Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
|
|
- Daria Lewicka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1
2 <latexit sha1_base64="qq3/volo5ub4xouhnmbrwbu7wn8=">aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv Linear Classification y(x; w) = 1 if w T x + w 0 1 otherwise. 0, w = [w 1,...,w n ] w = [w 0,w 1,...,w n ] 2
3 <latexit sha1_base64="kygw32pos1dfqilziwku7emswic=">aaag8xicfztdbtmwfidtwcoifxtciw4sjqyx0jtubm6qjsy0nrexphbtvhev7titttijymdtlevbuepc8hk8bm+dk3baqccsnt3x9/neoucxtukhtof9qi3cur1yv7n01713/8hdr8srj09unkwmt1gcxmmhesvdefgwfjrknstlrnkqt+n5tsnbfzxvio6aeplwnisdsascew2m+ss/meudeeukfinoo3drzb3t8uu0ht4hhonorgmuy/qkjfoewthfoegjy6dwkeplukl4skbr5yik/lkgumkxxsytac+wppe4r0ihpetiny9nisarjqf3nily+0hlauay3yxczcp/asf95vvv <latexit sha1_base64="rrwoitkmjgdqscqkwhjxgrxzsra=">aaags3icfdtdbtm <latexit sha1_base64="kg9pconuuudtvxu+tjykjge44vm=">aaaeihicfznpb9mwgie9l <latexit sha1_base64="qrjfeiqscdqxz4srnutfjjul0wk=">aaaeihicfzpdbtmwfic9lcaop+vgcjcwhrjcucw7gdxnk5o46rhsu3aqq8pxndra7es20x 3 Distance to the Decision Boundary w T x kwk y(x) kwk w 0 kwk y(x) =w T x + w 0 y(x) kwk = wt x kwk + w 0 kwk < Signed distance to the decision boundary.
4 What about Data that is NOT Linearly Separable? 4 Map to a higher dimensional space in which it is!
5 What about Data that is NOT Linearly Separable? This is possible surprisingly often. This is the basis of many ML algorithms. 5
6 Polynomial Features 6
7 Wikipedia Dimension d Dimension D >> d Machine learning and data mining. 7
8 8 Mapping to a Higher Dimension How to define f? How to find the hyperplane?
9 9 Deep Learning High dimensional feature vector
10 <latexit sha1_base64="/e1iuaiazzgzwfiryssh1hy0zlo=">aaagy3icfdtdbtmwgibhb7ayon62wreiywjc2hbmzu7gznjeqcymdqypxts1xeu4tmotdilbwvtfuq6uhlo4bi6a+8dtiucrxyk1+utntdq4aois4druaj+xlu/cxancw71fxxvw8nhj9y3nm53miri2tznudqoiwcilaxtuetbnfcmisfgnukxpvxpfloapbjljxvqcxjjhnbjjlwbrnt+r4sz24qejcgfv47fy17kyfhlfky9o8lzdv2j5wxggd7azykrfh6xv1xzrswo7gzcfttd8ob1srdzzw5tmgklde6j1z6tlpl8qzthnwfn1c80yqi9jzhp2leqw3s9m91biv3ylxfgq7esapfv994ycck0nircligaof226ejp1cho97xdczrlhkl5/ujqn2kr4ule45iprk0zsqkji9rtioiskugo3s1r1pzj7m4o17yu/z0wrk6rxhu9ulmi4tdcx+2+m020hl39co/0v1dy22ez9lktmenfzuvinsvcnwxaerams7bexbertiygm7u/fkhu1/jyizgh0q+chjh8bp3l8gpix4y3glcfbwnuod4b3ho8c7zp+dvx8ukelbqefca4qaa8cp8cp42eigtajoggekrpewgphh8 <latexit sha1_base64="chc5mer7qbbr5ec0tb1jgbqaxou=">aaahhnicfzrbb9mwfidtwegotw3e4owifqmxquonofeyaajmy5n2qaxrp6aqhmdjrcvofls3ovwx/glvvmkvwelbta7hory68ff5+hjcu3fihbttx6w1bw/xh5u3hleeph32/mxm1streq0stjo4cqok7sjbqspju1izknacemtckltc20bow0oscbrxkzmjszehgfofyirvu2+r9n1xsub5sivh9afjkhund6fbucqjyd6bauq4poyzhq8kejfqqxkqo559yfdrc/87ktnxlpxqvzarvb2gzn/1uztbeccqqxp7smljlsqu3wkcbhevykc5r8baa1cpakxoc0b9vpm0ib88kaaccjqkbmtwajheqqgvem8xvah4jpuub7wi91kkc7wyzeqf2v1mo5u79qwoypgewq7ihof5yckvlqkseo4t75n22tvctmt28yaz1gfbtjv7lntb668dl8idpja9mh+nbseym6jeuhyqjm5akbjhwxsqjgo5ykr006l8gbxtlr74uak+xelrutwjruyicxovmrderlk88s7wguj/uzelpb5iwvf0ih8q5rxnzxj4dlbnhku4owqugpsoqvjvwkhn+uluyhjyphjfxhnzo+rd6qakygicqcufzm4e3sdsph Perceptron Minimize: NX E(w) = (w T x n )t n n=1 Center the x n s so that w 0 = 0. Set w 1 to 0. Iteratively, pick a random index n. If x n is correctly classified, do nothing. Otherwise, w t+1 = w t + t n x n. 10
11 <latexit sha1_base64="tdes/naocamykpu3cy8uq6pgwka=">aaagxnicbdtbbtmwgafwflyyammbxjc4weygguau7alshdqxtwotng3urh11qrzhsa3ftpc4a6iob3hlbjwad4htvwxfjawojn//z3aayp4k5ply3v+te/exltspvh7ajx6vpllb33h6niv5slmxjngs9n2sszhl1lvcxaw/srkrfsx6/uv+471rlmy8kr1vtthqkejykfoi9nbo/q/2wcrlxa4ksvnsvq3tcgv7bdpfwpe4ybx2p/ub9bp91beowahwhex51aykrmhci9tdtud4svhxseb4kifb3tm+d27vcu0ru0iuwrtog2gm7hfev/jejvk65rlz9lsyywc+jr5jetrwji6w7851s7mbt12mvg3hcfsvhm5ctfhto43wn13hntvkdrx5z9oat7prxti3hcq0f0wqgpmsg3jura31fhsnmattngdsquglidhadyurlbtws9dso1d6jebhkuplkjqbvvtrezflpfb1uha1zhatgfyfdxivfhhwx Linear Classification y(x; w) = 1 if wt x 0, 1 otherwise. x = [1,x 1,...,x n ] 11
12 <latexit sha1_base64="pbzfmmjup+5namg/ftocyz22dqw=">aaagbhicfdrva9nahmdx23r11n+b+ksgcdiuoczorvdwyxcouchmhhxt6hxjcrmkx3jjvluskyevxlfju33om/a1eo0q+utvltdy4z7fpmlbe+sjsq7r+dkze+pmxo3w/o36nbv37j9ywhx4zlpccnkswzkztscttfqqw065rhzyi7koetkozjzh3j6xxqospxtdxpy0j1mvkcgdxzpdemeizpakozyuurymkbnh5ijl+2qfn6yu2zeuxfilrebldgg5sd4yhxqpzcmwtcbhweni3bmwzqlqmnui4dz2m43c9upunbkjroqssdln4ozhsuvhlgtpe+x4ksv63k+e1n+u/6sojlf/papk2tqhdnypuevbarstxmxdwkvve6vk88ljvfz+ufqk1gv0tgu0veyklwz9wivr/l6p6hpdhfmbw2cfph8wi/f8dt/l0ncxmdwscrnrflh5z4vz2mi6lltpn9bp/wutin02/r4m0enex52ubksq2wghgqdcqqp6nav Pacman Apprenticeship Examples are state s. Correct actions are those taken by experts. Feature vectors defined over pairs f(a,s). Score of a pairs taken to be w. f(a,s). Adjust w so that 8a, w (a,s) w (a, s) when a* is the correct action for state s. 12
13 Perceptron Ambiguities Two different solutions among infinitely many. The perceptron has no way to favor one over the other. 13
14 Logistic Regression 14
