Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy
|
|
- Maja Zielińska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy # TS library("aer") data("uknondurables") # quarterly consumption of non-durables in the United Kingdom plot(uknondurables) UKNonDurables tsp(uknondurables) #returns the tsp attribute # working with irregular series (e.g., with many financial time series). # Consequently, various implementations for irregular time series have emerged # in contributed R packages, the most flexible of which is zoo, provided by # the zoo package [153] [1] str(uknondurables) -Series [1:136] from 1955 to 1989: time(uknondurables)[1:10] [1] window(uknondurables, end = c(1956, 4)) #podzbiór Qtr1 Qtr2 Qtr3 Qtr (Linear) filtering [154] Statystyczne modelowanie decyzji biznesowych 1
2 data("ukdriverdeaths") on car drivers killed or seriously injured in the United Kingdom from 1969(1) through 1984(12). These are also known as the seatbelt data, as they were used by Harvey and Durbin (1986) for evaluating the effectiveness of compulsory wearing of seatbelts introduced on plot(ukdriverdeaths) UKDriverDeaths lines(filter(ukdriverdeaths, c(1/2, rep(1, 11), 1/2)/12),col = 2) UKDriverDeaths Statystyczne modelowanie decyzji biznesowych 2
3 plot(rollapply(ukdriverdeaths,12, mean)) # ruchome okno rollapply(ukdriverdeaths, 12, mean) plot(rollapply(ukdriverdeaths, 12, sd)) rollapply(ukdriverdeaths, 12, sd) Statystyczne modelowanie decyzji biznesowych 3
4 # Decomposition [155] dd_dec <- decompose(log(ukdriverdeaths)) # simple symmetric filter as illustrated above for extracting the trend # and derive the seasonal component by averaging the trend-adjusted observations # from corresponding periods # c("seasonal", "trend", "random", "figure", "type"), plot(dd_dec) Decomposition of additive time series random seasonal trend observed plot(dd_dec$seasonal) dd_dec$seasonal Statystyczne modelowanie decyzji biznesowych 4
5 plot(lines(dd_dec$figure)) dd_dec$figure Index plot(dd_dec$trend) dd_dec$trend Statystyczne modelowanie decyzji biznesowych 5
6 plot(dd_dec$random) dd_dec$random dd_stl <- stl(log(ukdriverdeaths), s.window = 13) # iteratively finds the seasonal and trend # components by loess smoothing of the observations in moving data windows # of a certain size plot(dd_stl) remainder trend seasonal data time Statystyczne modelowanie decyzji biznesowych 6
7 plot(dd_dec$trend, ylab = "trend") lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2) trend stl() yielding a smoother curve. Statystyczne modelowanie decyzji biznesowych 7
8 # Exponential smoothing dd_past <- window(ukdriverdeaths, end = c(1982, 12)) dd_hw <- HoltWinters(dd_past) Unknown parameters are determined by minimizing the squared prediction error. The additive Holt-Winters prediction function (for time series with period length p) is Yhat[t+h] = a[t] + h * b[t] + s[t + p (h - 1) mod p], where a[t], b[t] and s[t] are given by a[t] = α (Y[t] - s[t-p]) + (1-α) (a[t-1] + b[t-1]) b[t] = β (a[t] - a[t-1]) + (1-β) b[t-1] s[t] = γ (Y[t] - a[t]) + (1-γ) s[t-p] dd_pred <- predict(dd_hw, n.ahead = 24) plot(dd_hw, dd_pred, ylim = range(ukdriverdeaths)) lines(ukdriverdeaths) Holt-Winters filtering * Observed / Fitted Statystyczne modelowanie decyzji biznesowych 8
9 # Classical Model-Based Analysis set.seed(1234) x <- filter(rnorm(100), 0.9, method = "recursive") #AR(1) acf(x) Series x ACF pacf(x) Lag Series x Partial ACF ar(x) Call: ar(x = x) Lag Coefficients: Order selected 1 sigma^2 estimated as By default, ar() fits AR models up to lag p = 10 log (n) and selects the minimum AIC model Statystyczne modelowanie decyzji biznesowych 9
10 ar(x, method="burg") Call: ar(x = x, method = "burg") Coefficients: Order selected 1 sigma^2 estimated as nd <- window(log(uknondurables), end = c(1970, 4)) acf(diff(nd), ylim = c(-1, 1)) Series diff(nd) ACF acf(diff(diff(nd, 4)), ylim = c(-1, 1)) Lag Series diff(diff(nd, 4)) ACF Lag Statystyczne modelowanie decyzji biznesowych 10
