Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta"

Transkrypt

1 Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta Modele liniowe W programie RapidMiner mamy do dyspozycji kilka dyskryminacyjnych modeli liniowych jako operatory: LDA Linear Discriminant Analysis QDA Quadratic Linear Analysis RDA Regularized Discriminant Analysis Classification by Regression (może użyć dowolny model regresyjny jako subproces) Perceptron SVM (bez nieliniowej funkcji jądrowej; pamiętaj by kernel type ustawić na dot ) Regresja logistyczna, uogólniony model liniowy (mimo słowu regresja w nazwie, jest to klasyfikator!) 1

2 Z Dokumentacji RM: Linear Discriminant Analysis (RapidMiner Core) This operator performs linear discriminant analysis (LDA). This method tries to find the linear combination of features which best separate two or more classes of examples. The resulting combination is then used as a linear classifier. Discriminant analysis is used to determine which variables discriminate between two or more naturally occurring groups, it may have a descriptive or a predictive objective. Quadratic Discriminant Analysis (RapidMiner Core) This operator performs a quadratic discriminant analysis (QDA). QDA is closely related to linear discriminant analysis (LDA), where it is assumed that the measurements are normally distributed. Unlike LDA however, in QDA there is no assumption that the covariance of each of the classes is identical. To estimate the parameters required in quadratic discrimination more computation and data is required than in the case of linear discrimination. If there is not a great difference in the group covariance matrices, then the latter will perform as well as quadratic discrimination. Quadratic Discrimination is the general form of Bayesian discrimination. Regularized Discriminant Analysis (RapidMiner Core) The regularized discriminant analysis (RDA) is a generalization of the linear discriminant analysis (LDA) and the quadratic discreminant analysis (QDA). Both algorithms are special cases of this algorithm. If the alpha parameter is set to 1, this operator performs LDA. Similarly if the alpha parameter is set to 0, this operator performs QDA. Classification by Regression (RapidMiner Core) This operator builds a polynominal classification model through the given regression learner. The Classification by Regression operator is a nested operator i.e. it has a subprocess. The subprocess must have a regression learner i.e. an operator that generates a regression model. This operator builds a classification model using the regression learner provided in its subprocess. 2

3 Here is an explanation of how a classification model is built from a regression learner. For each class i of the given ExampleSet, a regression model is trained after setting the label to +1 if the label is i and to -1 if it is not. Then the regression models are combined into a classification model. This model can be applied using the Apply Model operator. In order to determine the prediction for an unlabeled example, all regression models are applied and the class belonging to the regression model which predicts the greatest value is chosen. Perceptron (RapidMiner Core) This operator learns a linear classifier called Single Perceptron which finds separating hyperplane (if existent). This operator cannot handle polynominal attributes. The perceptron is a type of artificial neural network invented in 1957 by Frank Rosenblatt. It can be seen as the simplest kind of feed-forward neural network: a linear classifier. Beside all biological analogies, the single layer perceptron is simply a linear classifier which is efficiently trained by a simple update rule: for all wrongly classified data points, the weight vector is either increased or decreased by the corresponding example values. Generalized Linear Model (nie jest tak naprawdę modelem liniowym) Generalized linear models (GLMs) are an extension of traditional linear models. This algorithm fits generalized linear models to the data by maximizing the log-likelihood. The elastic net penalty can be used for parameter regularization. The model fitting computation is parallel, extremely fast, and scales extremely well for models with a limited number of predictors with non-zero coefficients. Logistic Regression(nie jest tak naprawdę modelem liniowym) This operator is a simplified version of the Generalized Linear Model operator. To perform Logistic Regression, the Family parameter is set automatically to binomial, and the link parameter to logit. Only the most crucial parameters can be adjusted for this operator to provide an easy-to-use logistic regression. If you need a fine-tuned model, please use the Generalized Linear Model operator instead. The Logistic Regression implementation can handle training data with binominal (or 2-class polynominal) label, and both nominal and numerical feature attributes. 3