15 <latexit sha1_base64="vsuhinusqzc9fjndsky+d1zfd1w=">aaaf7hicbdrnb9mwgadwd6xjljd1corissiniu3plnabtuzt2krnq2rxjqzutuo01minspy1wdrvwq1x5ttx46pgdbxw9mfsokf+/f0ijzjpipvzz/tzw7u3xt+4v/mg8fdr4ydbze2nl1mcp0j2rrzfaz+ztebkyk5vnpl9jjvm80j2+pvh5b0bmwyqnh1bjhko2dioualmxdeoeetzovamvfzqdsvnjyzflbrv7pp89oq+oz6ffum494y+ptorr99tr0vzlqmxysijeemyojamkokjbblci/lcuhnbp0kac8zvpgyxr93c0gr/lho1d7w9b9eoltrlyocs28voe/2zh8qi19jyebktdnpeyocls60skdu7n2cyyekajexalyzpmq3lxshn6uvxe9awtt1jlf30/juizdrlcs1dujm7yvat6vyfdxibvh2wyis5lubclrtmizoptpwgkpxcrourmeiv2ysve5yyyd13afhgtkwsnxmn4/oj+cabln61ca/lo/l8xy+bhym/ax6c/bt4kfio8a7ylvau8h7whvi+8d7yk+bxzhsrcqysdm3agxpkarhahgqgekbagijaiajj4gpke+at5eqbgeibdvwjj4hhyc1wizwhnio/ax6dfap8inwgfia8af5upwei6po/acgi8nx1bn0ga2cocagdh/pqnmqv3j24unzfa7v60/7owyflvbrjnpmxzje0yrtyqd6sc9ilgvyqbds2as26qx+tf6t/v4uu1zzjnhhq6j9+a633gd8=</latexit> <latexit sha1_base64="jd7jbjiqs498zhh4pun0yez8/pc=">aaafynicbdtratswfazgtuu2luu29moxg2fwbrsq9m7wy0eoxqsthcrnutguwzytuckylpzugl/abvd0e4y9weq0sb2fcqyh8/2wbgnoukhhro//2tl9mhg+fbb3fprif/ty1eud/rujq5lxkgmpy1lcdzci56evvvjzuxkqesmnyf248+mkl0bofglrgseklnkrcuata13fhrz5x/5mebgitsur2a67w8h3knwsujy3tfjj5off2lihprvm8nyuvyyxln3tbz+7mqekm7jzpgfrfxcd1mt06a7cepvuv3c0vbltq8qlfbvl07eu+t+bvzy7irurf5xloxs8kkukz7xxvbsxipizk2txufyk96wew9ksmus+zsjk+zpppwienlfy2s79uim6q5ksow3bnp8bp0n+dvwc+qxwc+qt4bpkifaq+rt4fpkm+az5lfbb56negoiertskwbpkddhdnqygkkjalofahgil4avks+bl5ekageabbvwh18a1cgvciq+av8hxwffi18dxyb+apycvgdfdtwac6upvgfhzxpv3ujcwcikcyxgyt60brkf/9odi5tnx4opvptkjb8l78pee5dp5qr6saxisrllyg/wc/b6+gb57hfq7o9vpdujagnp/agsf7k0=</latexit> sha1_base64="litsnoieonisodnkty4wotywuvy=">aaagahicbdrbb9mwfadwb7yywocn6y5pg6awosnlahixrdwntdo0phxtqkvkczzwwpxksbm2hhwervdz+cdccdoo5hpllz78+/slssv7acsl8rxfzr37a+unbxsp3uebj5883drevjbjnlhwpumuzh2fsbbxmhuvvxhrpxkjwo9yz7/q1n67yznksxyuipqnbrnhposukd012nyq9tmyxyvxtpcvrhjxxugpwttjowaifswaqkmnqsahqmdzdmroj6amrig77mguy5jlphhvuuut+7mwvarm0jrlzrpkm1h0rm34bnmc/b5ea8yu/b06rbopsnqfomwildo6d9rr6rwt2yataigtqm6zd/g6j4ho+mmsbh4kbzoq5rgrgbuyxchdd1tm3h7wagvp2/fma+yivsz20hkcjbbxvuagoblgsairkxlq9li1lemmoi3qhcwlswm9imm20gvmbjpdcn5wfbzqmwgesaz/syl57n0vjrfsfslxsuhurk5apfk/g+qqfdcsezzmisv08aawj0dvzn3wepcmuruvuia04/pdgu6i3molz9pfmzvsraiidwb7b9xag5a4fogflgdvtekhhh9afmt4kexhhh9bfm74uevdw7uw9wzvwd43vg/5pegx2t2vbdesxorgg+5btg2nlgebeqisqbgagdakja0fwz4xfgi550aawwfhula8mtyxxbmulm8nzy2/mfzg8qnhu8tnhs8slwwv6j+bercn/wkuroxpagdxygzoredhdhsq+jzqr949dnhxzr+t688e2ka7abc1uru9rr/qj3sguog6y+e788p5uf67sdpyxdxb95zlbfymgapx/a8yikrg</latexit> sha1_base64="pvvvsgkcrw7llx51ucw1dwzrc2g=">aaagc3icbdtdbtmwfafwzgxlhk8nlndztafqeuwtnybxm62axiztgtk6dtrv5thoay2os9hzg0iegvt4nh6ee5y2g7nguquj//4+sezkfhixqzrnx+7kvdw12v31b97dr4+fpn3yfhyhrzys2ieiemnpx5jglkydxvree0lkmfcj2vwv2pv3b2gqmyjpvz7qacejmiwmykwnhpuug3w6ynhbfoxsky09vfxqptarwrraxk4oycj0negrqhiw7ubmzaxqjbv4ix70oszpivpxpzfxkt9twctaoelsmdvvuke8pwzbn5groi/wbhdy4o/qaz1nlnavoddfpeiqplctqdy2bps0yrk0yqrnlqdrdac644tpud/hozwqzhgtghmixshdd5tp3h7wcgonuducdbcl1qlycrbjbli5+gufgmscxopewmp+q5moqyftxuhu7wamayljfr7rvi5jzkkcflozkuglngkgfkn+xqpms3dxfjhlmxnfjzlwy7ls1et/rj+p8mogyhgskrqt+ypclak9m9xbq8bsslsu6wktlol3btlgeo+vpk8pxxrcbody7wzyd8p+c1cg6if+wbyu5zifgn5o+zhhr5yfg35s+bnh55z3do9y3jw8a3np8j7ll4zfavewethiykudb7hvotgcwb4ericwamfobeirmdj8zpny8lhljbkbzgw44dxyybiwxbmulm8mzyy/mfzg8onhe8unhk8tzw3pqz+beecn/wier8xpcgd+ygzoredbdltl6jzqld89dnhxbrel68/nnb39xb207mw5207datnvnt3nk3pmdbzijtzv7g/359rv2lztu/zihl1xf2ueo8aovf0dl7rfpw==</latexit> sha1_base64="csak9axmy8ak8uohna7rwg/1ezy=">aaagc3icbdtdbtmwfafwblyywtcgl7s52gc1ckz2nybxm62axiztgtk6dtrv5thoay2os9hzg0iegvt4nh6ee5y2g7nguquj//4+sezkfhixqzrnx+69+yurtqdrd71hj588fba+8fxciiwltenejnkejywnwew7iqmi9pkuyu5htotftsvv3tbumhgfqzyha45hmqszwuppdtdcb/l0xokckcrzv1p6qkqgs2eisiiaif1rwfdoazaivcus2ohmybjugcvwfj3odyztfodvsi+vi3/agneacjkkyqqrpi54e9icbzajqb/hlsdkwd+h0zqbkkerqggkszfufabau61t3dzplhnplfwbhudxgq50xhftor6pcyohzsjamfiqjyo77zafup3g4fp2c6c5g2axruwx7szg2xbj5qskbmk4jrwjsjt9vjnrgwknipgo2sfm0gstkzyifv3gmfm5kgznvcirprnakfl9ixxmzu+ukdcxmue+tnksxnlzqsn/wt9t4ydbweikuzqm8wefwqr6n6udh4cllkgo1wumkdpvcmsm9r4rfz4eiumecm6x3hnkh5t95qba1up8sdgoyyu/npzq8ipdjyw/nvzy8npdzy3vgn6xvgt41/ke4t3llw2/1o4tjbcrwfyh33dfcmi4stwijebgbclqcirwygt4ypkx4wplgtmczapww7nlwnbhutjcwz4znll+y/in5rpdj5zpdz9anhuev38ci8bp/wuijort5q78xaycwig2gwix1w3uwr577ojid6el68+723v7i3tpzdl0tpy603leo3voj+fm6tjehbnf3r/uz9xftc3avu3lphrpxax54rij9u4pmfrfqq==</latexit> <latexit sha1_base64="htyjykboisytpkesmnuqqwv16qq=">aaafnnicbdtdbtmwfadwbywwylchl9xyteibyfo6g7gbtvrjbflhjrvrr1mqx3faa3esju7tkmpl8dtcwlvwnrhdjtg9sxtp5pz+thurshshmtw2/wdj896wdf/b9spao8dpnj6r7zy/sqms4alhoybkbi5lrsbd0dnsb2iqj4ipnxb996a98p5mjkmmwq4uyjfsbbjkx3kmtwtcf7u/3/zyph1b80rqqzvfrupo9+gh6psi/96l5pw+ofny3muo6w37wf4oiovwqmiq1bgy72x9c7yiz0qemgcstycto9ajkiva8kbunsdlrcz4dzuiosldpkq6kpefvdhxpunrp0rme2q67p4/o2qqtqvlmqriepqu26j5lw0z7b8fltkmmy1cfrurnwvur3rxrtstiea6kezbudkwysmfsorxbu6y5oqi55fslprkxz2uhvaodbabuh55xfvrfgl8bpkp8fpkz8dpkhebd5h3gpeq94h3kq+ad5bfa782xltlmjbgaauxuiuca+fipq8epbtwfrdwuwacfij8cnykxeoqkciggcvkefaiuqaukwfam+qz4dpkofac+rz4hhkbvfj8bccgzv8foavk8/uvvacgoijqhof2vznbqlv+9+di6vcgzerlw8brp9w9te1ekldkl7tio3jevpal0ioc/ca/ys/y26lw 15 Reintroducing Probabilities y(x) =w T x + w 0 > 0 assigns a label to each x but not a probability. We would like a soft version such that y(x) p(c 1 x), / p(x C 1)p(C 1 ) p(x). (Bayes rule) > We write y(x) =f(w T x + w 0 ). How should we choose f?
