STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie
|
|
- Paulina Nowicka
- 9 lat temu
- Przeglądów:
Transkrypt
1 STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie
2 Spis treści Wprowadzenie Podstawowe informacje o systemie SAS Informacje ogólne Analityka Środowisko pracy Zbiory danych, biblioteki SAS Enterprise Guide, wersja Informacje ogólne Organizacja pracy w EG Praca ze zbiorami danych Wczytywanie zbiorów danych Podstawowe przekształcenia na zbiorze danych Tworzenie podstawowych zapytań SQL Raportowanie na podstawie zbiorów danych Wybrane zagadnienia metody reprezentacyjnej Wprowadzenie Wybrane schematy losowania próby Losowanie proste Losowanie warstwowe Losowanie systematyczne Analiza struktury Wprowadzenie Tabele liczebności i częstości Miary położenia rozkładu, zróżnicowania, asymetrii oraz koncentracji Obserwacje odstające Rozkłady teoretyczne zmiennych losowych Graficzna prezentacja wybranych rozkładów zmiennych losowych Badanie zgodności rozkładu empirycznego z rozkładem teoretycznym Wybrane zagadnienia wnioskowania statystycznego Istota wnioskowania statystycznego Wnioskowanie statystyczne Testy parametryczne Test istotności dla średniej Test istotności dla różnicy średnich Test istotności dla wariancji Test istotności dla dwóch wariancji Test istotności dla frakcji Testy nieparametryczne Test znaków (test istotności dla mediany) Test serii Test niezależności χ Analiza wariancji i kowariancji Wprowadzenie Analiza wariancji z pojedynczą klasyfikacją Analiza wariancji z podwójną klasyfikacją Analiza kowariancji
3 8. Analiza korelacji i regresji Analiza korelacji Współczynnik korelacji liniowej Pearsona Nieparametryczne miary zależności Współczynnik korelacji rang Spearmana Współczynnik τ-kendalla Miara zależności Hoeffdinga Klasyczny model regresji liniowej Regresja wieloraka Analiza szeregów czasowych Wprowadzenie Szereg czasowy bez okresowości Szereg czasowy i jego składniki Wygładzenie szeregu za pomocą średnich ruchomych Wyrównywanie wykładnicze Wygładzenie szeregu za pomocą funkcji liniowej Szereg czasowy z okresowością Szereg czasowy z wahaniami addytywnymi Dekompozycja szeregu czasowego z okresowością model addytywny Szereg czasowy z wahaniami multiplikatywnymi Dekompozycja szeregu czasowego z okresowością model multiplikatywny Prognozowanie w szeregach czasowych metody analityczne Addytywny liniowy model tendencji rozwojowej Model autoregresji (AR) Bibliografia Załącznik 1. Słowniczek poleceń w SAS Enterprise Guide Załącznik 2. Słowniczek procedur 4GL wykorzystywanych przez EG Załącznik 3. Sylabus do przedmiotu Statystyka program obowiazujacy w roku akademickim 2012/
4 Contents Introduction 1. Basic Information about SAS System 1.1. General Information 1.2. Analytics 1.3. Work Environment 1.4. Data Sets, Libraries 2. SAS Enterprise Guide General Information 2.2. Work in EG 2.3. Working with Data Sets Reading Data Sets into EG Basic Operations on Data Sets Creating SQL Queries Reporting with Data Sets 3. Sampling Selected Aspects 3.1. Introduction 3.2. The Sample Selection Schemes Simple Sampling Stratified Sampling Systematic Sampling 4. Descriptive Statistics 4.1. Introduction 4.2. Frequency Distribution Tables 4.3. Measures of Location, Measures of Variation, Measures of Asymmetry and Measures of Concentration 4.4. Outliers 5. Discrete and Continuous Probability Distributions 5.1. Graphical Representation of Probability Distribution 5.2. Goodness-of-Fit Tests 6. Inferential Statistics Selected Aspects 6.1. Introduction to the Concept of Statistical Inference 6.2. Inferential Statistics Using EG 6.3. Parametric Tests Test of the Mean Test of Difference between Two Means Test of the Variance Test of Difference between Two Variances Test of the Proportion 6.4. Non-Parametric Tests Sign Test (test of the median) Runs Test χ 2 Test for Independence 4
5 7. Analysis of Variance (ANOVA) and Analysis of Covariance (ANCOVA) 7.1. Introduction 7.2. One-Way Analysis of Variance 7.3. Two-Way Analysis of Variance 7.4. Analysis of Covariance 8. Correlation and Regression Analysis 8.1. Correlation Analysis Pearson Correlation Coefficient Non-Parametric Measures of Correlation and Dependence Spearman Correlation Coefficient Kendall s τ Coefficient Hoeffding Measure of Dependence 8.2. Simple Linear Regression Model 8.3. Multiple Linear Regression Model 9. Time Series Analysis 9.1. Introduction 9.2. Non-Seasonal Time Series Components of Time Series Moving Averages Smoothing Exponential Smoothing Linear Regression Smoothing 9.3. Seasonal Time Series Additive time series Decomposition of a Seasonal Time Series - Additive Model Multiplicative time series Decomposition of a Seasonal Time Series - Multiplicative Model 9.4. Forecasting Time Series Using Analytical Methods Linear Trend Model for Additive Time Series Autoregressive Models (AR) References Appendix 1. Index of Basic Tools of SAS Enterprise Guide Appendix 2. Index of Basic Procedures Used in SAS Enterprise Guide Appendix 3. Statistics Course Syllabus 5
STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie
STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie Spis treści Wprowadzenie... 6 1. Podstawowe informacje o systemie SAS... 9 1.1. Informacje ogólne... 9 1.2. Analityka...