4 Przygotuj project: 4

5 kernel type: linear!!! 5

6 W modelu klasyfikacyjnym Classification by regression, należy wskazać jako podproces, jaki konkretnie model regresyjny ma być użyty. W tym przykładzie wykorzystujemy model regresji liniowej. Zwróć uwagę, że operator liniowej regresji ma wbudowane algorytmy wyboru atrybutów. Pytanie: czy jakość modelu pogorszy się, jeśli wyłączymy te funkcjonalności? Zbadaj dla różnych problemów klasyfikacyjnych. 6

7 Zwróć uwagę na duże możliwości dostrajania modelu GLM: Prostszą implementacją GLM jest operator Logistic regression : 7

8 Przykładowe wyniki: Perceptron SVM linear LDA QDA RDA 8

9 Classification by regression + linear regression Regresja logistyczna (Logistic regression) Uogólniony model liniowy (Generalized Linear model) Wynik testu ANOVA: Wyniki t-testów parami: Wniosek: pomiędzy modelami są statystycznie istotne różnice. 9

10 Zadanie Wykonaj obliczenia dla bazy messidor. Możesz natrafić na problemy numeryczne. W tym konkretnym uruchomieniu, źródłem problemów były operatory QDA oraz RDA. Co może być ich źródłem? Wyniki dla pozostałych modeli. Perceptron SVM linear 10

11 LDA Classification by regression Logistic regression GLM 11

12 ANOVA t-testy 12

13 Zadanie: 1. Które z powyższych modeli są zaimplementowane w RMS w sposób umożliwiający ich użycie dla problemów wieloklasowych? Wykonaj obliczenia dla bazy Glass: 2. Czy w rozważanych problemach klasyfikacyjnych uda Ci się dobrać model nieliniowy (np. NeuralNetwork, SMV z nieliniowym kernel type, drzewo decyzyjne, klasyfikator bayerowski, itd.), który byłby lepszy niż dobrze przygotowany model liniowy? 13

Wprowadzenie do programu RapidMiner, część 3 Michał Bereta

Wprowadzenie do programu RapidMiner, część 3 Michał Bereta Wprowadzenie do programu RapidMiner, część 3 Michał Bereta www.michalbereta.pl 1. W programie RapidMiner mamy do dyspozycji kilka dyskryminacyjnych modeli liniowych jako operatory: a. LDA Linear Discriminant

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner, część 3 Michał Bereta

Wprowadzenie do programu RapidMiner, część 3 Michał Bereta Wprowadzenie do programu RapidMiner, część 3 Michał Bereta www.michalbereta.pl 1. W programie RapidMiner mamy do dyspozycji kilka dyskryminacyjnych modeli liniowych jako operatory: a. LDA Linear Discriminant

Bardziej szczegółowo

Hard-Margin Support Vector Machines

Hard-Margin Support Vector Machines Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==

Bardziej szczegółowo

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Rozpoznawanie twarzy metodą PCA Michał Bereta   1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.

Bardziej szczegółowo

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner, część 5 Michał Bereta

Wprowadzenie do programu RapidMiner, część 5 Michał Bereta Wprowadzenie do programu RapidMiner, część 5 Michał Bereta www.michalbereta.pl 1. Przekształcenia atrybutów (ang. attribute reduction / transformation, feature extraction). Zamiast wybierad częśd atrybutów

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta  1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona

Bardziej szczegółowo

tum.de/fall2018/ in2357

tum.de/fall2018/ in2357 https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning

Bardziej szczegółowo

Wybór / ocena atrybutów na podstawie oceny jakości działania wybranego klasyfikatora.