16 16 Brightness as a Feature Some algorithm brightness +1 (salmon) brightness -1 (sea bass)
17 <latexit sha1_base64="cqdm0wwhiibbu9wj1cr6p77p6ye=">aaahjhicfztdbtmwfidtwcoip9vgbokbiw20oalkdgm3kybgndzpy0jr2lfxlem4qbxydo7th4vi3mkd8dtcis644sl4ajyue7ges6l21n93to6d1ega0ex53s/a3i2b8/vbc7fdo3fv3v9cwn5wmolcytleihgyhacmjjstpqiqie1uesschlsc852ktwzezltwezvoszehmnoiyqt0vg/pn+sc8pbwbfboghcg+gqoisinpayzus7sulaaa6me31a9dtz7hq9gqj4afvf1vakolxaiuqggvpvbcybbsujprbcgjka8qfkicvngparuvwcl+aa8m+brcgqoyyjv6fwilw3pnajsk80qxyweh9os+oekcv81xnh1sayoq4qa1xrnbfmxbqmpm/larzdactzxg72lfa/htqawa38ardjtcdxbnn8eq4fzpvcjj7qjju+lqqs7ubqnphrhnpeu4xmuk44oowik6xatx1ocp3ombjfuihj6nyez/2yuigxzmaxa1l33s1lwtv7formkxnylytncey4vbhtlcvacvm8ahfqsrjkxdhcwvpckcb9jhjv+i1z4mui1shko675niurkyocfrdjmaftqtcvwo4queym/fhx0pzgjsdymn9cobkkwq5uc7pyfrhygcirdsnrdymkqc8aqfhfgsft2vo5uicacyfcmvmfxfypvw/za4acwpzh4icwbbm9avgxwlsxbbm9b/mzgz9ugzrjimjbvitb4yhfscgzxmdse0bkiybais4gnhlu8b/c+xsk1bgojzodm4slgwulk4mriucfziw8mprd40obdi48mprl42obj61/cjv4kgcxf0wwfdmgkh5awywo7 Brightness as a Feature Some algorithm brightness 1+1 (salmon) 0 (sea bass) Given the training set brightness {(x n,t n ) 1applenappleN } with tn = 1 t n = 0 if salmon, if seabass, estimate p(t = 1 or 0 x = b). 17
18 <latexit sha1_base64="szjxtdb8exyz4qzrc+0vnfad6mk=">aaahthicnztdbtmwfidtwugip9vghokbiwnu7k/jlocbsrnjgpu0uar17vrxlem4qbxycymztspyw1vyclwfttqour4twlkto/n9pqdxhdtrqbnhwt8r1qcpfx7vfh+bt54+e760vplipantgjmwdomw7jgoiqhlpcwocegniglitkdazuv+wdtxje5oym/eoci9hnxopyqrkkn+suuhdihpeyyc6vp13gzwrz/v2tcjotsnyl7bbdclec6a9tj1xeigmhqnfayaoycw0p/rnwdga9wm1oxyn4unde08szf0flbjrp/rcnn5ugeohcgoqm+hosf3flmzmtnhkbtsmzjlkvy2bqne/6/ojvnjhpom1vhdhis7sz3vl69z21y5gb7y02dnmi5mf2vhfbohthnhagcosbq2fylehmjbcubye6yjirc+rd7pypajrpjevp6whlyvgrd4ysx/xiaye3tfhlisjjkjtybeijlnrfiu1k2f97gxur6lgna8aeslarahki4ecglmsajgmka4pvk/ajxacjufpkam/ezks8tkrnb9gpeyitbezyck5y6ncvlsptwsovteymeijp4myncgtxk+r2glwu5wmniqz7dyacfjdvlcncenqxwyhurrhc5b3rv6u8erbzufkvxq40ckp9l4sckpnx6m8dontxte0nhb4w2ndxte0fifwi+kdzozkgigrykjcefjwofy466rck4mej4iejrgk9zx+edha41tqghue5jcmczdhycafwoxgk8vnmr8sufxgh8qfkjxkcjhgh8rfkx9jez0j4brkj3ov2anqncicfuqsc8fezna81enhpzvbnsy/raztvdpeq0ugq+nn0bdsi0pxp7xxwgalqnxflwxqq+qq7x3nvjdntjrq5xpmpegmmr8n+ovty8=</latexit> <latexit sha1_base64="zpvnvxpdokii0toosaq4gwnixb0=">aaagkxicfdtvt9nagafwa2xi/axyyvjmipemfbiae/ufcrejggexywxkt+d1et0u9nqmvy4ttf89/wf/b9/qa69bdt57keu2phk+37u2z7k6cabs02z+mju/dxuhdmfxbv3e/qcphy0tpz5noywrsiwiieo6lk9loelzmsoeshmnkms3kg33yqf09lamqyrcezoozu/zfqh8jbixrfolbyxvfc0bfj2u0s3k/isl3clo7tcxlmlr3njg6wvj9 Sigmoid Function P (t n =1 x n = b) = P (x n = b t n = 1)P (t n = 1) P (x n = b) P (x n = b t n = 1)P (t n = 1) = P (x n = b t n = 1)P (t n = 1) + P (x n = b t n = 0)P (t n = 0) 1 = s(a) = 1+ P (x n=b t n =0)P (t n =0) P (x n =b t n =1)P (t n =1) exp( a) = (a) s(a) Likelihood Prior with a = ln( P (x n = b t n = 0)P (t n = 0) P (x n = b t n = 1)P (t n = 1) ) 1 (a) = 1 + = (1 ) a 18
19 <latexit sha1_base64="omroygomnyzcy7stf/ads2qsua8=">aaaggxicfdtva9nagmdxm3n1xl+bvhlfbifqio5kbxrlmjxjbrbzyv07mliul0t6lhcjl8vwevnv+b8ivtw/w2tx0afpxkdtw32+szudjsxturjp+750a/n2supo6l3n3v0hdx+trt8+lbjsm95hwzrpxkglngrfo0aylpdyzakmu94nz3en3r3guhczojgtna8ktzsibapglg3x2gfknsoe6ck7j+g71n12xwepagaxpqxqn8ddtr1+nfbda7wbv581wpfn636rbjnbyli24w16s8pfgz8fnsj8aa/xv54guczkyzvhks2kvu/lzlbrbqrlee0ezcfzys5pwvt2vftyyldnbr12x9ivyi0zbv/kulpvf8+oqcykiqxtkakzfys2xbzo+qwj3w4qoflscmwuviguu9dk7nqf3uhozkw6sqnlwtjf6rirtztm7g47wudu70xzi3vdzznx1gt6zrvqnug6ru29jcgr6xrtknsf0e7/cwur2gz2fkmiz4m8pqmcvbokpjsqhtvexttoopgly6skkqqcck/ue4n5em8c6pva95efad9afgj8epkj8bpkhead5f3gxeq94d3kz8dpphu0ufbquhsfehiinafnykmibbek4hgemqos4anyefarcifaifagguvkgfamuqfukjfas+qxwc+qxwk/rd4gpky+at5b/xj5/ddgnk2of68gj2bwhijdgozawd5m/cvhjx5otzz9o3/z2tj5mh+srpjn5dlpep+8itvke2mtdmhkg/lbfpjfjevgq+e1tq7sw0vzc54qcdte/wzwzlsb</latexit> <latexit sha1_base64="eaqva9z9oy6pf9vbuq+ypqyauey=">aaagqhicfdrbt9swfafwfebhmthgo027wendgazquwwxjeshgeiwtqk0qk4qx3fsi9ijhkdnlewd7rdvmqcuba9mwgr09h7/oimt2ksinupg41dtafnzsv356gv35dr6q9cbm29u0jhtlhvohmwq55gurvyyjuy6yr1emsk8ihw9u1bl3tftky/ltz4mbcbikhnakdgmndyyyi+fxbyk4qhck12cqrgnszkooef5/gnc2j0ojdo+qu0dpzrhzz+5uea7fad7yqynpbrkh8d2vgum2uuuztj/enbwy6tx0jgnzbfnebhlzed7ulnydvsxzqstmkyktfvnrqihbvga04ivls5slhb6r0lwn6ukgqwdyrzcjfpooj4kym 1 Parameter Model In theory: a = ln( P (x n = b t n = 0)P (t n = 0) P (x n = b t n = 1)P (t n = 1) ) In practice: These probabilities are hard to estimate. Introduce a parameterized model and choose the parameters that maximize its likelihood. Model: a x B y n = P (t n =1 x n = x) = (a) = (x B) 19