11 pacf(diff(diff(nd, 4)), ylim = c(-1, 1)) Series diff(diff(nd, 4)) Partial ACF * Lag nd_pars <- expand.grid(ar = 0:2, diff = 1, ma = 0:2, sar = 0:1, sdiff = 1, sma = 0:1) # Create a data frame from all combinations of the supplied vectors or factors. nd_aic <- rep(0, nrow(nd_pars)) for(i in seq(along = nd_aic)) nd_aic[i] <- AIC(arima(nd, unlist(nd_pars[i, 1:3]), unlist(nd_pars[i, 4:6])), k = log(length(nd))) nd_pars[which.min(nd_aic),] ar diff ma sar sdiff sma These computations reveal that a SARIMA(0, 1, 1)(0, 1, 1) model is best in terms of BIC, conforming well with the exploratory analysis. This model is also amously known as the airline model due to its application to a series of airline passengers in the classical text by Box and Jenkins (1970). It is refitted to nd via nd_arima <- arima(nd, order = c(0,1,1), seasonal = c(0,1,1)) Statystyczne modelowanie decyzji biznesowych 11
12 nd_arima Call: arima(x = nd, order = c(0, 1, 1), seasonal = c(0, 1, 1)) Coefficients: ma1 sma s.e sigma^2 estimated as 9.649e-05: log likelihood = , aic = tsdiag(nd_arima) Standardized Residuals ACF of Residuals ACF Lag p values for Ljung-Box statistic p value nd_pred <- predict(nd_arima, n.ahead = 18 * 4) plot(log(uknondurables)) lines(nd_pred$pred, col = 2) lag log(uknondurables) Statystyczne modelowanie decyzji biznesowych 12
13 # Stationarity, Unit Roots, and Cointegration data("pepperprice") # A monthly multiple time series from 1973(10) to 1996(4) with 2 variables. # black # spot price for black pepper, # white # spot price for white pepper. plot(pepperprice, plot.type = "single", col = 1:2) legend("topleft", c("black", "white"), bty = "n", col = 1:2, lty = rep(1,2)) PepperPrice black white plot(log(pepperprice), plot.type = "single", col = 1:2) legend("topleft", c("black", "white"), bty = "n", col = 1:2, lty = rep(1,2)) black log(pepperprice) white Statystyczne modelowanie decyzji biznesowych 13
14 plot(diff(log(pepperprice)), plot.type = "single", col = 1:2) legend("topleft", c("black", "white"), bty = "n", col = 1:2, lty = rep(1,2)) diff(log(pepperprice)) black white library("tseries") adf.test(log(pepperprice[, "white"])) Augmented Dickey-Fuller Test data: log(pepperprice[, "white"]) Dickey-Fuller = , Lag order = 6, p-value = alternative hypothesis: stationary adf.test(diff(log(pepperprice[, "white"]))) Augmented Dickey-Fuller Test data: diff(log(pepperprice[, "white"])) Dickey-Fuller = , Lag order = 6, p-value = 0.01 alternative hypothesis: stationary Warning message: In adf.test(diff(log(pepperprice[, "white"]))) : p-value smaller than printed p-value Zwroty są stacjonarne Statystyczne modelowanie decyzji biznesowych 14
15 kpss.test(log(pepperprice[, "white"])) KPSS Test for Level Stationarity data: log(pepperprice[, "white"]) KPSS Level = , Truncation lag parameter = 3, p-value = 0.01 Warning message: In kpss.test(log(pepperprice[, "white"])) : p-value smaller than printed p-value kpss.test(diff(log(pepperprice[, "white"]))) KPSS Test for Level Stationarity data: diff(log(pepperprice[, "white"])) KPSS Level = , Truncation lag parameter = 3, p-value = 0.1 Warning message: In kpss.test(diff(log(pepperprice[, "white"]))) : p-value greater than printed p-value KOINTEGRACJA A simple method to test for cointegration is the two-step method proposed by Engle and Granger (1987). It regresses one series on the other and performs a unit root test on the residuals. This test, often named after Phillips and Ouliaris (1990), who provided the asymptotic theory, is available in the function po.test() from the package tseries po.test(log(pepperprice)) Phillips-Ouliaris Cointegration Test data: log(pepperprice) Phillips-Ouliaris demeaned = , Truncation lag parameter = 2, p-value = po.test(log(pepperprice[,2:1])) Phillips-Ouliaris Cointegration Test data: log(pepperprice[, 2:1]) Phillips-Ouliaris demeaned = , Truncation lag parameter = 2, p-value = Asymetria ( a kointegracja to relacja symetryczna!) Statystyczne modelowanie decyzji biznesowych 15