Wybór / ocena atrybutów na podstawie oceny jakości działania wybranego klasyfikatora. Wprowadzenie do programu RapidMiner Studio 7.6, część 7 Podstawy metod wyboru atrybutów w problemach klasyfikacyjnych, c.d. Michał Bereta www.michalbereta.pl Wybór / ocena atrybutów na podstawie oceny

Bardziej szczegółowo

Reguły asocjacyjne w programie RapidMiner Michał Bereta

Reguły asocjacyjne w programie RapidMiner Michał Bereta Reguły asocjacyjne w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Reguły asocjacyjne mają na celu odkrycie związków współwystępowania pomiędzy atrybutami. Stosuje się je często do danych

Bardziej szczegółowo

KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona

KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi

Bardziej szczegółowo

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The

Bardziej szczegółowo

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4

Bardziej szczegółowo

Previously on CSCI 4622

Previously on CSCI 4622 More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner, część 4 Michał Bereta

Wprowadzenie do programu RapidMiner, część 4 Michał Bereta Wprowadzenie do programu RapidMiner, część 4 Michał Bereta www.michalbereta.pl 1. Wybór atrybutów (ang. attribute selection, feature selection). Jedną z podstawowych metod analizy współoddziaływania /

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner Studio 7.6, część 4 Michał Bereta

Wprowadzenie do programu RapidMiner Studio 7.6, część 4 Michał Bereta Wprowadzenie do programu RapidMiner Studio 7.6, część 4 Michał Bereta www.michalbereta.pl W tej części: Zachowanie wytrenowanego modelu w celu późniejszego użytku Filtrowanie danych (brakujące etykiety

Bardziej szczegółowo

OpenPoland.net API Documentation

OpenPoland.net API Documentation OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets

Bardziej szczegółowo

Zarządzanie sieciami telekomunikacyjnymi

Zarządzanie sieciami telekomunikacyjnymi SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission

Bardziej szczegółowo

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2 TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)

Bardziej szczegółowo

Convolution semigroups with linear Jacobi parameters

Convolution semigroups with linear Jacobi parameters Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,

Bardziej szczegółowo

Tychy, plan miasta: Skala 1: (Polish Edition)

Tychy, plan miasta: Skala 1: (Polish Edition) Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000

Bardziej szczegółowo

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Helena Boguta, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na

Bardziej szczegółowo

deep learning for NLP (5 lectures)

deep learning for NLP (5 lectures) TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5

Bardziej szczegółowo

Stargard Szczecinski i okolice (Polish Edition)

Stargard Szczecinski i okolice (Polish Edition) Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution

Bardziej szczegółowo

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences. The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)

Bardziej szczegółowo

Rev Źródło:

Rev Źródło: KamPROG for AVR Rev. 20190119192125 Źródło: http://wiki.kamamilabs.com/index.php/kamprog_for_avr Spis treści Introdcution... 1 Features... 2 Standard equipment... 4 Installation... 5 Software... 6 AVR

Bardziej szczegółowo

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama

Bardziej szczegółowo

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

POLITYKA PRYWATNOŚCI / PRIVACY POLICY POLITYKA PRYWATNOŚCI / PRIVACY POLICY TeleTrade DJ International Consulting Ltd Sierpień 2013 2011-2014 TeleTrade-DJ International Consulting Ltd. 1 Polityka Prywatności Privacy Policy Niniejsza Polityka

Bardziej szczegółowo

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:

Bardziej szczegółowo

Installation of EuroCert software for qualified electronic signature

Installation of EuroCert software for qualified electronic signature Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each

Bardziej szczegółowo

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:

Bardziej szczegółowo

Camspot 4.4 Camspot 4.5

Camspot 4.4 Camspot 4.5 User manual (addition) Dodatek do instrukcji obsługi Camspot 4.4 Camspot 4.5 1. WiFi configuration 2. Configuration of sending pictures to e-mail/ftp after motion detection 1. Konfiguracja WiFi 2. Konfiguracja

