądzisz, że przyczyna tkwi w bardzo trudnym arkuszu! Zobaczmy, jak to wygląda

Bardziej szczegółowo

Logowanie do systemu Faktura elektroniczna

Logowanie do systemu Faktura elektroniczna Logowanie do systemu Faktura elektroniczna Dostęp do Systemu Faktury Elektronicznej możliwy jest poprzez kliknięcie odnośnika Moja faktura w prawym górnym rogu strony www.wist.com.pl, a następnie przycisku

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Edycja geometrii w Solid Edge ST

Edycja geometrii w Solid Edge ST Edycja geometrii w Solid Edge ST Artykuł pt.: " Czym jest Technologia Synchroniczna a czym nie jest?" zwracał kilkukrotnie uwagę na fakt, że nie należy mylić pojęć modelowania bezpośredniego i edycji bezpośredniej.

Bardziej szczegółowo

Zadania ćwiczeniowe do przedmiotu Makroekonomia I

Zadania ćwiczeniowe do przedmiotu Makroekonomia I Dr. Michał Gradzewicz Zadania ćwiczeniowe do przedmiotu Makroekonomia I Ćwiczenia 3 i 4 Wzrost gospodarczy w długim okresie. Oszczędności, inwestycje i wybrane zagadnienia finansów. Wzrost gospodarczy

Bardziej szczegółowo

dr inż. Cezary Wiśniewski Płock, 2006

dr inż. Cezary Wiśniewski Płock, 2006 dr inż. Cezary Wiśniewski Płock, 26 Gra z naturą polega na tym, że przeciwnikiem jest osoba, zjawisko naturalne, obiekt itp. nie zainteresowany wynikiem gry. Strategia, którą podejmie przeciwnik ma charakter

Bardziej szczegółowo

WYŚCIG ORTOGRAFICZNY INSTRUKCJA. gra edukacyjna dla 2-3 osób rekomendowany wiek: od lat 7

WYŚCIG ORTOGRAFICZNY INSTRUKCJA. gra edukacyjna dla 2-3 osób rekomendowany wiek: od lat 7 INSTRUKCJA WYŚCIG ORTOGRAFICZNY gra edukacyjna dla 2-3 osób rekomendowany wiek: od lat 7 zawartość pudełka: 1) tabliczki z obrazkami - 32 szt. 2) pionek - 1 szt. 3) plansza 4) kostka 5) żetony - 30 szt.

Bardziej szczegółowo

REGULAMIN przeprowadzania okresowych ocen pracowniczych w Urzędzie Miasta Mława ROZDZIAŁ I

REGULAMIN przeprowadzania okresowych ocen pracowniczych w Urzędzie Miasta Mława ROZDZIAŁ I Załącznik Nr 1 do zarządzenia Nr169/2011 Burmistrza Miasta Mława z dnia 2 listopada 2011 r. REGULAMIN przeprowadzania okresowych ocen pracowniczych w Urzędzie Miasta Mława Ilekroć w niniejszym regulaminie

Bardziej szczegółowo

SPRAWDZIANY Z MATEMATYKI

SPRAWDZIANY Z MATEMATYKI SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla

Bardziej szczegółowo

Umowy o pracę zawarte na czas określony od 22 lutego 2016 r.

Umowy o pracę zawarte na czas określony od 22 lutego 2016 r. ANTERIS Fundacja Pomocy Prawnej 2015 r. Umowy o pracę zawarte na czas określony od 22 lutego 2016 r. /Porady prawne/ dr Magdalena Kasprzak Publikacja sfinansowana ze środków własnych Fundacji ANTERIS Stan

Bardziej szczegółowo

Lepsze samopoczucie to lepsze oceny. Jaka jest korzyść dla dziecka?

Lepsze samopoczucie to lepsze oceny. Jaka jest korzyść dla dziecka? Lepsze samopoczucie to lepsze oceny Jaka jest korzyść dla dziecka? Gdy dziecko przebywa w szkole, warunki nauki znacząco wpływają na jego samopoczucie i skuteczność przyswajania wiedzy. Uczenie się może

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY KLASA CZWARTA, PIĄTA I SZÓSTA

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY KLASA CZWARTA, PIĄTA I SZÓSTA PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY KLASA CZWARTA, PIĄTA I SZÓSTA PROGRAM: Przyrodo, witaj! WSiP, PODRĘCZNIK, ZESZYT UCZNIA, ZESZYT ĆWICZEŃ (tylko klasa piąta) Przyrodo, witaj! E.Błaszczyk, E.Kłos

