Sztuczna inteligencja
|
|
- Witold Domagała
- 7 lat temu
- Przeglądów:
Transkrypt
1 Sztuczna inteligencja Wykład 7. Architektury sztucznych sieci neuronowych. Metody uczenia sieci. źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996
2 Podstawowe architektury sieci neuronowych istnieją róŝne sposoby łączenia neuronów ze sobą i ich współdziałania istnieją róŝne sposoby doboru wag połączeń Sieć jednokierunkowa jednowarstwowa - neurony ułoŝone w jednej warstwie - w węzłach wejściowych nie zachodzi Ŝaden proces obliczeniowy, nie tworzą więc warstwy neuronów - przepływ sygnałów jednokierunkowy: od warstwy wejściowej do wyjściowej - najczęściej pełne połączenia (kaŝdy węzeł z kaŝdym neuronem) - nazwa sieci określona przez sposób doboru wag oraz wybór metody uczenia (np. perceptron jednowarstwowy, sieć Kohonena itp.)
3 Sieć jednokierunkowa wielowarstwowa (na rysunku: sieć dwuwarstwowa) - co najmniej jedna warstwa ukryta neuronów - pełne połączenia między warstwami (choć nie zawsze tzw. połączenia lokalne lub częściowe) - sygnały wejściowe podawane są na pierwszą warstwę ukrytą neuronów, a te z kolei stanowią sygnały źródłowe dla warstwy kolejnej - często uŝywa się nazwy: perceptron wielowarstwowy - często uŝywa się sigmoidalnych funkcji aktywacji:
4 Sieci rekurencyjne - występuje sprzęŝenie zwrotne między warstwami wyjściowymi a wejściowymi - na rysunku: sieć jednowarstwowa, w której sygnały wyjściowe neuronów tworzą jednocześnie wektor wejściowy sieci dla kolejnego cyklu - jest to tzw. sieć Hopfielda, w której nie występuje sprzęŝenie neuronu od własnego sygnału wyjściowego - z -1 : tzw. jednostkowy operator opóźnienia
5 - na rysunku: sieć rekurencyjna z ukrytą warstwą neuronów - sygnały wejściowe: neurony x 1... x N - neurony numerowane od 1 do M stanowią warstwę wyjściową - warstwa ukryta: neurony od 1 do K - sygnały warstwy wyjściowej i ukrytej neuronów (łącznie z ew. neuronami wejściowymi) stanowią wektor wejściowy sieci dla kolejnego cyklu obliczeniowego Proces ustalania się sygnałów wyjściowych jest w przypadku sieci rekurencyjnych procesem dynamicznym.
6 Podstawowe metody uczenia sieci neuronowych zdolność adaptacyjna waŝna właściwość sieci neuronowych celem procesu uczenia jest dobór wag połączeń, aby jak najlepiej odwzorować dane wejściowe w wyjściowe dla danego problemu proces iteracyjny: k numer cyklu W ij (k) stara waga synaptyczna W ij (k+1) nowa waga synaptyczna, łącząca neuron j-ty z i-tym. Uczenie pod nadzorem (z nauczycielem) uczenie kontrolowane jest przez zewnętrznego nauczyciela sygnałom uczącym towarzyszą wartości Ŝądane na wyjściu sieci
7 KaŜdemu wektorowi wejściowemu towarzyszy zadany wektor wyjściowy Dane uczące podawane są w postaci par, dla k = 1, 2,..., p, gdzie p jest liczbą wzorców uczących. JeŜeli wektorowi wejściowemu x(k) odpowiada Ŝądana postać wektora wyjściowego d(k) sieci oraz uzyskane wyjście y(k), to moŝemy zdefiniować funkcję błędu dla kaŝdej pary uczącej:
8 Cel uczenia: zminimalizowanie funkcji błędu Najczęstsza postać funkcji błędu (błąd średni kwadratowy): określana dla wszystkich M neuronów wyjściowych i par uczących p. Minimalizacja funkcji: najczęściej gradientowe metody optymalizacji, w których zmiana wag odbywa się pod wpływem gradientu funkcji celu: Najczęściej stosuje się tzw. metodę największego spadku, w której współczynnik uczenia. ZałoŜenie: funkcja aktywacji jest ciągła. reguła delta: uaktualnianie wag kaŝdorazowo po prezentacji jednej pary uczącej skumulowana reguła delta: uaktualnianie wag po prezentacji wszystkich par uczących