Bardziej szczegółowo

Maximum A Posteriori Chris Piech CS109, Stanford University

Maximum A Posteriori Chris Piech CS109, Stanford University Maximum A Posteriori Chris Piech CS109, Stanford University Previously in CS109 Game of Estimators Estimators Maximum Likelihood Non spoiler alert: this didn t happen in game of thrones aaab7nicbva9swnbej2lxzf+rs1tfomqm3anghywarvlcoydkjpsbfasjxt7x+6cei78cbslrwz9pxb+gzfjfzr4yodx3gwz84jecoou++0u1ty3nrek26wd3b39g/lhucveqwa8ywiz605adzdc8sykllytae6jqpj2ml6d+e0nro2i1qnoeu5hdkhekbhfk7u7j1lvne/75ypbc+cgq8tlsqvynprlr94gzmneftjjjel6boj+rjukjvm01esntygb0yhvwqpoxi2fzc+dkjordegya1skyvz9pzhryjhjfnjoiolilhsz8t+vm2j47wdcjslyxralwlqsjmnsdziqmjoue0so08lestiiasrqjlsyixjll6+s1kxnc2ve/wwlfpphuyqtoiuqehafdbidbjsbwrie4rxenmr5cd6dj0vrwclnjuepnm8fuskpig==

Bardziej szczegółowo

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Bardziej szczegółowo

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition) Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,

Bardziej szczegółowo

A Zadanie

A Zadanie where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona

Bardziej szczegółowo

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci

Bardziej szczegółowo

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register

Bardziej szczegółowo

Agnostic Learning and VC dimension

Agnostic Learning and VC dimension Agnostic Learning and VC dimension Machine Learning Spring 2019 The slides are based on Vivek Srikumar s 1 This Lecture Agnostic Learning What if I cannot guarantee zero training error? Can we still get

Bardziej szczegółowo

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2) Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2) Click here if your download doesn"t start automatically Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2) Emilka szuka swojej gwiazdy / Emily

Bardziej szczegółowo

www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part

Bardziej szczegółowo

Rolki i arkusze stosowane w handlu Commercial rolls and sheets. ko-box.pl

Rolki i arkusze stosowane w handlu Commercial rolls and sheets. ko-box.pl 0100 Rolki i arkusze stosowane w handlu Commercial rolls and sheets 0100 0110 10 0200 Pud a klapowe sà to pude ka z o one zasadniczo z jednej cz Êci, których brzeg jest klejony, szyty, albo które majà

Bardziej szczegółowo

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==

Bardziej szczegółowo

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip) Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip) Embeded systems Architektura układów PSoC (Cypress) Możliwości bloków cyfrowych i analogowych Narzędzia

Bardziej szczegółowo

Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu

Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu Rejestracja na Portalu Online Job Application jest całkowicie bezpłatna i składa się z 3 kroków: Krok 1 - Wypełnij poprawnie formularz

Bardziej szczegółowo

INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION

INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION Kiedy otrzymana przez Ciebie z Jeunesse, karta płatnicza została zarejestrowana i aktywowana w Joffice, możesz przejść do aktywacji swojego konta płatniczego

Bardziej szczegółowo

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition) Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically

Bardziej szczegółowo

Knovel Math: Jakość produktu

Knovel Math: Jakość produktu Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających

Bardziej szczegółowo

Neural Networks (The Machine-Learning Kind) BCS 247 March 2019

Neural Networks (The Machine-Learning Kind) BCS 247 March 2019 Neural Networks (The Machine-Learning Kind) BCS 247 March 2019 Neurons http://biomedicalengineering.yolasite.com/neurons.php Networks https://en.wikipedia.org/wiki/network_theory#/media/file:social_network_analysis_visualization.png

Bardziej szczegółowo

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates

Bardziej szczegółowo

Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw

Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw Strategic planning Jolanta Żyśko University of Physical Education in Warsaw 7S Formula Strategy 5 Ps Strategy as plan Strategy as ploy Strategy as pattern Strategy as position Strategy as perspective Strategy

Bardziej szczegółowo

Inverse problems - Introduction - Probabilistic approach

Inverse problems - Introduction - Probabilistic approach Inverse problems - Introduction - Probabilistic approach Wojciech Dȩbski Instytut Geofizyki PAN debski@igf.edu.pl Wydział Fizyki UW, 13.10.2004 Wydział Fizyki UW Warszawa, 13.10.2004 (1) Plan of the talk