16 REGRESJA dd <- log(ukdriverdeaths) dd_dat <- ts.intersect(dd, dd1 = lag(dd, k = -1), dd12 = lag(dd, k = -12)) # intersect: tworzy kilka szeregów czasowych summary(lm(dd ~ dd1 + dd12, data = dd_dat)) Call: lm(formula = dd ~ dd1 + dd12, data = dd_dat) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) dd e-14 *** dd e-16 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 177 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 177 DF, p-value: < 2.2e-16 Uwaga! Nie uwzglednia, że trzy szeregi pochodzą od jednego szeregu! library("dynlm") summary(dynlm(dd ~ L(dd) + L(dd, 12))) series regression with "ts" data: Start = 1970(1), End = 1984(12) Call: dynlm(formula = dd ~ L(dd) + L(dd, 12)) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) L(dd) e-14 *** L(dd, 12) e-16 *** Signif. codes: 0 *** ** 0.01 * Residual standard error: on 177 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 177 DF, p-value: < 2.2e-16 Statystyczne modelowanie decyzji biznesowych 16
17 library("strucchange") dd_bp <- breakpoints(dd ~ dd1 + dd12, data = dd_dat, h = 0.1) plot(dd_bp) BIC and Residual Sum of Squares BIC RSS Number of breakpoints coef(dd_bp, breaks = 2) (Intercept) dd1 dd (1) (10) (11) (1) (2) (12) Ostatni okres po wprowadzeniu pasów bezpieczeństwa trend Statystyczne modelowanie decyzji biznesowych 17
18 plot(dd) lines(fitted(dd_bp, breaks = 2), col = 4) lines(confint(dd_bp, breaks = 2)) dd Statystyczne modelowanie decyzji biznesowych 18
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi
Ekonometria dla IiE i MSEMat Z7
Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany
Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy Dane: 2000 największych spółek światowych z 2004 (Forbes Magazine)
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy Dane: Eksploracja (mining) Problemy: Jedna zmienna 2000 najwi ększych
Model regresji wielokrotnej Wykład 14 ( ) Przykład ceny domów w Chicago
Model regresji wielokrotnej Wykład 14 (4.06.2007) Przykład ceny domów w Chicago Poniżej są przedstawione dane dotyczące cen domów w Chicago (źródło: Sen, A., Srivastava, M., Regression Analysis, Springer,
Analiza wariancji Piotr J. Sobczyk 19 November 2016
Analiza wariancji Piotr J. Sobczyk 19 November 2016 Zacznijmy zajęcia od klasycznego przykładu czyli testu Studenta dla dwóch prób. x 1,i N(µ 1, σ 2 ), i = 1,..., n 1 x 2,i N(µ 2, σ 2 ), i = 1,..., n 2
Analiza Szeregów Czasowych. Egzamin
Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.
Regresja liniowa w R Piotr J. Sobczyk
Regresja liniowa w R Piotr J. Sobczyk Uwaga Poniższe notatki mają charakter roboczy. Mogą zawierać błędy. Za przesłanie mi informacji zwrotnej o zauważonych usterkach serdecznie dziękuję. Weźmy dane dotyczące
Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH
Raport 10/2015 Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych
Sylabus Formularz opisu przedmiotu (formularz sylabusa) dla studiów I i II stopnia 1 wypełnia koordynator przedmiotu
Sylabus Formularz opisu przedmiotu (formularz sylabusa) dla studiów I i II stopnia 1 wypełnia koordynator przedmiotu A. Informacje ogólne Nazwa pola Nazwa przedmiotu Treść Analiza Szeregów Czasowych Jednostka
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy ANALIZA PORÓWNAŃ WIELOKROTNYCH GDY WARIANCJE SĄ NIERÓWNE lsales.bim
STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie
STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie Spis treści Wprowadzenie... 6 1. Podstawowe informacje o systemie SAS... 9 1.1. Informacje ogólne... 9 1.2. Analityka...