20 <latexit sha1_base64="hnh5li4qkqqwl+glkghelmsedzs=">aaagyhicfdrva9nahmdx23r11j/b9jh65haou7s2iiiimdbh3gbzwrp2nkvclpf0wo4s7i7bssjl8nx4vf+et30lxruk/vqbc7t8um83axolcfnuwtds/pybv3z9oxzj8wb91u07d5ewv+4d2awwxlr5lmamgziruqlf20mxim5ubfnhkjrhyebyo6fcwjnpqzfkrv+xrmtycub80md5fq1iw3gzbvvltffrsp/sd5qgtladtddg/u0ldqp9zk+9p436yhm12whodo <latexit sha1_base64="z7c6amlqww4cwmlfdro+e1vt9na=">aaags3icfdrva9nahmdx2zrzxn+dplkfbicwh4x0t/sjmdrl3gbzqrt2nlvclpf0wc4jl8u6egk+gp/qg/ef+dp8jj7wmlx0199cooxhfb5jmopgz2kra9f9vrr846a1cmv1tn3n7r37dxprd0/ytfcmd1kap6rv05zhiufdlxtm+5nivpox7/lnuzpvnxoviztp6gngh5jgiqgfo9osjrppvihd+rj Maximizing the Model Likelihood p(t =[t 1,...,t n ] x =[b 1,...,b n ]) = Y n y t n n (1 y n ) 1 t n ; (Naive Bayes) E(B) = ln(p(t x)), = X {t n ln y n +(1 t n )ln(1 y n )}. n de db = X n X (y n t n ). +1 (salmon) 0 (sea bass) B* s(x-b*) B = arg min E(B) B 20
21 <latexit sha1_base64="u8b5qlgetfg5o02gxzrcuffetgy=">aaagixicfdrva9nahmdx2zq649ttofgkoaqrgalp9kfqy9ygc0k7djrlxc6x9fgucxex/ihkdfjun+krexwgvhuvwuv//c0fwn7c55s0cftcihxa+p6pre07d51793ceua933uepn+ztnuu8viwpwz7mahxszvor8aerjuxjqneqw5spwqtu46m5v1rk2ccscj6vnmlelbg1dunscu/ap/tbw8ndzz0ckpvxue88dakclzjnhqvu60nhl8y0osoilvladurnc8quamindsyo5hpatfdzey/ssutfubkfzhjt6r9nvfrqvzkhlsu1m71pzejnniln/g5aiawodc/y9q/fzeqz3gse2oue4sykkztqpos9v4/nqklm2ffjbh+4frbf+/a6nwquqmnvqyqgkpf0wdtns4lxzxrbkli/oz3+f2qr2kz9viwrbsjvtqqgv1db8wbcsorvtesggv+wxeqarvuq9uqjp10hcrtapwj+hpwy+dhye+anyafab8ihwifir8bhymfax8gvgf80l2ijokcg6aoh8ba5a86qrxeiihtemqhifctae+qz4dpkqobaoeacl8hz4dlya9wgl4gxyofa58gxwbfil8cxyffav+hfik//boym1enmfwqfbn0udghqtyhdszuboycezt8cduz82sc75bl5tl6sdnll3pop5iwmcsmr+uk+ot+c787p6z13e2u9+e4tcdi/fgo8fzoh</latexit> sha1_base64="v+62nktsd0qly1tskucve3kostk=">aaahlxicpzrbt9swfidtdlawsqf7m/zigyykgijzy/acnmeqf4mbrglrxvwo46qwsvmldrsk8jp3sn+ylzlpyzyaiu2z1ojoff+olzm1n4x4qhznz63+ym7+zwphlf168c3bpewvxas0zhlkwjso4qtjkzrfxlkw4ipinwhcipai1vzu9krevmvjymn5qczd1hmkldzglcid6q/ujpzyygvoih7kzcie9yva30e45aegzdhw7gbc2mzbqmjua1ig3n8tsgu4trdtpu5sob1ultqsii4el8grbjapaj0umxbxv6/mmoyr30b/ontdal3v9dpzu1tgbajcz8makvg/q1ivdm9jjv37k52a/vkas+1ua5mbow3wrok476/mv8d+tdpbpkirsdou6wxvlyej4jrihy2zla0jvseh6+pqeshsxl51roe+6oypgjjrp6lqlx38rk5emo6fp01b1ccdzwxykdbnvpc1l3m5zbstddjrkevixahsm+tzhfevjxvaaml1whedeh2csjejjb8zvzeenei6z0owebunmzkmiw6fuah3fujpzfscyow9qko/ibohtvy9n1fepyinlrzvfzkut8dz8v2isg0s2r2nhsd642jvv+g6vakqvalkb4afgpwi8codhwn+bpblwc8n3gk8zfa24g2ddwdvgpwa8ovyggymagxivpaa9wxoaacg930g+iyqbeaidceepdt4apcbwtkhajceabgweax4bhafudj4bnhm8fvabw1+b/idwueajww+bnxs/eve6r+bkig/na0gtqbwygh7 sha1_base64="wivsrub7cdrumssvlzvvhf7cmmw=">aaahohicpzrbt9swfidtdlaw3wb7mvzigyy6nfcyl+0fcceqf4mbrglzxvwo46qwsvmldrsk8jp3sn+ylzlpyzyaiu2z1orofj/psv3x3jdiqxkcn7x6k7n5p42fz/bzfy9fvv5cenorxllcwyvguzx0pjkyievwulxfrdnmgbfexnre1u7j29cssxksz9v4yhqchjihnbklu/2lmsqec7nmscrduvby475eq5sipzwupdla3/6imlzxkbca+xowkpe3i1ibttnf6/cth9emkkutvurh98vgsdblvihuik2iq6txpyx+5wz0r0pxrdzvtz/p766dfabyp3drqod/rgk12r2nmfrvt3yc+osrzoztdwqg7jrysabjtl80/w77mc0ek4pgje27rjnuvzwkitoiftboujyk9iqerktdsqrle3l1mwr0qwd8fmsj/kifquz9gtkratownjyfuyn0lpxjh1g3u8hxxs7lmfnm0kmjiiuqilf5zzdpe0zvnnyboqnxa0v0qprxkn0zbfyn6b0k7ejxprmyhkg4wcsxsft1grv6byh+veapivzeijr6m6gvpnaq70cuusniysxhu0woyxpwvhy3kgwbs3zdyygi/ngxt1t0nd5uccob8j3a9wx+apibwq8bpzt4oednbm8b3jj4g/c2wtuadwx+cfhleuazbgegmsp4ghsgp4btg/s+ehxdcaigbiyqah4afad4wocca4ebggbcgdwgpda4alwzpam8m/g14ncgvwh8xuajwecghwm+nv4l4vipqemuh89weedqodke sha1_base64="4ny7wirajkcjqde6a1tejg4nlws=">aaahohicpzrbt9swfidtdlaw3wb7mvzigyykwlhdy/achgcii8rnorssrirhcvkl2kksb1pf+zl72g/zy5y0me7nkkzzanv0vs/n2k5rdxjyrdwbpyvvz3pzz2sll+yxr16/ebu49o4yidkyshanwijuucrhizespbgkwwcymylcklxd692ct29ynpbixqjxkpuecst3osvkp/plfyldfnczkzahcj23x32jvrcqtnggsh3u2fldgnvyjwnnpa1zlhk7eaeap+6gxspegtpcran1kujoyrkcynqrytf9sqlxdpwyh9gvmi3+dei65brk9jp9nqzyasr2c7+gev7pklbl3duyse/uzcegv7js3giwa5mbmw1wrok46y/nf8berfpbpkihszku0xyqxkzixwnichuncrssek0c1twhjiilvay8gtn6pdme8qnyf6rczfbhjiyijbklv5ucqeeyy4rky6ybkv9rl+nymcom6asrn4zirai4zsjjmamqhoua0jjrtsi6ipo4lb6mnv7g9f5idqzrng5ztfqur2eyxpr6jhk9twb/lqknrc7vrb39tdqxumvl9xokkbxxujlhvtzdxqm4brax57anjbulkrbe/7jy3cu7zd5u8esb8n3a9w1+cpihwy8apzl4beaxbm8b3jj4g/c2wtuadwx+bfhvcuazbgegmsq4glsgp4btg3seedxd8h0g+iyqab4yfad4wocca4ebggbcgdwcpdk4alwzpau8nfgn4dcgvwx81uajwecghwm+nv4l4uspqemyncxwemdqodae <latexit sha1_base64="8ofevy7+ai92vicmflv9gq1x5hw=">aaahgxicfztdttswfibtnjrw/zxtatqnntrugfqnn5uekbcsyidb2erpuv1vjuokfrftoq6lirix2dpsbtrtrvyge4w5pww7ncnsk5pzft7xt2pvgpfenxo/s3n37s6x7y3crzx4+ojxk+ri09mkthvllrphsep4jgerl6yluy5yz6gyev7e2t75bshbf0wlpjynejxkpufcyqnoitapfvux9ljizuyihsrvvikatz0vtiy20drcssr6euem6eiwstq299eo5hpouitfbvjq5m1tjuoi4wr+xmobjkrfi4qdrwjmn/pm38nr8hay6tzm53v3bdqt6plqcg+invmq3dyuql2xk+r8gdcmqhcdydk/nlm/utsonyyn2ye7dzacatvul84/x35mu8gkphfjkq7bgoperptmngj5bacjgxj6tklwnaekgiw9bliloxplmj4kymv+uqnj9t8egrfjmhaemqxrg2swfcmbwdfvwdtexuuw1uzsqxcfayr0jir9rt5xjopobajcftdjrxrazczo8xvu8dtm5qlyoan7ycgu0bfaztbroscxuzlbinek6dary2vrrp8te7poeta53qkiisjuvjjsvhpcridnzc08r1swzcmac0hmtmkvmxcbvakqtati9wdfs/g+4pswpwd8woingj9yvav4y+jtwnsw7wdesfgz4gffas0ybbjequab7 Computing the Derivatives We have: y n = (x B) dy n db = (x B)(1 (x B)) = y n (1 y n ) d ln(y n ) db = 1 dy n y n db d ln(1 y n ) db =(1 y n ) = 1 dy n 1 y n db = y n Therefore: E(B) = X n {t n ln y n +(1 t n )ln(1 y n )}. ) de db = X n {t n (y n 1) + (1 t n )y n }, = X n (y n t n ). 21
22 <latexit sha1_base64="cjq3woqyyfvhps76f18xrztgqtm=">aaagg3icfzrpb9mwfmcz0cii/zy4crfyh9qxvkkvikghawmsl40hdwunulso67br4irznlwryffgwlfhwggeocfx4ntgz9mom22w0jz598vl86tjj/tcifvw34xfw6xy7ttld8179x88fls88vgocmkgyseovib1hbqrz/xjixe5rzohi4g6hmk7jzukt88ii9zab/ekjd2krr47ddhicqq/urlx4fucpctihulj9yfhiadsxuderhrnuyhvcenf5k2m61+ymrrwjnyr9llfmxyaofqar8ddveaqzxxh7kapaukfthbakfihajrttgv1cmeo2llqeufjnqi/1vhxgbc03iowgdqbfri4gnckfkzxcyfzjfmcp9p4wyfpnd4p8kngpwweadwpnidu/xcw8st+faa6pwt7bwfhf3au4jcr6wty6ipgulkemmfvin0bfaky5howwxowks8ahwxhiakzvuw5tdytpdfmgxdgfjrz0kylmt9rsahgaywgkjnbvfs3uuiiwgkpsa7h3jvtvngyhyttsfohke+hcsyyaoojkqobnbi3qhuwhkzghbgqaird6awj6lurapdlakivhvzwxlozgyyksqkzjypjkesycbvttf6vvkmanget5nickkk1a+bmryvyu3xsqqblfu36vq1i9pdxryavdvam7dxynfjx0f/+dqcbjinxufyyo6hrwyhvyeocu9gjspw4irkeezqixrn6ijkoj7kzlqvrcmyahggtl89bnjv7hea0ihlqsfptlmieqcmrwdfmw1c94fphzimpz180jd3aa6aosjbwgchcs2sasoyniweei/k/chmcqiby80subkfnhm017a/n1a3tvb1lxlpjmve1boolsww8mw6mqwoxppe+lr6xfps/ll+vf5z/naulc/kztwxtlp/8a4bidsq=</latexit> Linear Model p(c p(x C 1 )p(c 1 ) 1 x) 1 = p(x C 1 )p(c 1 )+p(x C 2 )p(c 2 ), 1 = 1 + exp( a), = (a), where a = log( p(x C 1)p(C 1 ) p(x C 2 )p(c 2 ) ). > We write y(x) = (w T x + w 0 ) (Bayes rule)! 1! 0 22
23 <latexit sha1_base64="uw+e66n5cjpg/0ecbfeyqkcyxt8=">aaah1xicfztdbts2fiavr607dwub7wbabg6wbjbbj7b6s2hbgkjz1rvasg6i6xsma1aujrmvkywi/anod8vu9xj9qb7nknlew7aradnh5/t4eetrioqmlwowel/t+ezgzvvd25/7d7748u69+7tfvszzshi6jhmwy4silzrjgg4vuxm9kctfpmrokhpz3pdrnmqs5ejcrqo64tgvlgeek5oa7u68+y2xogyulmrmmjfcsrxsiw3bcir6aiqgn9uhoixeglh/ndwa6n2axyxkcvung5i59kafgtchbyuznlmfrtrlqtnlgaxeqwe1d1aekflwf6bo0ymf4bdzaspkhpsqq6l4ru05u19dcadnwiz1wochbrbqerwbuqxwdihh+vihz5jnktzbk1r2zdq0djmfmgvognab7vgvdiayevxtondu7jtppthj4wmqk970okg9y6zter5c0hrnur0mf2xbnb/+a3lbcri4yvchftavn3wdzta2ugq2vj196cmq4ivbnr2/nzgctapcinwee95mvjju3vwgxtmpobwkzlgsx+ggubonpwiko7wpqpiwmlzbkr2bugboy4luz1mn35tmdik5gekufltzqzm05mw54pexovaz8jprkh9j40olp000e0wlqcdrhziqa5vdczghzpisla1mgilkplcgmywxueyi++hxau5f0lnt94+csqxy+uajlfool7w5txt1m+htihnb0ut/j5ysnvr7+qmftwr/uklrsa1rswnrpe/q2veroausc47nk0xrst0etdzc0go2f2rxpw5/zvfndn9u8ecop7f4ucohfh86fgtxkcmvlh7h8fcwf9vs0dudwwz2kkqwjxxole4chsewedtcklhc4gipxvohzyw+czhjlsacgvucozy3eo5wzxhl8mrilcpnfp87fghxhcoxfl86fgxxlfmv4wcfbiizfxa9aj+1hvnholaf47p5l4bx35xu8plrywjipx/tpx6yeave9r71vvmcl/r+9b57v3svvkfhonc6yefnzlf31k27b7t/r9xozmbo1541uv/8c/dptzk=</latexit> 23 Logistic Regression For the training set {(x n,t n ) 1applenappleN } where t n 2 {0, 1}, wehave p(t w) = Y n y t n n {1 y n } 1 t n ; (Naive Bayes) E(w) = ln(p(t w)), X = {t n ln y n +(1 t n )ln(1 y n )} ; n re(w) = X n (y n t n )x n. > The objective function is a differentiable function of the parameter vector, which enables us to use standard optimization techniques.