Bardziej szczegółowo

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH Kierunek Elektronika i Telekomunikacja, Studia II stopnia Specjalność: Systemy wbudowane Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH Zagadnienia

Bardziej szczegółowo

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

MaPlan Sp. z O.O. Click here if your download doesnt start automatically Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click

Bardziej szczegółowo

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques

Bardziej szczegółowo

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems Typ VFR FOR THE RELIABLE BALANCING OF VOLUME FLOW RATES Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems Each flow adjustment

Bardziej szczegółowo

Revenue Maximization. Sept. 25, 2018

Revenue Maximization. Sept. 25, 2018 Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time

Bardziej szczegółowo

Instrukcja obsługi User s manual

Instrukcja obsługi User s manual Instrukcja obsługi User s manual Konfigurator Lanberg Lanberg Configurator E-mail: support@lanberg.pl support@lanberg.eu www.lanberg.pl www.lanberg.eu Lanberg 2015-2018 WERSJA VERSION: 2018/11 Instrukcja

Bardziej szczegółowo

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems Typ VFR FOR THE RELIABLE BALANCING OF VOLUME FLOW RATES Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems Each flow adjustment

Bardziej szczegółowo

Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 Zofia Kruczkiewicz

Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0  Zofia Kruczkiewicz Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 http://www.junit.org/ Zofia Kruczkiewicz 1. Aby utworzyć test dla jednej klasy, należy kliknąć prawym przyciskiem myszy w oknie Projects na wybraną

Bardziej szczegółowo

MATLAB Neural Network Toolbox przegląd

MATLAB Neural Network Toolbox przegląd MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study

Bardziej szczegółowo

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards INSPIRE Conference 2010 INSPIRE as a Framework for Cooperation Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards Elżbieta Bielecka Agnieszka Zwirowicz

Bardziej szczegółowo

Zastosowanie uogólnionych modeli liniowych i uogólnionych mieszanych modeli liniowych do analizy danych dotyczacych występowania zębiniaków

Zastosowanie uogólnionych modeli liniowych i uogólnionych mieszanych modeli liniowych do analizy danych dotyczacych występowania zębiniaków Zastosowanie uogólnionych modeli liniowych i uogólnionych mieszanych modeli liniowych do analizy danych dotyczacych występowania zębiniaków Wojciech Niemiro, Jacek Tomczyk i Marta Zalewska Uniwersytet

Bardziej szczegółowo

www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part

Bardziej szczegółowo

Polski Krok Po Kroku: Tablice Gramatyczne (Polish Edition) By Anna Stelmach

Polski Krok Po Kroku: Tablice Gramatyczne (Polish Edition) By Anna Stelmach Polski Krok Po Kroku: Tablice Gramatyczne (Polish Edition) By Anna Stelmach If you are looking for the ebook by Anna Stelmach Polski krok po kroku: Tablice gramatyczne (Polish Edition) in pdf form, in

Bardziej szczegółowo

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych

Bardziej szczegółowo

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and Fig 4 Measured vibration signal (top). Blue original signal. Red component related to periodic excitation of resonances and noise. Green component related. Rotational speed profile used for experiment

Bardziej szczegółowo

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS Wykaz kolejowych, które są wyposażone w urządzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH Gliwice, wrzesień 2005 Pomiar napięcia przemiennego Cel ćwiczenia Celem ćwiczenia jest zbadanie dokładności woltomierza cyfrowego dla

Bardziej szczegółowo

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,

Bardziej szczegółowo

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX UNIWERSYTETU BIBLIOTEKA IEGO UNIWERSYTETU IEGO Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX 1. Make a new connection Open the System Preferences by going to the Apple menu

Bardziej szczegółowo

FORMULARZ REKLAMACJI Complaint Form

FORMULARZ REKLAMACJI Complaint Form FORMULARZ REKLAMACJI Complaint Form *CZ. I PROSIMY WYPEŁNIAĆ DRUKOWANYMI LITERAMI PLEASE USE CAPITAL LETTERS I. DANE OSOBY SKŁADAJĄCEJ REKLAMACJĘ: *DANE OBOWIĄZKOWE I. COMPLAINANT S PERSONAL DATA: *MANDATORY

Bardziej szczegółowo

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL Formanminsidemlookmatmpoliticsxmculturexmsocietymandm economyminmthemregionmofmcentralmandmeasternm EuropexmtheremismnomothermsourcemlikemNew Eastern EuropeImSincemitsmlaunchminmPw--xmthemmagazinemhasm

Bardziej szczegółowo

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS Wykaz kolejowych, które są wyposażone w urzadzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).

Bardziej szczegółowo

Extraclass. Football Men. Season 2009/10 - Autumn round

Extraclass. Football Men. Season 2009/10 - Autumn round Extraclass Football Men Season 2009/10 - Autumn round Invitation Dear All, On the date of 29th July starts the new season of Polish Extraclass. There will be live coverage form all the matches on Canal+

Bardziej szczegółowo

aforementioned device she also has to estimate the time when the patients need the infusion to be replaced and/or disconnected. Meanwhile, however, she must cope with many other tasks. If the department

Bardziej szczegółowo

SNP SNP Business Partner Data Checker. Prezentacja produktu

SNP SNP Business Partner Data Checker. Prezentacja produktu SNP SNP Business Partner Data Checker Prezentacja produktu Istota rozwiązania SNP SNP Business Partner Data Checker Celem produktu SNP SNP Business Partner Data Checker jest umożliwienie sprawdzania nazwy

Bardziej szczegółowo

PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June 2014. Reading and Writing TOTAL

PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June 2014. Reading and Writing TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Section Mark Polish Unit 1 Reading and Writing General Certificate of Education Advanced Subsidiary

Bardziej szczegółowo

OSI Data Link Layer. Network Fundamentals Chapter 7. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Data Link Layer. Network Fundamentals Chapter 7. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Data Link Layer Network Fundamentals Chapter 7 Version 4.0 1 Warstwa Łącza danych modelu OSI Network Fundamentals Rozdział 7 Version 4.0 2 Objectives Explain the role of Data Link layer protocols in

Bardziej szczegółowo

Wykład 5_2 Arkusze stylów dziedziczenie. Technologie internetowe Zofia Kruczkiewicz

Wykład 5_2 Arkusze stylów dziedziczenie. Technologie internetowe Zofia Kruczkiewicz Wykład 5_2 Arkusze stylów dziedziczenie Technologie internetowe Zofia Kruczkiewicz 1. Dziedziczenie stylów Zagnieżdżone elementy dziedziczą styl od elementów zagnieżdżających. Dziedziczenie stylu wynika

Bardziej szczegółowo

Few-fermion thermometry

Few-fermion thermometry Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl

Bardziej szczegółowo

Klasyfikacja Support Vector Machines

Klasyfikacja Support Vector Machines Klasyfikacja Support Vector Machines LABORKA Piotr Ciskowski przykład 1 KLASYFIKACJA KWIATKÓW IRYSA przykład 1. klasyfikacja kwiatków irysa (versicolor-virginica) żródło: pomoc MATLABa: http://www.mathworks.com/help/stats/svmclassify.html

Bardziej szczegółowo

SG-MICRO... SPRĘŻYNY GAZOWE P.103

SG-MICRO... SPRĘŻYNY GAZOWE P.103 SG-MICRO... SG-MICRO 19 SG-MICRO SG-MICRO H SG-MICRO R SG-MICRO 32 SG-MICRO 32H SG-MICRO 32R SG-MICRO SG-MICRO H SG-MICRO R SG-MICRO 45 SG-MICRO SG-MICRO SG-MICRO 75 SG-MICRO 95 SG-MICRO 0 cylindra body

Bardziej szczegółowo

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in

Bardziej szczegółowo

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition) Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition) Click here if your download doesn"t start automatically

Bardziej szczegółowo

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ Part-financed by EU South Baltic Programme w w w. p t m e w. p l PROSPECTS OF THE OFFSHORE WIND ENERGY DEVELOPMENT IN POLAND - OFFSHORE WIND INDUSTRY IN THE COASTAL CITIES AND PORT AREAS PORTS AS LOGISTICS

Bardziej szczegółowo

OSI Network Layer. Network Fundamentals Chapter 5. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved.

OSI Network Layer. Network Fundamentals Chapter 5. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved. OSI Network Layer Network Fundamentals Chapter 5 1 Network Layer Identify the role of the Network Layer, as it describes communication from one end device to another end device Examine the most common

Bardziej szczegółowo

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS Piotr Mikulski 2006 Subversion is a free/open-source version control system. That is, Subversion manages files and directories over time. A tree of files is placed into a central repository. The repository

Bardziej szczegółowo

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature A Surname _ Other Names For Examiner s Use Centre Number Candidate Number Candidate Signature Polish Unit 1 PLSH1 General Certificate of Education Advanced Subsidiary Examination June 2014 Reading and

Bardziej szczegółowo

Baptist Church Records

Baptist Church Records Baptist Church Records The Baptist religion was a religious minority in Poland, making it more difficult to know when and where records of this religion might be available. In an article from Rodziny,

Bardziej szczegółowo

Planning and Cabling Networks

Planning and Cabling Networks Planning and Cabling Networks Network Fundamentals Chapter 10 Version 4.0 1 Projektowanie okablowania i sieci Podstawy sieci Rozdział 10 Version 4.0 2 Objectives Identify the basic network media required

Bardziej szczegółowo

METHOD 2 -DIAGNOSTIC OUTSIDE

METHOD 2 -DIAGNOSTIC OUTSIDE VW MOTOMETER BOSCH METHOD 1 - OBD 2 METHOD 2 -DIAGNOSTIC OUTSIDE AFTER OPERATION YOU MUST DISCONECT ACU OR REMOVE FUSE FOR RESTART ODOMETER PO ZROBIENIU LICZNIKA ZDJĄĆ KLEMĘ LUB WYJĄĆ 2 BEZPIECZNIKI OD

Bardziej szczegółowo

Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. 0,2-1Mbit yes yes yes n/d

Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. 0,2-1Mbit yes yes yes n/d NOVUS IP CAMERAS CLASSIC CAMERAS Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. Resolution Bitrate FPS GOP Resolution Bitrate FPS GOP Audio Motion detection NVIP 5000

Bardziej szczegółowo

!850016! www.irs.gov/form8879eo. e-file www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C,

Bardziej szczegółowo

Gradient Coding using the Stochastic Block Model

Gradient Coding using the Stochastic Block Model Gradient Coding using the Stochastic Block Model Zachary Charles (UW-Madison) Joint work with Dimitris Papailiopoulos (UW-Madison) aaacaxicbvdlssnafj3uv62vqbvbzwarxjsqikaboelgzux7gcaeywtsdp1mwsxeaepd+ctuxcji1r9w5984bbpq1gmxdufcy733bcmjutn2t1fawl5zxsuvvzy2t7z3zn29lkwyguktjywrnqbjwigntuuvi51uebqhjlsdwfxebz8qiwnc79uwjv6mepxgfcoljd88uiox0m1hvlnzwzgowymjn7tjyzertmvpareju5aqkndwzs83thawe64wq1j2httvxo6eopirccxnjekrhqae6wrkuuykl08/gmnjryqwsoqurubu/t2ro1jkyrzozhipvpz3juj/xjdt0ywxu55mina8wxrldkoetukairuekzbubgfb9a0q95fawonqkjoez/7lrdi6trzbcm7pqvwrio4yoarh4aq44bzuwq1ogcba4be8g1fwzjwzl8a78tfrlrnfzd74a+pzb2h+lzm=

Bardziej szczegółowo

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Network Layer Network Fundamentals Chapter 5 Version 4.0 1 OSI Network Layer Network Fundamentals Rozdział 5 Version 4.0 2 Objectives Identify the role of the Network Layer, as it describes communication

Bardziej szczegółowo