Temat zajęć: ANALIZA DANYCH ZBIORU EKSPORT. Część I: analiza regresji
Temat zajęć: ANALIZA DANYCH ZBIORU EKSPORT Część I: analiza regresji Krok 1. Pod adresem http://zsi.tech.us.edu.pl/~nowak/adb/eksport.txt znajdziesz zbiór danych do analizy. Zapisz plik na dysku w dowolnej
(LMP-Liniowy model prawdopodobieństwa)
OGÓLNY MODEL REGRESJI BINARNEJ (LMP-Liniowy model prawdopodobieństwa) Dla k3 y α α α α + x + x + x 2 2 3 3 + α x x α x x + α x x + α x x + ε + x 4 2 5 3 6 2 3 7 2 3 Zał.: Wszystkie zmienne interakcyjne
Regresja logistyczna. Regresja logistyczna. Przykłady DV. Wymagania
Regresja logistyczna analiza relacji między zbiorem zmiennych niezależnych (ilościowych i dychotomicznych) a dychotomiczną zmienną zależną wyniki wyrażone są w prawdopodobieństwie przynależności do danej
EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA
EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA W OPARCIU O KONCEPCJĘ FUNKCJI DOPASOWAŃ Adam Kowol 2 1. Sformułowanie zadania prognostycznego Celem niniejszej pracy jest próba prognozy kształtowania się
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
Dr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski 10000 2000 4000 6000 8000 M3 use C:\Users\as\Desktop\Money.dta, clear format t %tm (oznaczamy tsset t tsline M3 0 1960m1 1970m1 1980m1 1990m1 2000m1 2010m1 t tsline
Regresja liniowa. Etapy analizy regresji. Założenia regresji. Kodowanie zmiennych jakościowych
Etapy analizy regresji Regresja liniowa 1. zaproponowanie modelu, 2. sprawdzenie założeń dotyczących zmiennych, 3. wyszukanie wartości odstających, wpływających i dźwigni, 4. oszacowanie istotności modelu
Bioinformatyka V. Analiza Danych w Języku R
Bioinformatyka V Analiza Danych w Języku R ANALIZA DANYCH Metody statystyczne analizy danych eksploracja danych testowanie hipotez analiza Bayesowska Metody uczenia maszynowego Uczenie nadzorowane Uczenie
Statystyka medyczna II. 7. Wstęp do regresji logistycznej. Regresja logistyczna prosta, porównanie z miarami ryzyka.
Statystyka medyczna II. 7. Wstęp do regresji logistycznej. Regresja logistyczna prosta, porównanie z miarami ryzyka. Dane The Western Collaborative Group Study (WCGS) badanie epidemiologiczne zaprojektowane,
Linearna regresija. 7. prosinca 2012.
Linearna regresija 7. prosinca 2012. > setwd("/home/marina/statisticki praktikum/vjezbe9") > forbes = read.table("forbes.dat") > hooker = read.table("hooker.dat") > forbes V1 V2 1 194.5 20.79 2 194.3 20.79
Analiza zależności cech ilościowych regresja liniowa (Wykład 13)
Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny
Permutacyjna metoda oceny istotności regresji
Permutacyjna metoda oceny istotności regresji (bez założenia normalności) f
Regresja logistyczna. Regresja logistyczna. Wymagania. Przykłady DV
Regresja logistyczna analiza relacji między zbiorem zmiennych niezależnych (ilościowych i dychotomicznych) a dychotomiczną zmienną zależną wyniki wyrażone są w prawdopodobieństwie przynależności do danej
Stacjonarność Integracja. Integracja. Integracja
Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:
Regresja ważona. Co, gdy nie ma stałej wariancji? Tu prawdziwe σ 2 =1 (dużo powtórzeń, więc wariancje są dobrze oszacowane) PAR Wykład 5 1/8
Dobry chrześcijanin powinien wystrzegać się matematyków i tych wszystkich, którzy tworzą puste proroctwa. Istnieje niebezpieczeństwo, że matematycy zawarli przymierze z diabłem, aby zgubić duszę człowieka
Lepiej zapobiegać niż leczyć Diagnostyka regresji
Anceps remedium melius quam nullum Lepiej zapobiegać niż leczyć Diagnostyka regresji Na tych zajęciach nauczymy się identyfikować zagrożenia dla naszej analizy regresji. Jednym elementem jest oczywiście
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Regresja liniowa wprowadzenie
Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem
Patients price acceptance SELECTED FINDINGS
Patients price acceptance SELECTED FINDINGS October 2015 Summary With growing economy and Poles benefiting from this growth, perception of prices changes - this is also true for pharmaceuticals It may
Ogólny model liniowy