Bardziej szczegółowoStatystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Bardziej szczegółowoĆwiczenie 5 PROGNOZOWANIE
Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,
Bardziej szczegółowoPrzedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii
SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane
Bardziej szczegółowoImportowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22
Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoPodstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak
Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoNazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne
Bardziej szczegółowoRok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I
Bardziej szczegółowoSpis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Bardziej szczegółowoSpis treści. Wprowadzenie 13
Spis treści Wprowadzenie 13 Ewa Frątczak Rozdział 1. Wprowadzenie - wybrane zagadnienia wielowymiarowej analizy statystycznej... 21 1.1. Czym jest wielowymiarowa analiza statystyczna i do czego służy?...
Bardziej szczegółowoStatystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.
Bardziej szczegółowoAnaliza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Bardziej szczegółowoPODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
Bardziej szczegółowoZaliczenie na ocenę 0,5 0,5
Zał. nr 4 do ZW WYDZIAŁ CHEMICZNY KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do statystyki praktycznej Nazwa w języku angielskim Introduction to practical statistics Kierunek studiów (jeśli dotyczy)
Bardziej szczegółowo2008-03-18 wolne wolne 2008-03-25 wolne wolne
PLAN SPOTKAŃ ĆWICZEŃ: Data Grupa 2a Grupa 4a Grupa 2b Grupa 4b 2008-02-19 Zajęcia 1 Zajęcia 1 2008-02-26 Zajęcia 1 Zajęcia 1 2008-03-04 Zajęcia 2 Zajęcia 2 2008-03-11 Zajęcia 2 Zajęcia 2 2008-03-18 wolne
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Bardziej szczegółowoS t a t y s t y k a, część 3. Michał Żmihorski
S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach
Bardziej szczegółowoSzkolenia SAS Cennik i kalendarz 2017
Szkolenia SAS Spis treści NARZĘDZIA SAS FOUNDATION 2 ZAAWANSOWANA ANALITYKA 2 PROGNOZOWANIE I EKONOMETRIA 3 ANALIZA TREŚCI 3 OPTYMALIZACJA I SYMULACJA 3 3 ROZWIĄZANIA DLA HADOOP 3 HIGH-PERFORMANCE ANALYTICS
Bardziej szczegółowoOpisowe charakterystyki rozkładów cech statystycznych. Descriptive Characteristics of Distributions of Statistical Variables
Wydawnictwo UR 2018 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 3/25/2018 www.eti.rzeszow.pl DOI: 10.15584/eti.2018.3.46 WIESŁAWA MALSKA Opisowe charakterystyki rozkładów cech
Bardziej szczegółowoTestowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Bardziej szczegółowoWYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYCZNA ANALIZA DANYCH Nazwa w języku angielskim STATISTICAL DATA ANALYSIS Kierunek studiów (jeśli dotyczy):
Bardziej szczegółowo3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Bardziej szczegółowoRecenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN
Bardziej szczegółowoTransport II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Studia stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Metody probabilistyczne w transporcie Nazwa modułu w języku angielskim Probabilistic
Bardziej szczegółowoKrakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 013/014 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Bardziej szczegółowoMetody statystyki medycznej stosowane w badaniach klinicznych
Metody statystyki medycznej stosowane w badaniach klinicznych Statistics for clinical research & post-marketing surveillance część I Program szkolenia część I Wprowadzenie Podstawowe pojęcia statystyczne
Bardziej szczegółowoSTATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Bardziej szczegółowo3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Bardziej szczegółowoInżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Bardziej szczegółowoWSHiG Karta przedmiotu/sylabus. Podstawy statystyki. Studia niestacjonarne - 8. Podstawy statystyki
WSHiG Karta przedmiotu/sylabus KIERUNEK SPECJALNOŚĆ TRYB STUDIÓW SEMESTR Turystyka i Rekreacja wszystkie specjalności Stacjonarny / niestacjonarny IV / I stopnia Nazwa przedmiotu Podstawy statystyki Wymiar
Bardziej szczegółowoLean Six Sigma Black Belt