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi

Bardziej szczegółowo

RAPORT NA TEMAT STANU STOSOWANIA PRZEZ SPÓŁKĘ ZALECEŃ I REKOMENDACJI ZAWARTYCH W ZBIORZE DOBRE PRAKTYKI SPÓŁEK NOTOWANYCH NA GPW 2016

RAPORT NA TEMAT STANU STOSOWANIA PRZEZ SPÓŁKĘ ZALECEŃ I REKOMENDACJI ZAWARTYCH W ZBIORZE DOBRE PRAKTYKI SPÓŁEK NOTOWANYCH NA GPW 2016 Kiełpin, dnia 1 lutego 2016 r. WITTCHEN S.A. (spółka akcyjna z siedzibą w Kiełpinie, adres: ul. Ogrodowa 27/29, 05-092 Łomianki, wpisana do rejestru przedsiębiorców prowadzonego przez Sąd Rejonowy dla

Bardziej szczegółowo

ZAPROSZENIE DO SKŁADANIA OFERT

ZAPROSZENIE DO SKŁADANIA OFERT 1 Centrum Doradztwa Unijnego Wioletta Piotrowska Tarapacz, Jacek Frankowski s.c. 61-815 Poznań, ul. Ratajczaka 26/3, Poznań, 16.10.2013 ZAPROSZENIE DO SKŁADANIA OFERT CENTRUM DORADZTWA UNIJNEGO S.C. zaprasza

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części z języka francuskiego

Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części z języka francuskiego Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części z języka francuskiego Egzamin gimnazjalny z języka francuskiego miał formę pisemną i został przeprowadzony 26

Bardziej szczegółowo

ZAPYTANIE OFERTOWE. Tłumaczenie pisemne dokumentacji rejestracyjnej ZAPYTANIE OFERTOWE

ZAPYTANIE OFERTOWE. Tłumaczenie pisemne dokumentacji rejestracyjnej ZAPYTANIE OFERTOWE ZAPYTANIE OFERTOWE Tłumaczenie pisemne dokumentacji rejestracyjnej Biofarm sp. z o.o. ul. Wałbrzyska 13 60-198 Poznań Poznań, 09 grudnia 2015r. ZAPYTANIE OFERTOWE I. Nazwa i adres Zamawiającego: Biofarm

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są

Bardziej szczegółowo

Statystyka matematyczna 2015/2016

Statystyka matematyczna 2015/2016 Statystyka matematyczna 2015/2016 nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe Opis sylabusu Nazwa przedmiotu Statystyka matematyczna Kod przedmiotu 0600-FS2-2SM Nazwa jednostki

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale

Bardziej szczegółowo

Komentarz do prac egzaminacyjnych w zawodzie technik administracji 343[01] ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE

Komentarz do prac egzaminacyjnych w zawodzie technik administracji 343[01] ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE Komentarz do prac egzaminacyjnych w zawodzie technik administracji 343[01] ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE OKE Kraków 2012 Zadanie egzaminacyjne zostało opracowane

Bardziej szczegółowo

Aneks nr 8 z dnia 24.07.2013 r. do Regulaminu Świadczenia Krajowych Usług Przewozu Drogowego Przesyłek Towarowych przez Raben Polska sp. z o.o.

Aneks nr 8 z dnia 24.07.2013 r. do Regulaminu Świadczenia Krajowych Usług Przewozu Drogowego Przesyłek Towarowych przez Raben Polska sp. z o.o. Aneks nr 8 z dnia 24.07.2013 r. do Regulaminu Świadczenia Krajowych Usług Przewozu Drogowego Przesyłek Towarowych przez Raben Polska sp. z o.o. 1 Z dniem 24 lipca 2013 r. wprowadza się w Regulaminie Świadczenia

Bardziej szczegółowo

Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07

Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07 Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07 2 Podatek przemysłowy (lokalny podatek od działalności usługowo-wytwórczej) Podatek przemysłowy (lokalny podatek

Bardziej szczegółowo

Co zrobić, jeśli uważasz, że decyzja w sprawie zasiłku mieszkaniowego lub zasiłku na podatek lokalny jest niewłaściwa

Co zrobić, jeśli uważasz, że decyzja w sprawie zasiłku mieszkaniowego lub zasiłku na podatek lokalny jest niewłaściwa Polish Co zrobić, jeśli uważasz, że decyzja w sprawie zasiłku mieszkaniowego lub zasiłku na podatek lokalny jest niewłaściwa (What to do if you think the decision about your Housing Benefit or Council

Bardziej szczegółowo

Objaśnienia wartości, przyjętych do Projektu Wieloletniej Prognozy Finansowej Gminy Golina na lata 2012-2015