Ogólny model liniowy Twórcy Autor statystyki testowej Wyprowadził wzór na gęstość rozkładu statystyki testowej Ronald Aylmer Fisher ( 1890-1962 ) angielski genetyk George W. Snedecor (1881-1974) amerykański
ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSAMI RYNKÓW AKCJI NA GIEŁDZIE POLSKIEJ I AMERYKAŃSKIEJ. Indeksy giełdowe
B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 2007 Grzegorz PRZEKOTA* ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSAMI RYNKÓW AKCJI NA GIEŁDZIE POLSKIEJ I AMERYKAŃSKIEJ W artykule skonstruowano dwa modele
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
Regresja logistyczna
Regresja logistyczna Zacznijmy od danych dotyczących tego czy studenci zostali przyjęci na studia. admissions
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Statystyka w analizie i planowaniu eksperymentu
23 kwietnia 2014 Korelacja - wspó lczynnik korelacji 1 Gdy badamy różnego rodzaju rodzaju zjawiska (np. przyrodnicze) możemy stwierdzić, że na każde z nich ma wp lyw dzia lanie innych czynników; Korelacja
Analiza szeregów czasowych bezrobocia i inflacji w Danii
Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych
Prognozowanie produkcji budowlano montażowej w województwie dolnośląskim. Część I
Budownictwo i Architektura 11 (01) 11-137 Prognozowanie produkcji budowlano montażowej w województwie dolnośląskim. Część I Katedra Inżynierii Procesów Budowlanych, Wydział Budownictwa i Architektury,
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
Diagnostyka modelu. Dowód [5.4] Dowód [ ]
Diagnostyka modelu Dowód [5.4] Dowód [5.5-5.6] Przykład > head(savings) sr pop15 pop75 dpi ddpi Australia 11.43 29.35 2.87 2329.68 2.87 Austria 12.07 23.32 4.41 1507.99 3.93 Belgium 13.17 23.80 4.43 2108.47
PAKIETY STATYSTYCZNE
. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa
Regresja - zadania i przykłady.
Regresja - zadania i przykłady. W5 e0 Zadanie 1. Poniżej zamieszczono fragmenty wydruków dotyczących dopasowania modelu regresji do zmiennej ozone w oparciu o promieniowanie (radiation), oraz w oparciu
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Zastosowanie uogólnionych modeli liniowych i uogólnionych mieszanych modeli liniowych do analizy danych dotyczacych występowania zębiniaków
Zastosowanie uogólnionych modeli liniowych i uogólnionych mieszanych modeli liniowych do analizy danych dotyczacych występowania zębiniaków Wojciech Niemiro, Jacek Tomczyk i Marta Zalewska Uniwersytet
PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH
Wykład 1 Prosta regresja liniowa - model i estymacja parametrów. Regresja z wieloma zmiennymi - analiza, diagnostyka i interpretacja wyników. Literatura pomocnicza J. Koronacki i J. Ćwik Statystyczne systemy
Modele warunkowej heteroscedastyczności
Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Akademia Morska w Szczecinie. Wydział Mechaniczny
Akademia Morska w Szczecinie Wydział Mechaniczny ROZPRAWA DOKTORSKA mgr inż. Marcin Kołodziejski Analiza metody obsługiwania zarządzanego niezawodnością pędników azymutalnych platformy pływającej Promotor:
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
Dochody gospodarstw rolnych a ryzyko walutowe
Dochody gospodarstw rolnych a ryzyko walutowe Cezary Klimkowski Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej Państwowy Instytut Badawczy Presentation plan A few words about theory Impact of PLN/EUR
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 Diagnostyka a) Test RESET b) Test Jarque-Bera c) Testowanie heteroskedastyczności a) groupwise heteroscedasticity b) cross-sectional correlation d) Testowanie autokorelacji
Knovel Math: Jakość produktu
Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających
Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and
Fig 4 Measured vibration signal (top). Blue original signal. Red component related to periodic excitation of resonances and noise. Green component related. Rotational speed profile used for experiment
STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie
STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie Spis treści Wprowadzenie... 6 1. Podstawowe informacje o systemie SAS... 9 1.1. Informacje ogólne... 9 1.2. Analityka...