24 Height and Weight 24
25 Addressing Perceptron Ambiguities Perceptron Logistic But. 25
26 Outliers Can Cause Problems Logistic regression tries to minimize the error-rate at training time. Can result in poor classification rates at test time. > Support Vector Machines. 26
27 From Binary to Multi-Class k classes. Naively using k (k-1)/2 binary classifiers results in ambiguities. 27
28 <latexit sha1_base64="fmrdnwx/mzztdtjx29lo1xjqvwa=">aaae1xichvjnb9naehvmomv8txdkmqkhsqfedjmahipk4ycekhxutkmyabterjml3t2wxjcxlm+ikxeu8c/4mfwb1q6rnh+oi1k7njdv3uzo+koqrdp1/1bsa9xrn5awbzq3bt+5e29l9f5hjgnfajpiukqwjymamkgbmumqtkakyu6h9mgfvs3xo1oqiibfgu5gtmnxx7caeaxnqltqlygf9plimaacfawzg3ipah9qqeicrsbx0eegoacuaqm4u3os7rco/mkgbapyx93hyye5j/auct91ag2nlpooepzrgy9j0cmqgvq9ymczgvl5oytwc6ajmpg5n+a1uavkknorfbfgryficuondxdkg9avaiufkyezawteum8wyawboxvwab2ctubomxp3kizc7eecdxxan1h/oe0bcgzipbyoq0chgucpm/lcl5muwabzcettomcu+vny5bngqb0jrqakmheiyp7t5hvnnhxere/ykxx/53pvrqy5dbcwmhe80lmzstvvrlb+oj4kmadcf5vs9tyr7qryaubcfjhiii4wgei+brtxye6jtlqsbaaptasxr5p5hiyiepmryh5fcfdnjsd6em1iexar1o518lktmjgknrxktciiq9as8v2hhlou6daxdiakmv6bdldcrjs1n/sm6jhizrf5gus3srbbsvgu4gdpk8tm8omp/njgmwl6kkhpfrhp4em5fdkft+bwzapp5hrgexcjbifpxpyp2psd67xzunxw3ib3cwttz7cc+bl10hpk1s3pemhtwo+tfatpevvyp+1f9u/qutwrfqt+p0u1kyxngtvl1r//acjshzu=</latexit> Linear Discriminant K classifiers of the form y k (x) =wk T x + w0 k. Decision boundary (w k w j )x +(wk 0 wj 0 ) > 0. Decision regions are convex. (w k w j )x A +(w 0 k w 0 j ) > 0, (w k w j )x B +(w 0 k w 0 j ) > 0, )8, if x = x A +(1 )x B, then (w k w j )x +(w 0 k w 0 j ) > 0. 28
29 <latexit sha1_base64="a96wcfnu70qndyxd60tloaedaxg=">aaadg3icbvfdb9mwfhuwbqn8dfaid1c0seotqqrcgpehmv6qxqqhrvunpkso67rebcckdk2i8rpgv/bvcnkkkqa/+oiec889utepouuvbf82dsw7u3fv7d3vpxj46pgt/v7tyztkeklhjojrmvfxsjmtdkyy4nqsjxqln9mrp/xy81ffazkysf6oiqyzgresbyxgpute/5fr0wwtjvnusb+06vxcgoj1aghhoe21vrddfibaugiirpssxugfb66fv4yjcp2vf3690h8oh1bjwwvwjh90+0kcvbp+ahllgyrwpmcffraarl9g76hwbhpo1umacw7wdbisfopqgupyvm5vu3r9gt20mwdd4gzaag3eubdv/htneckelaqjmhxswm1knchguhz0s5tgmir4qacasixooiubbvfwslfmta4gkgqa6r8djrzpwghfkwvwy3sbq4v/46azct7nsibjtffj1oocjnelqq8fc5zqonihasyj01mblhgcidjh0uurdeuiibdejetpqqk9k916ih+uk6ra4q9b/hvvbruolkb1dfytftxh8xafd/iixredaolsvkawl8+qsh/a2t5rf1yoho49dl6mbscnm5pvoefojtpadnqljtendi7gibgvjbpj1phs7pqh5sh8s5bugjuez6j1zkm/z4w <latexit sha1_base64="2et/ai+plmjfzmmmgmhzou9y5bu=">aaag3xicfdrnb9mwgafwdiwywtsgehcufhmtmhbqjig4ie2mawztxpdatvmdisdxum9xejlo2yjykrviygfgcnwfvg1o22l1pbbu6al//zyx3tr+ftnctfp/gks3lm82b63ctu/cvxf/weraw9m8ltgmhzzgke/5kccxtuhhubgtxsyjyn5muv7ftu3diee5tzo2kdpimhqlnkqyctxlrtueq59enklqtknku9oxyomtgihhdi29cwafjqnsqx8kvfpp7avvywkg7l9izlvhtelrb+cye+eolbwwaj Multi-Class Linear Classification K classifiers of the form y k (x) =w T k x + w0 k Assign x to class k if y k (x) >y j (x) for all j 6= k. k = arg max j w j T x y 1. y K 7 5 = 6 4 w T 1. w T K k = arg max j 7 5 x y j 29
30 <latexit sha1_base64="a96wcfnu70qndyxd60tloaedaxg=">aaadg3icbvfdb9mwfhuwbqn8dfaid1c0seotqqrcgpehmv6qxqqhrvunpkso67rebcckdk2i8rpgv/bvcnkkkqa/+oiec889utepouuvbf82dsw7u3fv7d3vpxj46pgt/v7tyztkeklhjojrmvfxsjmtdkyy4nqsjxqln9mrp/xy81ffazkysf6oiqyzgresbyxgpute/5fr0wwtjvnusb+06vxcgoj1aghhoe21vrddfibaugiirpssxugfb66fv4yjcp2vf3690h8oh1bjwwvwjh90+0kcvbp+ahllgyrwpmcffraarl9g76hwbhpo1umacw7wdbisfopqgupyvm5vu3r9gt20mwdd4gzaag3eubdv/htneckelaqjmhxswm1knchguhz0s5tgmir4qacasixooiubbvfwslfmta4gkgqa6r8djrzpwghfkwvwy3sbq4v/46azct7nsibjtffj1oocjnelqq8fc5zqonihasyj01mblhgcidjh0uurdeuiibdejetpqqk9k916ih+uk6ra4q9b/hvvbruolkb1dfytftxh8xafd/iixredaolsvkawl8+qsh/a2t5rf1yoho49dl6mbscnm5pvoefojtpadnqljtendi7gibgvjbpj1phs7pqh5sh8s5bugjuez6j1zkm/z4w <latexit sha1_base64="2et/ai+plmjfzmmmgmhzou9y5bu=">aaag3xicfdrnb9mwgafwdiwywtsgehcufhmtmhbqjig4ie2mawztxpdatvmdisdxum9xejlo2yjykrviygfgcnwfvg1o22l1pbbu6al//zyx3tr+ftnctfp/gks3lm82b63ctu/cvxf/weraw9m8ltgmhzzgke/5kccxtuhhubgtxsyjyn5muv7ftu3diee5tzo2kdpimhqlnkqyctxlrtueq59enklqtknku9oxyomtgihhdi29cwafjqnsqx8kvfpp7avvywkg7l9izlvhtelrb+cye+eolbwwaj Multi-Class Logistic Regression K classifiers of the form y k (x) =w T k x + w0 k =s( ) Assign x to class k if y k (x) >y j (x) for all j 6= k. k = arg max j w j T x y 1. y K 7 5 = 6 4 w T 1. w T K k = arg max j 7 5 x y j 30
31 <latexit sha1_base64="e+skd7wqfsnvy7n4rsahcgbbc+o=">aaahu3icfztrbtmwfedtsa2jmnjgbykxaxoohv3vjgeqjqsjuo0nbqypxyvqejmuk7qnnza4a6uqd+breiup4yfv4qun7wcuxyylvb3n+n46tmz5lg1ftfort3rrewu1v3a7cofu+r37g5spzkmvcjbpyc/1go6fqujstlqccpd0/iagzrmkby3qkw9fkcckhm+kqu96ddmc2hqjivpmzm4lwsshpcafoqocnn1jcgd4rcjq5gh8adcalab4cl7jc9obwjgazoixktkqgqtemiyyobzmddmczjy3icgyioh8juugz8tcy3p0qzkwbm+ajahcb2uayfc5yz3zezskqvmrg0qlus78d6v5592sdqfz1wgim+yj2cjlxxiaxukpkwdhwghyzllovq9kxmmlyql+rmjwqphohca7wbfhot+apb32qauace9fushmxna1us0g0ipapng25upm3fx5bpsejhjharsodlu1qi96mqoexs5jcjakiy/wcdmkk0oogal7cbabcxgim31ge4g8uabz9uqmglewndjlmgyjqbji0ur1rbsj+2uvptypbof41sioxca8kd4aoe8dgou7lqhcazx/feabknsu5anugg+ixetatmtd9z4jkpccnriiwgfoksi1obccrjejlf+kmvqfgfjhatnndqrlfha9esngesp0dlhw3eisqgfymsyey0jullqasbfamwt2jqj8uoghgj9s+jhgjxv+rpgmwpsabym8pfg2wtsa7yi8o/gpcv+y3qafaykg0ipycrc0jhwond7vk0jfe2xbewxncbtuahyg8ihgkvueqglm4uzjnsi9jqufc41hco80fqhwc42pft7w+ethe41pft7v3hj2+k/ayi1pfyuwe1u40ys6ktst9cytlz6cenc+v6nj+mpe9shr+am6zjw2toyiutnegafgw+pmabk49zx3lfc992p15+rv/fj+eayu5ezzhhrkyk//as/klsc=</latexit> 31 Multi-Class Logistic Regression p(c k x) = exp(a k ) Pj exp(a j) with a k = w T k x + w k, X X E(w 1,...,w K ) = t nk ln(y nk ), re(w) wj = X n n k (y nj t nj )x n. > The extension is to the multi-class case is natural.