Objaśnienia wartości, przyjętych do Projektu Wieloletniej Prognozy Finansowej Gminy Golina na lata 2012-2015 Załącznik Nr 2 do Uchwały Nr XIX/75/2011 Rady Miejskiej w Golinie z dnia 29 grudnia 2011 r. Objaśnienia wartości, przyjętych do Projektu Wieloletniej Prognozy Finansowej Gminy Golina na lata 2012-2015

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

Projektowanie bazy danych

Projektowanie bazy danych Projektowanie bazy danych Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeo wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana

Bardziej szczegółowo

Stypendium ministra za osiągnięcia w nauce może otrzymać student, który spełnia łącznie następujące warunki:

Stypendium ministra za osiągnięcia w nauce może otrzymać student, który spełnia łącznie następujące warunki: Stypendia Ministra na rok akademicki 2006/2007 Z uwagi na liczne zapytania w sprawie składania wniosków o stypendia ministra na rok akademicki 2006/2007, Ministerstwo Nauki i Szkolnictwa Wyższego informuje,

Bardziej szczegółowo

Komentarz Sesja letnia 2012 zawód: technik eksploatacji portów i terminali 342[03] 1. Treść zadania egzaminacyjnego wraz z załączoną dokumentacją

Komentarz Sesja letnia 2012 zawód: technik eksploatacji portów i terminali 342[03] 1. Treść zadania egzaminacyjnego wraz z załączoną dokumentacją Komentarz Sesja letnia 2012 zawód: technik eksploatacji portów i terminali 342[03] 1. Treść zadania egzaminacyjnego wraz z załączoną dokumentacją 1 2 3 4 Oceniane elementy zadania egzaminacyjnego: I. Tytuł

Bardziej szczegółowo

ZAPYTANIE OFERTOWE. Nr sprawy 15/2016r.

ZAPYTANIE OFERTOWE. Nr sprawy 15/2016r. Załącznik nr 1/1... nazwa i adres wykonawcy... pieczęć zamawiającego...... ZAPYTANIE OFERTOWE Nr sprawy 15/2016r. 1. Towarzystwo Budownictwa Społecznego Sp. z o. o. ogłasza zapytanie ofertowe na wynajem

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Przedmiot: Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Nr ćwiczenia: 2 Temat: Problem transportowy Cel ćwiczenia: Nabycie umiejętności formułowania zagadnienia transportowego

Bardziej szczegółowo

OIGD 89/2013 Kraków, 8 lipca 2013 r. Pani/Pan Prezes Członkowie Ogólnopolskiej Izby Gospodarczej Drogownictwa

OIGD 89/2013 Kraków, 8 lipca 2013 r. Pani/Pan Prezes Członkowie Ogólnopolskiej Izby Gospodarczej Drogownictwa 31-542 Kraków Biuro w Warszawie ul. Mogilska 25 03-302 Warszawa www.oigd.com.pl tel.: 12 413 80 83 ul. Instytutowa 1 tel./fax.: 22 811 92 74 e-mail: oigd@oigd.com.pl fax.:12 413 76 25 e-mail: oigdwars@atcom.net.pl

Bardziej szczegółowo

Główne wyniki badania

Główne wyniki badania 1 Nota metodologiczna Badanie Opinia publiczna na temat ubezpieczeń przeprowadzono w Centrum badania Opinii Społecznej na zlecenie Urzędu Ochrony Konkurencji i Konsumentów w dniach od 13 do 17 maja 2004

Bardziej szczegółowo

Jakie są te obowiązki wg MSR 41 i MSR 1, a jakie są w tym względzie wymagania ustawy o rachunkowości?

Jakie są te obowiązki wg MSR 41 i MSR 1, a jakie są w tym względzie wymagania ustawy o rachunkowości? Jakie są te obowiązki wg MSR 41 i MSR 1, a jakie są w tym względzie wymagania ustawy o rachunkowości? Obowiązki sprawozdawcze według ustawy o rachunkowości i MSR 41 Przepisy ustawy o rachunkowości w zakresie

Bardziej szczegółowo

Audyt SEO. Elementy oraz proces przygotowania audytu. strona

Audyt SEO. Elementy oraz proces przygotowania audytu. strona Audyt SEO Elementy oraz proces przygotowania audytu 1 Spis treści Kim jesteśmy? 3 Czym jest audyt SEO 4 Główne elementy audytu 5 Kwestie techniczne 6 Słowa kluczowe 7 Optymalizacja kodu strony 8 Optymalizacja

Bardziej szczegółowo