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów nieobserwowalnych
ARMAX (ANN) : :. (ANN) ARMAX.... ARMAX ARMA :..Q47 E27 C53 C45 :JEL
47-70 39 7 ARMAX (ANN) 39 9 : 39 :. (ANN) ARMAX.... ARMAX ARMA :..Q47 E7 C53 C45 :JEL navid_moarrefzadeh@yahoo.com 7 48....... (ANN). ARMAX..... 90. (994)... Kuan & White Yousefi (994) 49... (993) (995).
Strona główna > Produkty > Filtry i wkłady filtracyjne > Obudowy filtrów do montażu kanałowego > Spigots > Typ KSFSSP. Typ KSFSSP
Typ KSFSSP FOR FILTER UNIT SYSTEMS WITH HORIZONTAL AIR ENTRY AND OUTLET Spigot for assembling filter unit systems in ductwork Spigots made of sheet steel with decontaminable powder coating RAL 9010 Air
Cracow University of Economics Poland
Cracow University of Economics Poland Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Keynote Speech - Presented by: Dr. David Clowes The Growth Research Unit,
Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu
Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε
Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005
Cracow University of Economics Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Key Note Speech - Presented by: Dr. David Clowes The Growth Research Unit CE Europe
O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym
Sezonowość O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Na przykład zmienne kwartalne charakteryzuja się zwykle sezonowościa kwartalna a zmienne
Walyeldeen Godah Małgorzata Szelachowska Jan Kryński. Instytut Geodezji i Kartografii (IGiK), Warszawa Centrum Geodezji i Geodynamiki
Porównanie globalnych modeli geopotencjału opracowanych na podstawie danych z misji GRACE oraz GOCE/GRACE z przyspieszeniem siły ciężkości pomierzonym w Obserwatorium Geodezyjno-Geofizycznym Borowa Góra
Ćwiczenie 5 PROGNOZOWANIE
Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,
tum.de/fall2018/ in2357
https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning
Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 Zofia Kruczkiewicz
Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 http://www.junit.org/ Zofia Kruczkiewicz 1. Aby utworzyć test dla jednej klasy, należy kliknąć prawym przyciskiem myszy w oknie Projects na wybraną
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem
Heteroskedastyczość w szeregach czasowyh
Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem
BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ
WYKŁAD 3 BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ Było: Przykład. Z dziesięciu poletek doświadczalnych zerano plony ulw ziemniaczanych (cecha X) i oznaczono w nich procentową zawartość
Dr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski Dane krótko i długookresowe stopy procentowe Co wiemy z teorii? Krótkookresowe stopy powodują stopami długookresowymi (toteż taka jest idea bezpośredniego celu
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL
Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register
Test HEGY dla wybranych zmiennych makroekonomicznych gospodarki Polski w latach
89 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Gdańsku Test HEGY dla wybranych zmiennych makroekonomicznych gospodarki Polski w latach 1996-2009 Streszczenie.
Ekonometria dla IiE i MSEMat Z12
Ekonometria dla IiE i MSEMat Z12 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 09-01-2017 Test RESET Ramsey a W pierwszym etapie estymujemy współczynniki regresji w modelu:
CWF - Piece komorowe ogólnego przeznaczenia
Informacje Ogólne Seria CWF jest idealnym wyborem dla codziennych zastosowań obróbki cieplnej, rutynowych badań laboratoryjnych. Nowoczesna konstrukcja w połączeniu ze sprawdzoną technologią zapewnia,
Regresja - zadania i przykłady.
Regresja - zadania i przykłady. W5 e0 Zadanie 1. Poniżej zamieszczono fragmenty wydruków dotyczących dopasowania modelu regresji do zmiennej ozone w oparciu o promieniowanie (radiation), oraz w oparciu
R dla laików - podręcznik ekonometryka
R dla laików - podręcznik ekonometryka (C) R Foundation, from http://www.r-project.org Autor: Grzegorz Zajączkowski 3 Marca 2007 wersja 0.1 Propozycja podręcznika. Sugestie dotyczące poszerzenia będą mile
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Algorytm k-średnich. Źródło: LaroseD.T., Okrywanie wiedzy w danych.wprowadzenie do eksploracji danych, PWN, Warszawa 2005.
Algorytm k-średnich Źródło: LaroseD.T., Okrywanie wiedzy w danych.wprowadzenie do eksploracji danych, PWN, Warszawa 005. Dane a b c d e f g h (,3) (3,3) (4,3) (5,3) (,) (4,) (,) (,) Algorytm k-średnich
OCENA MOśLIWOŚCI WYKORZYSTANIA HODOWLI ŚWIŃ RASY ZŁOTNICKIEJ
ASSESSMENT OF POTENTIAL FOR ZŁOTNICKA SPOTTED PIG BREEDING IN ORGANIC FARMS OCENA MOśLIWOŚCI WYKORZYSTANIA HODOWLI ŚWIŃ RASY ZŁOTNICKIEJ PSTREJ W GOSPODARSTWACH EKOLOGICZNYCH Janusz Tomasz Buczyński (1),
2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów
07 R. Robert Gajewski: Mathcad Prime 4 0. Calculate numerically and present results in different formats and precision. 0. Oblicz numerycznie i przedstaw wyniki w różnych formatach i z różną precyzją.
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera.
1 Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera. Pojęcie stacjonarności i niestacjonarności zmiennych Szereg
Dr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski Wykłady do końca: Niezależność polityki pieniężnej w długim okresie 2 część Wzrost długookresowy w gospodarce otwartej 2 wykłady Egzamin??, godz.?? Obie części 50%/50%.
Barbara Batóg* Uniwersytet Szczeciński
Studia i Prace WNEiZ US nr 45/2 2016 DOI:10.18276/sip.2016.45/2-11 Barbara Batóg* Uniwersytet Szczeciński Badanie kointegracji wybranych zmiennych ekonomiczno- -finansowych w województwie zachodniopomorskim
Czasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
Systemy wbudowane. Poziomy abstrakcji projektowania systemów HW/SW. Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji
Systemy wbudowane Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji Poziomy abstrakcji projektowania systemów HW/SW 12/17/2011 S.Deniziak:Systemy wbudowane 2 1 Model czasu 12/17/2011 S.Deniziak:Systemy
The impact of the global gravity field models on the orbit determination of LAGEOS satellites
models on the Satelitarne metody wyznaczania pozycji we współczesnej geodezji i nawigacji, Poland 2-4.06.2011 Krzysztof Sośnica, Daniela Thaller, Adrian Jäggi, Rolf Dach and Gerhard Beutler Astronomical
Autoregresyjne modele o rozłożonych opóźnieniach - Autoregressive Distributed Lags models
Autoregresyjne modele o rozłożonych opóźnieniach - Autoregressive Distributed Lags models ADL ADL Ogólna postać modelu ADL o p-opóźnieniach zmiennej zależnej i r-opóźnieniach zmiennej/zmiennych objaśniających
Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH
Kierunek Elektronika i Telekomunikacja, Studia II stopnia Specjalność: Systemy wbudowane Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH Zagadnienia
Strona główna > Produkty > Systemy regulacji > System regulacji EASYLAB - LABCONTROL > Program konfiguracyjny > Typ EasyConnect.
Typ EasyConnect FOR THE COMMISSIONING AND DIAGNOSIS OF EASYLAB COMPONENTS, FSE, AND FMS Software for the configuration and diagnosis of controllers Type TCU3, adapter modules TAM, automatic sash device
Oferta przetargu. Poland Tender. Nazwa. Miejscowość. Warszawa Numer ogłoszenia. Data zamieszczenia 2011-09-28. Typ ogłoszenia
Poland Tender Oferta przetargu Nazwa Dostawa oprogramowania komputerowego umożliwiającego tworzenie opracowań statystycznych obrazujących gospodarowanie Zasobem Własności Rolnej Skarbu Państwa Miejscowość
Zmiany techniczne wprowadzone w wersji Comarch ERP Altum
Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci
Yousuke Tamura Programmer Clinical Science Dep., R&D AstraZeneca K.K. 2005/11/30 1
- Word SAS - Yousuke Tamura Programmer Clinical Science Dep., R&D AstraZeneca K.K. 2005/11/30 1 Contents Background Previous method Change/Shift/Transition Current method Benefit of current method Application
Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość?
Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Wykres stopy bezrobocia rejestrowanego w okresie 01.1998 12.2008, dane Polskie 22 20 18 16 stopa 14 12
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta
Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta www.michalbereta.pl Modele liniowe W programie RapidMiner mamy do dyspozycji kilka dyskryminacyjnych modeli liniowych