9 Dla nieciągłych funkcji aktywacji (np. funkcja skokowa): reguła perceptronu oraz reguła Widrowa-Hoffa. Wykorzystują one jedynie informacje o aktualnej wartości wyjścia i wartości Ŝądanej. Reguła perceptronu Przy zadanych wstępnie wartościach wag W ij oraz W i0, prezentuje się na wejściu wektor uczący x i oblicza wartość sygnału wyjściowego y i. Aktualizacja wag w wyniku porównania wartości y i z wartością Ŝądaną d i : jeŝeli y i = d i, to wagi pozostają nie zmienione jeŝeli y i = 0 a d i = 1, to W ij (k+1) = W ij (k) + x j oraz W i0 (k+1) = W i0 (k) +1 jeŝeli y i = 1 a d i = 0, to W ij (k+1) = W ij (k) - x j oraz W i0 (k+1) = W i0 (k) -1 Reguła Widrowa-Hoffa Dobór wag dla neuronu dowolnego typu: (przy wartościach binarnych, reguła ta przechodzi w regułę perceptronu)
10 Uczenie z krytykiem (inaczej: ze wzmocnieniem) - nie mamy informacji o wartościach Ŝądanych na wyjściu, a jedynie informację, czy dana akcja (np. zmiana wag) dała wynik poŝądany (wynik pozytywny) czy teŝ nie (negatywny) - jeŝeli działanie podjęte przez układ uczący dało wynik pozytywny, następuje wzmocnienie tendencji do właściwego zachowania się systemu w podobnych sytuacjach w przyszłości - w przypadku wyniku negatywnego, następuje osłabienie tendencji Krytyk, na podstawie aktualnego stanu środowiska i predykcji co do jego przyszłych zmian (wypracowanej na podstawie aktualnej wiedzy), przekazuje sygnał sterujący umoŝliwiający podjęcie odpowiedniej akcji, wpływającej na stan środowiska. Układ z opóźnieniem: sygnał sterujący określany jest na podstawie stanu środowiska w chwilach poprzednich
11 Wskaźnik jakości uczenia: E operator wartości oczekiwanej γ wpływa na zakres zmian poprzednich akcji uwzględnianych w sterowaniu; przybiera wartości z przedziału [0,1]; jeŝeli γ=0, to w sterowaniu uwzględniany jest jedynie sygnał początkowy (wynik pierwszej akcji) Układ z opóźnieniem: sygnał sterujący określany jest na podstawie stanu środowiska w chwilach poprzednich Sygnał sterujący: Dobór wag: η współczynnik uczenia, λ współczynnik zapominania (z przedziału [0,1]). uśredniony parametr dopasowania (wzór rekurencyjny),
12 Uczenie samoorganizujące się typu Hebba waga powiązań między dwoma neuronami wzrasta przy jednoczesnym stanie pobudzenia obu tych neuronów, w przeciwnym przypadku maleje (wniosek z obserwacji neurobiologicznych) Model neuronu: Zmiana wag: F funkcja stanu sygnału wejściowego x j (presynaptycznego) oraz wyjściowego y i (postsynaptycznego) Uczenie korelacyjne: siła połączenia międzyneuronowego wzrasta przy istnieniu korelacji między sygnałami presynaptycznym i postsynaptycznym
13 Klasyczne ujęcie Hebba (bez nauczyciela): Z nauczycielem: Wada: przy powtarzającym się identycznym wymuszeniu x j, nastąpi wykładniczy wzrost wag. Wprowadzamy więc współczynnik zapominania γ: Modyfikacja: tzw. uogólniona reguła Oji (dość skomplikowana pomijamy) Uczenie dekorelacyjne (antyhebbowskie) siła połączenia wzrasta, gdy sygnały presynaptyczny i postsynaptyczny są zdekorelowane (jeden pobudzony, drugi zgaszony) jest zawsze stabilne (nie wprowadza nieograniczonej moŝliwości wzrostu wag):