14.X.2011 Porządek wykładu Grupowanie i prezentacja danych Analiza struktury Analiza współzależności Rozkłady prawdopodobieństwa Literatura - Kot, S. (2007), Statystyka podręcznik dla studiów ekonomicznych,
Bardziej szczegółowoLiczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 30 zaliczenie z oceną. laboratoria 30 zaliczenie z oceną
Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Stacjonarne
Bardziej szczegółowoW1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Bardziej szczegółowoKARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4
KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)
Bardziej szczegółowoRecenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN
Bardziej szczegółowoKrakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/013 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Bardziej szczegółowoKamila Bednarz-Okrzyńska* Uniwersytet Szczeciński
Studia i Prace WNEiZ US nr 45/1 2016 DOI: 10.18276/sip.2016.45/1-14 Kamila Bednarz-Okrzyńska* Uniwersytet Szczeciński Analiza zależności między wartością współczynnika asymetrii a wartością semiodchylenia
Bardziej szczegółowoOPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS)
Załącznik nr 2 do zarządzenia Nr 33/2012 z dnia 25 kwietnia 2012 r. OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS) 1. Nazwa przedmiotu/modułu w języku polskim Zaawansowane metody analizy danych 2. Nazwa
Bardziej szczegółowoStatystyka w zarządzaniu : pełny wykład / Amir D. Aczel. wyd. 1, dodr. 5. Warszawa; Spis treści
Statystyka w zarządzaniu : pełny wykład / Amir D. Aczel. wyd. 1, dodr. 5. Warszawa; 2011 Spis treści Od autora 11 1. Wprowadzenie i statystyka opisowa 15 1.1. Wprowadzenie 15 1.2. Percentyle i kwartyle
Bardziej szczegółowoPodstawy statystyki matematycznej w programie R
Podstawy statystyki matematycznej w programie R Piotr Ćwiakowski Wydział Fizyki Uniwersytetu Warszawskiego Zajęcia 1. Wprowadzenie 1 marca 2017 r. Program R Wprowadzenie do R i badań statystycznych podstawowe
Bardziej szczegółowoFORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS
FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION
Bardziej szczegółowoWYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS
WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS Nazwa przedmiotu: Statystyka opisowa Profil 1 : ogólnoakademicki Cel przedmiotu: Zapoznanie studentów
Bardziej szczegółowoSylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 0/5 () Nazwa Rachunek prawdopodobieństwa i statystyka () Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot ()
Bardziej szczegółowoINFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne
Bardziej szczegółowoPrognozowanie liczby pacjentów poradni ortopedycznej
Zeszyty Naukowe Metody analizy danych Uniwersytet Ekonomiczny w Krakowie 876 Kraków 2011 Studia Doktoranckie Wydziału Zarządzania Prognozowanie liczby pacjentów poradni ortopedycznej 1. Wprowadzenie W
Bardziej szczegółowoZJAZD 4. gdzie E(x) jest wartością oczekiwaną x
ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych
Bardziej szczegółowoTesty nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
Bardziej szczegółowoOpis programu studiów
IV. Opis programu studiów Załącznik nr 9 do Zarządzenia Rektora nr 35/19 z dnia 1 czerwca 019 r. 3. KARTA PRZEDMIOTU Kod przedmiotu I-IŚ-103 Nazwa przedmiotu Statystyka w inżynierii środowiska Nazwa przedmiotu
Bardziej szczegółowoPROGNOZOWANIE SZEREGÓW CZASOWYCH WIELKOŚCI SPRZEDAŻY W ZAKŁADZIE ODLEWNICZYM
40/17 ARCHIWUM ODLEWNICTWA Rok 2005, Rocznik 5, Nr 17 Archives of Foundry Year 2005, Volume 5, Book 17 PAN - Katowice PL ISSN 1642-5308 PROGNOZOWANIE SZEREGÓW CZASOWYCH WIELKOŚCI SPRZEDAŻY W ZAKŁADZIE
Bardziej szczegółowoLiczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Bardziej szczegółowoProbabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)
MODULE DESCRIPTION Module code Module name Metody probabilistyczne i statystyka Module name in English Probabilistic Methods and Statistics Valid from academic year 2012/2013 MODULE PLACEMENT IN THE SYLLABUS
Bardziej szczegółowoKORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi
Bardziej szczegółowoS YLABUS MODUŁU (PRZEDMIOTU) I nformacje ogólne. Nie dotyczy
S YLABUS MODUŁU (PRZEDMIOTU) I nformacje ogólne Nazwa modułu: Moduł B - Statystyka z elementami matematyki Rodzaj modułu/przedmiotu Wydział PUM Kierunek studiów Specjalność Poziom studiów Forma studiów
Bardziej szczegółowoImię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Dr Roman Sosnowski
SYLLABUS na rok akademicki 009/010 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr /4 Specjalność Bez specjalności Kod katedry/zakładu w
Bardziej szczegółowoModele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Konrad Miziński, nr albumu 233703 31 maja 2015 Zadanie 1 Wartości oczekiwane µ 1 i µ 2 oszacowano wg wzorów: { µ1 = 0.43925 µ = X
Bardziej szczegółowoKARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański
KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół
Bardziej szczegółowoTESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Bardziej szczegółowoKsięgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice
Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Przedmowa do wydania polskiego Przedmowa CZĘŚĆ I. PODSTAWY STATYSTYKI Rozdział 1 Podstawowe pojęcia statystyki
Bardziej szczegółowoStatystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Bardziej szczegółowoImię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr
SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr /4 Specjalność Bez specjalności Kod katedry/zakładu w
Bardziej szczegółowolaboratoria 24 zaliczenie z oceną
Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Niestacjonarne
Bardziej szczegółowoSpis treści. Przedmowa Monika Książek Rozdział I Analiza danych jakościowych... 25
Spis treści Przedmowa................................................................ 17 Monika Książek Rozdział I Analiza danych jakościowych................................................. 25 I. Teoria....................................................................
Bardziej szczegółowoWykład 7 POWTÓRZENIE
Wykład 7 POWTÓRZENIE Zasady zaliczania przedmiotu(informacje pochodzą z Informatora do przedmiotu Statystyka) Ćwiczenia Zgodnie z Regulaminem SGH zaliczenie ćwiczeń jest obowiązkowe ( 23 p.3), a nieuzyskanie
Bardziej szczegółowoKARTA PRZEDMIOTU / SYLABUS
Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi
Bardziej szczegółowoWykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym
Wiesława MALSKA Politechnika Rzeszowska, Polska Anna KOZIOROWSKA Uniwersytet Rzeszowski, Polska Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wstęp Wnioskowanie statystyczne
Bardziej szczegółowoRozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
Bardziej szczegółowoMichał Kusy, StatSoft Polska Sp. z o.o.
CZY MÓJ PROCES JEST TRENDY, CZYLI ANALIZA TRENDÓW Michał Kusy, StatSoft Polska Sp. z o.o. Wprowadzenie Analiza danych w kontroli środowiska produkcji i magazynowania opiera się między innymi na szeregu
Bardziej szczegółowoWybrane statystyki nieparametryczne. Selected Nonparametric Statistics
Wydawnictwo UR 2017 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 2/20/2017 www.eti.rzeszow.pl DOI: 10.15584/eti.2017.2.13 WIESŁAWA MALSKA Wybrane statystyki nieparametryczne Selected
Bardziej szczegółowoKrakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2015/2016
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 015/016 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Bardziej szczegółowoPAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE WYDZIAŁ SPOŁECZNO-HUMANISTYCZNY. Katedra Zarządzania i Logistyki. Kierunek: Zarządzanie SYLABUS
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE WYDZIAŁ SPOŁECZNO-HUMANISTYCZNY Katedra Zarządzania i Logistyki Kierunek: Zarządzanie SYLABUS Nazwa przedmiotu w języku polskim / angielskim STATYSTYKA OPISOWA
Bardziej szczegółowoprzedmiot podstawowy obowiązkowy polski drugi
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 07/08 IN--008 STATYSTYKA W INŻYNIERII ŚRODOWISKA Statistics in environmental engineering
Bardziej szczegółowoStudia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych
Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych PRZEDMIOT (liczba godzin konwersatoriów/ćwiczeń) Statystyka opisowa z elementami analizy regresji (4/19) Wnioskowanie
Bardziej szczegółowoOCENA PRZYDATNOŚCI MODELU WINTERSA DO PROGNOZOWANIA CEN SKUPU MLEKA
STOWARZYSZENIE Ocena przydatności EKONOMISTÓW modelu Wintersa ROLNICTWA do prognozowania I AGROBIZNESU cen skupu mleka Roczniki Naukowe tom XV zeszyt 4 231 Jarosław Lira Uniwersytet Przyrodniczy w Poznaniu
Bardziej szczegółowoStatystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki
Bardziej szczegółowoKARTA PRZEDMIOTU / SYLABUS
Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi
Bardziej szczegółowo12/30/2018. Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie. Estymacja Testowanie hipotez
Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie Wyznaczanie przedziału 95%CI oznaczającego, że dla 95% prób losowych następujące nierówności są prawdziwe: X t s 0.025 n < μ < X + t s
Bardziej szczegółowoMatematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0
Nazwa przedmiotu: Kierunek: Matematyka - Statystyka matematyczna Mathematical statistics Inżynieria materiałowa Materials Engineering Rodzaj przedmiotu: Poziom studiów: forma studiów: obowiązkowy studia
Bardziej szczegółowoPodstawowe pojęcia i testy statystyczne
Podstawowe pojęcia i testy statystyczne Piotr Knapik Śląskie Centrum Chorób Serca w Zabrzu Zebranie w Domu Lekarza niehomogenna, wysoce wyselekcjonowana grupa słuchaczy, rozkład wiedzy na temat statystyki
Bardziej szczegółowoOpisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 2 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Data mining
Bardziej szczegółowoSZKOLENIA SAS. ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie
SZKOLENIA SAS ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie DANIEL KUBIK ŁUKASZ LESZEWSKI ROLE ROLE UŻYTKOWNIKÓW MODUŁU
Bardziej szczegółowoWykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Bardziej szczegółowoMonte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
Bardziej szczegółowoWprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
Bardziej szczegółowoWykład 4 Wybór najlepszej procedury. Estymacja parametrów re
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem
Bardziej szczegółowoI. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE. Nie dotyczy. podstawowy i kierunkowy
1.1.1 Statystyka opisowa I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE STATYSTYKA OPISOWA Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: P6 Wydział Zamiejscowy w Ostrowie Wielkopolskim
Bardziej szczegółowoWykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Bardziej szczegółowoKORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Bardziej szczegółowoWYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO
Zał. nr 4 do ZW WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA STOSOWANA Nazwa w języku angielskim APPLIED STATISTICS Kierunek studiów (jeśli dotyczy): Specjalność
Bardziej szczegółowoestymacja wskaźnika bardzo niskiej intensywności pracy z wykorzystaniem modelu faya-herriota i jego rozszerzeń
estymacja wskaźnika bardzo niskiej intensywności pracy z wykorzystaniem modelu faya-herriota i jego rozszerzeń Łukasz Wawrowski, Maciej Beręsewicz 12.06.2015 Urząd Statystyczny w Poznaniu, Uniwersytet
Bardziej szczegółowoKrakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/201 WydziałPsychologii i Nauk Humanistycznych Kierunek studiów:
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowoMetody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and
Bardziej szczegółowoWykorzystanie testu Levene a i testu Browna-Forsythe a w badaniach jednorodności wariancji
Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 4/18/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.4.48 WIESŁAWA MALSKA Wykorzystanie testu Levene a i testu Browna-Forsythe
Bardziej szczegółowoUczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski
Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski Nazwa przedmiotu INFORMATYKA I BIOSTATYSTYKA Kod przedmiotu WL_ 10 Poziom studiów Jednolite studia magisterskie Status przedmiotu x podstawowy uzupełniający
Bardziej szczegółowoMIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy
MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji
Bardziej szczegółowoAnkieta. Informacje o uczestniku. Imię i nazwisko: Stanowisko : Warsztat Innowacyjne metody dydaktyczne (np. learning by doing, design thinking)
Szanowni Państwo, w związku z uruchomieniem szkoleń w ramach projektu Rozwój kompetencji kadry akademickiej Wyższej Szkoły Menedżerskiej zwracamy się z prośbą o wypełnienie niniejszej ankiety. Ankieta
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE. Statystyka opisowa. Zarządzanie. niestacjonarne. I stopnia. dr Agnieszka Strzelecka. ogólnoakademicki.
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Bardziej szczegółowo