32 Multi-Class Results 32
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
tum.de/fall2018/ in2357
https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
Logistic Regression. Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech
Logistic Regression Machine Learning CS5824/ECE5424 Bert Huang Virginia Tech Outline Review conditional probability and classification Linear parameterization and logistic function Gradient descent Other
Gradient Coding using the Stochastic Block Model
Gradient Coding using the Stochastic Block Model Zachary Charles (UW-Madison) Joint work with Dimitris Papailiopoulos (UW-Madison) aaacaxicbvdlssnafj3uv62vqbvbzwarxjsqikaboelgzux7gcaeywtsdp1mwsxeaepd+ctuxcji1r9w5984bbpq1gmxdufcy733bcmjutn2t1fawl5zxsuvvzy2t7z3zn29lkwyguktjywrnqbjwigntuuvi51uebqhjlsdwfxebz8qiwnc79uwjv6mepxgfcoljd88uiox0m1hvlnzwzgowymjn7tjyzertmvpareju5aqkndwzs83thawe64wq1j2httvxo6eopirccxnjekrhqae6wrkuuykl08/gmnjryqwsoqurubu/t2ro1jkyrzozhipvpz3juj/xjdt0ywxu55mina8wxrldkoetukairuekzbubgfb9a0q95fawonqkjoez/7lrdi6trzbcm7pqvwrio4yoarh4aq44bzuwq1ogcba4be8g1fwzjwzl8a78tfrlrnfzd74a+pzb2h+lzm=
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
Maximum A Posteriori Chris Piech CS109, Stanford University
Maximum A Posteriori Chris Piech CS109, Stanford University Previously in CS109 Game of Estimators Estimators Maximum Likelihood Non spoiler alert: this didn t happen in game of thrones aaab7nicbva9swnbej2lxzf+rs1tfomqm3anghywarvlcoydkjpsbfasjxt7x+6cei78cbslrwz9pxb+gzfjfzr4yodx3gwz84jecoou++0u1ty3nrek26wd3b39g/lhucveqwa8ywiz605adzdc8sykllytae6jqpj2ml6d+e0nro2i1qnoeu5hdkhekbhfk7u7j1lvne/75ypbc+cgq8tlsqvynprlr94gzmneftjjjel6boj+rjukjvm01esntygb0yhvwqpoxi2fzc+dkjordegya1skyvz9pzhryjhjfnjoiolilhsz8t+vm2j47wdcjslyxralwlqsjmnsdziqmjoue0so08lestiiasrqjlsyixjll6+s1kxnc2ve/wwlfpphuyqtoiuqehafdbidbjsbwrie4rxenmr5cd6dj0vrwclnjuepnm8fuskpig==
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta
Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta www.michalbereta.pl Modele liniowe W programie RapidMiner mamy do dyspozycji kilka dyskryminacyjnych modeli liniowych
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav
Supervised Hierarchical Clustering with Exponential Linage Nishant Yadav Ari Kobren Nicholas Monath Andrew McCallum At train time, learn A :2 X! Y Supervised Clustering aaab8nicbvdlssnafl2pr1pfvzdugvwvrirdfl147kcfuabymq6aydozslmjvbcp8onc0xc+jxu/bsnbrbaemdgcm69zlntaq36hnftmltfwnzq7xd2dnd2z+ohh61juo1zs2qhnldbgmugqt5chyn9gmxkfgnxbyl/udj6ynv/irpwlyjkspokuojv6/zjgmbkr3cwg1zpx9+zwv4lfbouaa6qx/2homnmjfjbjon5xojbrjryktis08nswidbhrwspjzeyqzspp3dordn1iafsunp190zgymomcwgn84hm2cvf/7xeitf1hgzpmgxxwupcjf5eb3u0ouguuxtyrqzw1wl46jjhrtsxvbgr988ippx9r9yx8ua43boo4ynmapnimpv9cae2hccygoeizxehpqexheny/fampdo7hd5zph3bqvc=
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
Neural Networks (The Machine-Learning Kind) BCS 247 March 2019
Neural Networks (The Machine-Learning Kind) BCS 247 March 2019 Neurons http://biomedicalengineering.yolasite.com/neurons.php Networks https://en.wikipedia.org/wiki/network_theory#/media/file:social_network_analysis_visualization.png
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
Nonlinear data assimilation for ocean applications
Nonlinear data assimilation for ocean applications Peter Jan van Leeuwen, Manuel Pulido, Jacob Skauvold, Javier Amezcua, Polly Smith, Met Ades, Mengbin Zhu Comparing observations and models Ensure they
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Klasyfikacja naiwny Bayes
Klasyfikacja naiwny Bayes LABORKA Piotr Ciskowski NAIWNY KLASYFIKATOR BAYESA wyjaśnienie Naiwny klasyfikator Bayesa żródło: Internetowy Podręcznik Statystyki Statsoft dane uczące 2 klasy - prawdopodobieństwo
ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL
Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)
Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically
DODATKOWE ĆWICZENIA EGZAMINACYJNE
I.1. X Have a nice day! Y a) Good idea b) See you soon c) The same to you I.2. X: This is my new computer. Y: Wow! Can I have a look at the Internet? X: a) Thank you b) Go ahead c) Let me try I.3. X: What
Wprowadzenie do programu RapidMiner, część 3 Michał Bereta
Wprowadzenie do programu RapidMiner, część 3 Michał Bereta www.michalbereta.pl 1. W programie RapidMiner mamy do dyspozycji kilka dyskryminacyjnych modeli liniowych jako operatory: a. LDA Linear Discriminant
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
Stargard Szczecinski i okolice (Polish Edition)
Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Rachunek lambda, zima
Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
Inverse problems - Introduction - Probabilistic approach
Inverse problems - Introduction - Probabilistic approach Wojciech Dȩbski Instytut Geofizyki PAN debski@igf.edu.pl Wydział Fizyki UW, 13.10.2004 Wydział Fizyki UW Warszawa, 13.10.2004 (1) Plan of the talk
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona
Jak zasada Pareto może pomóc Ci w nauce języków obcych?
Jak zasada Pareto może pomóc Ci w nauce języków obcych? Artykuł pobrano ze strony eioba.pl Pokazuje, jak zastosowanie zasady Pareto może usprawnić Twoją naukę angielskiego. Słynna zasada Pareto mówi o
Klasyfikacja Support Vector Machines
Klasyfikacja Support Vector Machines LABORKA Piotr Ciskowski przykład 1 KLASYFIKACJA KWIATKÓW IRYSA przykład 1. klasyfikacja kwiatków irysa (versicolor-virginica) żródło: pomoc MATLABa: http://www.mathworks.com/help/stats/svmclassify.html
Instrukcja obsługi User s manual
Instrukcja obsługi User s manual Konfigurator Lanberg Lanberg Configurator E-mail: support@lanberg.pl support@lanberg.eu www.lanberg.pl www.lanberg.eu Lanberg 2015-2018 WERSJA VERSION: 2018/11 Instrukcja
harmonic functions and the chromatic polynomial
harmonic functions and the chromatic polynomial R. Kenyon (Brown) based on joint work with A. Abrams, W. Lam The chromatic polynomial with n colors. G(n) of a graph G is the number of proper colorings
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)
112 Informator o egzaminie maturalnym z języka angielskiego od roku szkolnego 2014/2015 2.6.4. Część ustna. Przykładowe zestawy zadań Przykładowe pytania do rozmowy wstępnej Rozmowa wstępna (wyłącznie
MaPlan Sp. z O.O. Click here if your download doesn"t start automatically
Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click
Łukasz Reszka Wiceprezes Zarządu
Łukasz Reszka Wiceprezes Zarządu Time for changes! Vocational activisation young unemployed people aged 15 to 24 Projekt location Ząbkowice Śląskie project produced in cooperation with Poviat Labour Office
New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center
New Roads to Cryptopia Amit Sahai An NSF Frontier Center OPACity Panel, May 19, 2019 New Roads to Cryptopia What about all this space? Cryptography = Hardness* PKE RSA MPC DDH ZK Signatures Factoring IBE
The Overview of Civilian Applications of Airborne SAR Systems
The Overview of Civilian Applications of Airborne SAR Systems Maciej Smolarczyk, Piotr Samczyński Andrzej Gadoś, Maj Mordzonek Research and Development Department of PIT S.A. PART I WHAT DOES SAR MEAN?
Agnostic Learning and VC dimension
Agnostic Learning and VC dimension Machine Learning Spring 2019 The slides are based on Vivek Srikumar s 1 This Lecture Agnostic Learning What if I cannot guarantee zero training error? Can we still get
Camspot 4.4 Camspot 4.5
User manual (addition) Dodatek do instrukcji obsługi Camspot 4.4 Camspot 4.5 1. WiFi configuration 2. Configuration of sending pictures to e-mail/ftp after motion detection 1. Konfiguracja WiFi 2. Konfiguracja
EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Sargent Opens Sonairte Farmers' Market
Sargent Opens Sonairte Farmers' Market 31 March, 2008 1V8VIZSV7EVKIRX8(1MRMWXIVSJ7XEXIEXXLI(ITEVXQIRXSJ%KVMGYPXYVI *MWLIVMIWERH*SSHTIVJSVQIHXLISJJMGMEPSTIRMRKSJXLI7SREMVXI*EVQIVW 1EVOIXMR0E]XS[R'S1IEXL
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
DOI: / /32/37
. 2015. 4 (32) 1:18 DOI: 10.17223/1998863 /32/37 -,,. - -. :,,,,., -, -.,.-.,.,.,. -., -,.,,., -, 70 80. (.,.,. ),, -,.,, -,, (1886 1980).,.,, (.,.,..), -, -,,,, ; -, - 346, -,.. :, -, -,,,,,.,,, -,,,
DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!
1 HAPPY ANIMALS B09 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K1 M M1 ZM1 Z T G1 17 szt. / pcs 13 szt. / pcs B1 13 szt. / pcs W4 13 szt. / pcs W6 14 szt. / pcs U1 1 szt. / pcs U N1
HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07
HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L07 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K ZW W8 W7 Ø x 6 szt. / pcs Ø7 x 70 Narzędzia / Tools DO MONTAŻU POTRZEBNE
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K O G ZW W8 W4 20 szt. / pcs 4 szt. / pcs 4 szt. / pcs 4 szt. / pcs
Chapter 1: Review Exercises
Chpter : Review Eercises Chpter : Review Eercises - Evlute the following integrls:..... 6. 8. ( + ) 9. +.. ( + ). ( ). 8. 9....... 6. 7. (csc + + ) sin tn 6. ( )( + ) 7. ) 8.. + ( + )( ). ( ) sin sin sec
Klaps za karę. Wyniki badania dotyczącego postaw i stosowania kar fizycznych. Joanna Włodarczyk
Klaps za karę Wyniki badania dotyczącego postaw i stosowania kar fizycznych Joanna Włodarczyk joanna.wlodarczyk@fdds.pl Warszawa, 1.12.2017 Fundacja Dajemy Dzieciom Siłę, 2017 Informacje o badaniu Badanie
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
DEFINING REGIONS THAT CONTAIN COMPLEX ASTRONOMICAL STRUCTURES
KATY MCKEOUGH XIAO-LI MENG, VINAY KASHYAP, ANETA SIEMIGINOWSKA, DAVID VAN DYK, SHIHAO YANG, LUIS CAMPOS, DEFINING REGIONS THAT CONTAIN COMPLEX ASTRONOMICAL STRUCTURES INTRODUCTION SCIENTIFIC MOTIVATION
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl. magda.szewczyk@slo-wroc.pl. Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl Back Twoje konto Wyloguj magda.szewczyk@slo-wroc.pl BIODIVERSITY OF RIVERS: Survey to students Tworzenie ankiety Udostępnianie Analiza (55) Wyniki
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS
Piotr Mikulski 2006 Subversion is a free/open-source version control system. That is, Subversion manages files and directories over time. A tree of files is placed into a central repository. The repository
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
The Lorenz System and Chaos in Nonlinear DEs
The Lorenz System and Chaos in Nonlinear DEs April 30, 2019 Math 333 p. 71 in Chaos: Making a New Science by James Gleick Adding a dimension adds new possible layers of complexity in the phase space of
Effective Governance of Education at the Local Level
Effective Governance of Education at the Local Level Opening presentation at joint Polish Ministry OECD conference April 16, 2012, Warsaw Mirosław Sielatycki Ministry of National Education Doskonalenie
Bayesian graph convolutional neural networks
Bayesian graph convolutional neural networks Mark Coates Collaborators: Soumyasundar Pal, Yingxue Zhang, Deniz Üstebay McGill University, Huawei Noah s Ark Lab February 13, 2019 Montreal 2 / 36 Introduction
UWAGA!!!! Nie odsyłać do Spółki ATTENTION!!!!! Do not send it to the Company
UWAGA!!!! Nie odsyłać do Spółki ATTENTION!!!!! Do not send it to the Company INSTRUKCJA ZAŁĄCZNIK DO PEŁNOMOCNICTWA DOTYCZĄCA WYKONYWANIA PRZEZ PEŁNOMOCNIKA PRAWA GŁOSU NA ZWYCZAJNYM WALNYM ZGROMADZENIU
Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX
UNIWERSYTETU BIBLIOTEKA IEGO UNIWERSYTETU IEGO Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX 1. Make a new connection Open the System Preferences by going to the Apple menu
Zmiany techniczne wprowadzone w wersji Comarch ERP Altum
Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
Configuring and Testing Your Network
Configuring and Testing Your Network Network Fundamentals Chapter 11 Version 4.0 1 Konfigurowanie i testowanie Twojej sieci Podstawy sieci Rozdział 11 Version 4.0 2 Objectives Define the role of the Internetwork
Standardized Test Practice
Standardized Test Practice 1. Which of the following is the length of a three-dimensional diagonal of the figure shown? a. 4.69 units b. 13.27 units c. 13.93 units 3 d. 16.25 units 8 2. Which of the following
DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!
HAPPY ANIMALS RW08 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K M M ZM ZW G 0 szt. / pcs W szt. / pcs B szt. / pcs szt. / pcs W U 8 szt. / pcs 4 szt. / pcs U N szt. / pcs Ø3 x szt. /
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl. magda.szewczyk@slo-wroc.pl. Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to teachers
1 z 7 2015-05-14 18:32 Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl Back Twoje konto Wyloguj magda.szewczyk@slo-wroc.pl BIODIVERSITY OF RIVERS: Survey to teachers Tworzenie ankiety Udostępnianie
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
HAPPY K04 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE! W5 W6 G1 T2 U1 U2 TZ1
HAPPY K0 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS W Akcesoria / Fittings W W G K szt. / pcs M Ø Ø 0 Ø, Ø Ø. 0 ø8 M 8 szt. / pcs 0 szt. / pcs szt. / pcs T U U szt. / pcs szt. / pcs szt. / pcs S TZ szt.
Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI
Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI O tym, dlaczego warto budować pasywnie, komu budownictwo pasywne się opłaca, a kto się go boi, z architektem, Cezarym Sankowskim, rozmawia
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
OSI Physical Layer. Network Fundamentals Chapter 8. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1
OSI Physical Layer Network Fundamentals Chapter 8 Version 4.0 1 Warstwa fizyczna modelu OSI Network Fundamentals Rozdział 8 Version 4.0 2 Objectives Explain the role of Physical layer protocols and services
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Gayane Vardoyan *, C. V. Hollot, Don Towsley* * College of Information and Computer Sciences, Department of Electrical
Machine learning techniques for sidechannel. Annelie Heuser
Machine learning techniques for sidechannel analysis Annelie Heuser Outline Side-channel analysis and its terminology Dictionary: Side-channel to Machine learning When can machine learning be helpful?
Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw
Strategic planning Jolanta Żyśko University of Physical Education in Warsaw 7S Formula Strategy 5 Ps Strategy as plan Strategy as ploy Strategy as pattern Strategy as position Strategy as perspective Strategy
aforementioned device she also has to estimate the time when the patients need the infusion to be replaced and/or disconnected. Meanwhile, however, she must cope with many other tasks. If the department
Baptist Church Records
Baptist Church Records The Baptist religion was a religious minority in Poland, making it more difficult to know when and where records of this religion might be available. In an article from Rodziny,
MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller
MoA-Net: Self-supervised Motion Segmentation Pia Bideau, Rakesh R Menon, Erik Learned-Miller University of Massachusetts Amherst College of Information and Computer Science Motion Segmentation P Bideau,
Polska Szkoła Weekendowa, Arklow, Co. Wicklow KWESTIONRIUSZ OSOBOWY DZIECKA CHILD RECORD FORM
KWESTIONRIUSZ OSOBOWY DZIECKA CHILD RECORD FORM 1. Imię i nazwisko dziecka / Child's name... 2. Adres / Address... 3. Data urodzenia / Date of birth... 4. Imię i nazwisko matki /Mother's name... 5. Adres
Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction
ECE 114-9 Arrays -II Dr. Z. Aliyazicioglu Electrical & Computer Engineering Electrical & Computer Engineering 1 Outline Introduction Arrays Declaring and Allocation Arrays Examples Using Arrays Passing
Formularz dla osób planujących ubiegać się o przyjęcie na studia undergraduate (I stopnia) w USA na rok akademicki
Formularz dla osób planujących ubiegać się o przyjęcie na studia undergraduate (I stopnia) w USA na rok akademicki 2017-2018 Zanim zaczniesz wypełniać formularz, zapoznaj się z Instrukcjami! Imię i nazwisko:
18. Przydatne zwroty podczas egzaminu ustnego. 19. Mo liwe pytania egzaminatora i przyk³adowe odpowiedzi egzaminowanego
18. Przydatne zwroty podczas egzaminu ustnego I m sorry, could you repeat that, please? - Przepraszam, czy mo na prosiæ o powtórzenie? I m sorry, I don t understand. - Przepraszam, nie rozumiem. Did you
Mixed-integer Convex Representability
Mixed-integer Convex Representability Juan Pablo Vielma Massachuse=s Ins?tute of Technology Joint work with Miles Lubin and Ilias Zadik INFORMS Annual Mee?ng, Phoenix, AZ, November, 2018. Mixed-Integer
A Zadanie
where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona
archivist: Managing Data Analysis Results
archivist: Managing Data Analysis Results https://github.com/pbiecek/archivist Marcin Kosiński 1,2, Przemysław Biecek 2 1 IT Research and Development Grupa Wirtualna Polska 2 Faculty of Mathematics, Informatics
Prices and Volumes on the Stock Market
Prices and Volumes on the Stock Market Krzysztof Karpio Piotr Łukasiewicz Arkadiusz Orłowski Warszawa, 25-27 listopada 2010 1 Data selection Warsaw Stock Exchange WIG index assets most important for investors
Wprowadzenie do programu RapidMiner, część 5 Michał Bereta
Wprowadzenie do programu RapidMiner, część 5 Michał Bereta www.michalbereta.pl 1. Przekształcenia atrybutów (ang. attribute reduction / transformation, feature extraction). Zamiast wybierad częśd atrybutów
DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!
1 HAPPY ANIMALS SZ11 A INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K1 M M1 ZM1 Z G1 szt. / pcs 0 szt. / pcs B1 6 szt. / pcs 6 szt. / pcs W6 0 szt. / pcs U1 19 szt. / pcs U 50 szt. / pcs