14 Uczenie samoorganizujące się typu konkurencyjnego neurony współzawodniczą między sobą, aby stać się pobudzonymi tylko jeden neuron moŝe być aktywny, pozostałe są w stanie spoczynkowym (WTA Winner Takes All) grupa neuronów otrzymuje te same sygnały wejściowe x j wstępne wartości wag są losowane sygnały wyjściowe: róŝnią się między sobą (bo wagi są róŝne) zwycięŝa neuron o największej wartości u i (przyjmuje na wyjściu stan 1, pozostałe 0) nie wymaga nauczyciela Procedura: podajemy pierwszy wektor x wyłaniamy zwycięzcę, który przyjmuje stan 1 i dokonujemy aktualizacji jego wag pozostałym, przegranym neuronom (stan 0) wag nie aktualizujemy
15 Aktualizacja wag (tzw. reguła Kohonena): Wagi oraz wektory wejściowe powinny być znormalizowane: PoniewaŜ wektory są unormowane, decyduje róŝnica kątowa (zwycięŝa neuron o wektorze wag najbliŝszym aktualnemu wektorowi wejściowemu) W wyniku zwycięstwa neuronu, następuje adaptacja zbliŝenie jego wag do danego wektora x. Zatem przy podaniu na wejście wielu podobnych wektorów, zawsze będzie zwycięŝał ten sam neuron, czyli jego wagi będą odpowiadać uśrednionym wagom wektorów wejściowych. Efekt: samoorganizacja procesu uczenia neurony dopasowują swoje wagi do grup wektorów wejściowych, tak, Ŝe dla kaŝdej grupy zawsze zwycięŝa ten sam neuron (czyli rozpoznają swoją kategorię). Najczęstsze zastosowania klasyfikacja wektorów.
16 Przykład Wektory wejściowe:
17 Przebieg procesu uczenia: Kółka kolejne połoŝenia wektorów wag dla neuronów zwycięŝających Linie wektory wejściowe Jak widać, zwycięŝały jedynie trzy neurony, jeden pozostał martwy (nie dopasował się do Ŝadnej kategorii wektora wejściowego) Wagi po kilkuset cyklach uczenia: Odzwierciedlają one trzy kategorie wektorów wejściowych: (x 1, x 2 ), (x 3, x 4, x 5 ), (x 6, x 7, x 8 ), na które został podzielony (samoczynnie przez sieć) zbiór wejściowy.
18 Odmiana: WTM (Winner Takes Most) neuron wygrywający przyjmuje stan 1 neurony z nim sąsiadujące otrzymują częściowe pobudzenie Wieloboki Voronoia ilustracja podziału obszaru danych na strefy wpływów poszczególnych neuronów punkt centralny W c (wektor Voronoia) określony jest przez wagi neuronu zwycięŝającego KaŜdy wielobok zawiera obszar najbliŝszy w sensie określonej metryki zbiór punktów centralnych to tzw. ksiąŝka kodowa obszary przyciągania to tzw. słowa kodowe
19 Adaptacyjne kwantowanie wektorowe samoorganizacja proces przypisania kaŝdej wartości wektora wejściowego x do odpowiedniej klasy C kolejny wektor x porównujemy z wektorami W c jeŝeli klasa, do której przynaleŝy wektor x jest zgodna z klasą zwycięskiego wektora W c, to W c jest przesuwany w stronę x w przeciwnym wypadku jest odsuwany Niech W cj (j = 1,..., n) zbiór wektorów Voronoia; x i (i=1,..., p) zbiór wektorów wejściowych. Algorytm: 1. prezentujemy kolejny (k+1)-wszy, losowy wektor x i 2. określamy najbliŝszy mu wektor W c (pod względem metryki) 3. Porównujemy klasę C xi przypisaną wektorowi x i z klasą C Wc zwycięskiego wektora Voronoia jeŝeli równe, to jeŝeli róŝne, to α k współczynniki uczenia z przedziału (0,1); maleją do zera z kolejną iteracją 4. Pozostałych wektorów nie modyfikujemy
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;
Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie
2.4. Algorytmy uczenia sieci neuronowych
2.4. Algorytmy uczenia sieci neuronowych Prosta struktura sieci jednokierunkowych sprawia, że są najchętniej stosowane. Ponadto metody uczenia ich należą również do popularnych i łatwych w realizacji.
wiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ
optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów
Sztuczne sieci neuronowe
www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, Spis treści
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, 2013 Spis treści Przedmowa 7 1. Wstęp 9 1.1. Podstawy biologiczne działania neuronu 9 1.2. Pierwsze modele sieci neuronowej
Lekcja 5: Sieć Kohonena i sieć ART
Lekcja 5: Sieć Kohonena i sieć ART S. Hoa Nguyen 1 Materiał Sieci Kohonena (Sieć samo-organizująca) Rysunek 1: Sieć Kohonena Charakterystyka sieci: Jednowarstwowa jednokierunkowa sieć. Na ogół neurony
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych. Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010
Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010 Sieci neuronowe jednokierunkowa wielowarstwowa sieć neuronowa sieci Kohonena
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Sztuczne sieci neuronowe (SNN)
Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe
Widzenie komputerowe
Widzenie komputerowe Uczenie maszynowe na przykładzie sieci neuronowych (3) źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Zdolność uogólniania sieci neuronowej R oznaczenie
Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2
Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
METODY INTELIGENCJI OBLICZENIOWEJ wykład 5
METODY INTELIGENCJI OBLICZENIOWEJ wykład 5 1 2 SZTUCZNE SIECI NEURONOWE cd 3 UCZENIE PERCEPTRONU: Pojedynczy neuron (lub 1 warstwa neuronów) typu percep- tronowego jest w stanie rozdzielić przestrzeń obsza-
Wstęp do sztucznych sieci neuronowych
Wstęp do sztucznych sieci neuronowych Michał Garbowski Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 15 grudnia 2011 Plan wykładu I 1 Wprowadzenie Inspiracja biologiczna
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe
Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.
Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I
SIECI KOHONENA UCZENIE BEZ NAUCZYCIELA JOANNA GRABSKA-CHRZĄSTOWSKA
SIECI KOHONENA UCZENIE BEZ NAUCZYCIELA JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA SAMOUCZENIE SIECI metoda Hebba W mózgu
Inteligentne systemy przeciw atakom sieciowym
Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne
Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych.
Sieci rekurencyjne Ewa Adamus ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych 7 maja 2012 Jednowarstwowa sieć Hopfielda, z n neuronami Bipolarna funkcja przejścia W wariancie
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Podstawy sztucznej inteligencji
wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Obliczenia Naturalne - Sztuczne sieci neuronowe
Literatura Wprowadzenie Obliczenia Naturalne - Sztuczne sieci neuronowe Paweł Paduch Politechnika Świętokrzyska 13 marca 2014 Paweł Paduch Obliczenia Naturalne - Sztuczne sieci neuronowe 1 z 43 Plan wykładu
Obliczenia inteligentne Zadanie 4
Sieci SOM Poniedziałek, 10:15 2007/2008 Krzysztof Szcześniak Cel Celem zadania jest zaimplementowanie neuronowej samoorganizującej się mapy wraz z metodą jej nauczania algorytmem gazu neuronowego. Część
synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.
Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000
Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu
Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa
Uczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Sieć przesyłająca żetony CP (counter propagation)
Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są
Monitorowanie i Diagnostyka w Systemach Sterowania
Monitorowanie i Diagnostyka w Systemach Sterowania Katedra Inżynierii Systemów Sterowania Dr inż. Michał Grochowski Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności:
1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM
ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
6. Perceptron Rosenblatta
6. Perceptron Rosenblatta 6-1 Krótka historia perceptronu Rosenblatta 6-2 Binarne klasyfikatory liniowe 6-3 Struktura perceptronu Rosenblatta 6-4 Perceptron Rosenblatta a klasyfikacja 6-5 Perceptron jednowarstwowy:
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY SZTUCZNE SIECI NEURONOWE MLP Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
OCENA DZIAŁANIA AE. METODY HEURYSTYCZNE wykład 4 LOSOWOŚĆ W AE KRZYWE ZBIEŻNOŚCI ANALIZA STATYSTYCZNA:
METODY HEURYSTYCZNE wykład 4 OCENA DZIAŁANIA AE 1 2 LOSOWOŚĆ W AE Różne zachowanie algorytmuw poszczególnych uruchomieniach przy jednakowych ustawieniach parametrów i identycznych populacjach początkowych.
Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek
Sztuczne sieci neuronowe Ćwiczenia Piotr Fulmański, Marta Grzanek Piotr Fulmański 1 Wydział Matematyki i Informatyki, Marta Grzanek 2 Uniwersytet Łódzki Banacha 22, 90-232, Łódź Polska e-mail 1: fulmanp@math.uni.lodz.pl,
Sztuczne sieci neuronowe. Uczenie, zastosowania
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Sztuczne sieci neuronowe. Uczenie, zastosowania Inteligencja Sztuczne sieci neuronowe Metody uczenia Budowa modelu Algorytm wstecznej propagacji błędu
Podstawy Sztucznej Inteligencji Sztuczne Sieci Neuronowe. Krzysztof Regulski, WIMiIP, KISiM, B5, pok. 408
Podstawy Sztucznej Inteligencji Sztuczne Sieci Neuronowe Krzysztof Regulski, WIMiIP, KISiM, regulski@aghedupl B5, pok 408 Inteligencja Czy inteligencja jest jakąś jedną dziedziną, czy też jest to nazwa
Temat: Sieci neuronowe oraz technologia CUDA
Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w
Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW
Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
I EKSPLORACJA DANYCH
I EKSPLORACJA DANYCH Zadania eksploracji danych: przewidywanie Przewidywanie jest podobne do klasyfikacji i szacowania, z wyjątkiem faktu, że w przewidywaniu wynik dotyczy przyszłości. Typowe zadania przewidywania
1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
SIECI REKURENCYJNE SIECI HOPFIELDA
SIECI REKURENCYJNE SIECI HOPFIELDA Joanna Grabska- Chrząstowska Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA SPRZĘŻENIE ZWROTNE W NEURONIE LINIOWYM sygnał
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD X: Sztuczny neuron
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD X: Sztuczny neuron Koneksjonizm: wprowadzenie 1943: Warren McCulloch, Walter Pitts: ogólna teoria przetwarzania informacji oparta na sieciach binarnych
Wstęp do sieci neuronowych, wykład 8 Samoorganizacja topologiczna, analiza składowych głównych.
Wstęp do sieci neuronowych, wykład 8 Samoorganizacja topologiczna, analiza składowych głównych. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń,
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 8. SZTUCZNE SIECI NEURONOWE INNE ARCHITEKTURY Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SIEĆ O RADIALNYCH FUNKCJACH BAZOWYCH
Definicja perceptronu wielowarstwowego
1 Sieci neuronowe - wprowadzenie 2 Definicja perceptronu wielowarstwowego 3 Interpretacja znaczenia parametrów sieci 4 Wpływ wag perceptronu na jakość aproksymacji 4.1 Twierdzenie o uniwersalnych właściwościach
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 PLAN: Wykład 5 - Metody doboru współczynnika uczenia - Problem inicjalizacji wag - Problem doboru architektury
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2013/2014
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner rok akademicki 2013/2014 Sieci neuronowe Sieci neuronowe W XIX wieku sformułowano teorię opisującą podstawowe
Co to jest grupowanie
Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie
PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH**
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Dorota Pawluś* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH** 1. Wstęp Eksploatacja górnicza złóż ma niekorzystny wpływ na powierzchnię
Sztuczne sieci neuronowe
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Sztuczne sieci neuronowe Sztuczne sieci neuronowe Wprowadzenie Trochę historii Podstawy działania Funkcja aktywacji Typy sieci 2 Wprowadzenie Zainteresowanie
BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego
Wstęp do teorii sztucznej inteligencji
Wstęp do teorii sztucznej inteligencji Wykład V Algorytmy uczenia SSN Modele sieci neuronowych. SSN = Architektura + Algorytm Wagi i wejścia dla sieci neuronuowej: reprezentacja macierzowa δ i = z i y
Wprowadzenie. SOM jest skrótem od Self Organizing Maps, czyli Samoorganizujące się mapy.
SOM i WebSOM Wprowadzenie SOM jest skrótem od Self Organizing Maps, czyli Samoorganizujące się mapy. Podstawy teoretyczne stworzył fiński profesor Teuvo Kohonen w 1982 r SOM - ogólnie Celem tych sieci
SZTUCZNE SIECI NEURONOWE
INTELIGENTNE TECHNIKI KOMPUTEROWE wykład SZTUCZNE SIECI NEURONOWE HISTORIA SSN Walter Pitts, Warren McCulloch (94) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich wynalazek
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
Sieci neuronowe w Statistica
http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ ĆWICZENIA Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.
Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony
Politechnika Lubelska
Politechnika Lubelska Wydział Zarządzania i Podstaw Techniki Temat: Sieć neuronowa do klasyfikacji rodzaju węgla kamiennego. Prowadzący: Wykonał: Dr Popko Artur Marek Harasimiuk ETI 5.3. (gr. lab. 5.5)
SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe
SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA BUDOWA RZECZYWISTEGO NEURONU
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 212-11-28 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Wstęp do teorii sztucznej inteligencji
Wstęp do teorii sztucznej inteligencji Wykład IV SSN = Architektura + Algorytm Uczenie sztucznych neuronów. Przypomnienie. Uczenie z nauczycielem. Wagi i wejścia dla sieci neuronuowej: reprezentacja macierzowa
WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania
WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie
Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska
Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites
Metody sztucznej inteligencji Zadanie 3: (1) klasteryzacja samoorganizująca się mapa Kohonena, (2) aproksymacja sieć RBF.
Metody sztucznej inteligencji Zadanie 3: ( klasteryzacja samoorganizująca się mapa Kohonena, (2 aproksymacja sieć RBF dr inż Przemysław Klęsk Klasteryzacja za pomocą samoorganizującej się mapy Kohonena
wiedzy Sieci neuronowe (c.d.)
Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie
METODY INTELIGENCJI OBLICZENIOWEJ wykład 4
METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 1 2 SZTUCZNE SIECI NEURONOWE HISTORIA SSN 3 Walter Pitts, Warren McCulloch (1943) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich
SZTUCZNE SIECI NEURONOWE
METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 SZTUCZNE SIECI NEURONOWE HISTORIA SSN Walter Pitts, Warren McCulloch (94) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich wynalazek
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 213-11-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2014/2015
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner rok akademicki 2014/2015 Sieci Kohonena Sieci Kohonena Sieci Kohonena zostały wprowadzone w 1982 przez fińskiego
DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Stanisław PŁACZEK* DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI W artykule
Oprogramowanie Systemów Obrazowania SIECI NEURONOWE
SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,
ELEMENTY SZTUCZNEJ INTELIGENCJI. Sztuczne sieci neuronowe
ELEMENTY SZTUCZNEJ INTELIGENCJI Sztuczne sieci neuronowe Plan 2 Wzorce biologiczne. Idea SSN - model sztucznego neuronu. Perceptron prosty i jego uczenie regułą delta Perceptron wielowarstwowy i jego uczenie
SIECI RBF (RADIAL BASIS FUNCTIONS)
SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,
Wykład 2. Model Neuronu McCulocha-Pittsa Perceptron Liniowe Sieci Neuronowe
Sztuczne Sieci Neuronowe Wykład 2 Model Neuronu McCulocha-Pittsa Perceptron Liniowe Sieci Neuronowe wykład przygotowany na podstawie. R. Tadeusiewicz, Sieci Neuronowe, Rozdz. 3. Akademicka Oficyna Wydawnicza
Sztuczne siei neuronowe - wprowadzenie
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 2 Sztuczne siei neuronowe - wprowadzenie Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika Poznańska Poznań, 2 Wstęp
Emergentne właściwości. sztucznych sieci neuronowych
Barbara Pankiewicz nauczyciel fizyki III Liceum Ogólnokształcące w Zamościu ul. Kilińskiego 15 22-400 Zamość Emergentne właściwości sztucznych sieci neuronowych Opracowała: Barbara Pankiewicz Zamość, 2001
Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 8 Sieci rezonansowe
Sieci Neuronowe Wykład 8 Sieci rezonansowe wykład przygotowany na podstawie. R. Tadeusiewicz, Sieci Neuronowe, Rozdz. 6. Akademicka Oficyna Wydawnicza RM, Warszawa 1993. Wprowadzenie Sieci wielowarstwowe
1. W jaki sposób radzimy sobie z problemem zatrzymywania się w lokalnym minimum błędu podczas procesu uczenia?
. W jaki sposób radzimy sobie z problemem zatrzymywania się w lokalnym minimum błędu podczas procesu uczenia? Stosujemy technikę momentum. w(k = η*δ*f (φ*u + α* w(k-, α współczynnik momentum [0;] Kiedy
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja