PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015
|
|
- Agnieszka Tomczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW Poprawna odpowiedź Max liczba punktów Wybrana odpowiedź Liczba uzyskanych punktów Drogi Uczniu! Przed Tobą arkusz z ciekawymi zadaniami z matematyki. Przy każdym zadaniu podano liczbę punktów, jaką możesz uzyskać. Swoje rozwiązania i odpowiedzi do zadań umieszczaj wyłącznie w przeznaczonym do tego miejscu. W zadaniach zamkniętych o numerach, 2, 3 i 4 podane są cztery odpowiedzi. Wybierz tylko jedną z nich i wpisz w odpowiednie okienko zamieszczone bok zadania. Zapisuj szczegółowe komentarze do rozwiązań zadań otwartych. Pominięcie argumentacji lub istotnych obliczeń może spowodować, że za rozwiązanie nie będziesz mógł otrzymać maksymalnej liczby punktów. Rozwiązując zadania nie możesz korzystać z kalkulatora. Test trwa 60 minut. POWODZENIA! KOD ucznia
2 BRUDNOPIS 2
3 Zadanie. ( punkt) Liczbę odwrotną do liczby 0,8 powiększono o A. 0,45 B.,2 C. 2,05 D. 2,50 i otrzymano liczbę 4 Zadanie. Zadanie 2. ( punkt) Ile różnych liczb trzycyfrowych podzielnych przez 25 można utworzyć z cyfr 0, 3, 5, 7, przy czym cyfry mogą się powtarzać? A. 8 B. 9 C. 7 D. 6 Zadanie 2. Zadanie 3. ( punkt) Kwadrat o obwodzie 32 cm podzielono odcinkiem na trójkąt i trapez. Obwód trójkąta wynosi 24 cm. Krótsza podstawa trapezu jest 4 razy krótsza od dłuższej. Jaki jest obwód trapezu? A. 30 cm B. 32 cm C. 28 cm D. 34 cm Zadanie 3. Zadanie 4. (punkt) Czterokilogramowy worek ziemniaków kosztuje 3,60 zł, zaś worek takich samych ziemniaków o masie 2,5 kg kosztuje 3 zł. O ile droższy jest kilogram ziemniaków w mniejszym opakowaniu? A. 30 gr B. 45 gr C. 60 gr D. 90 gr Zadanie 4. 3
4 Zadanie 5. (4 punkty) Mieszkanie Misia Uszatka ma dwa pokoje, kuchnię, łazienkę i przedpokój. Powierzchnia dużego pokoju jest trzy razy większa od powierzchni małego pokoju i zajmuje połowę powierzchni mieszkania. Powierzchnia kuchni stanowi mieszkania, a łazienki powierzchni powierzchni mieszkania. Oblicz, jaką powierzchnię ma mieszkanie Misia, jeśli przedpokój ma wymiary,5 m x 3 m? Odpowiedź:. 4
5 Zadanie 6. (4 punkty) Trójkąt ABC jest równoboczny, a trójkąt ABD prostokątny i równoramienny. Oblicz, ile może wynosić miara kąta CAD? Rozważ wszystkie możliwości. Wykonaj rysunki pomocnicze. Odpowiedź:. 5
6 Zadanie 7. (3 punkty) Adam miał wczoraj trzy oceny z matematyki i średnia jego ocen była równa 3,0. Oblicz, jaką ocenę dostał Adam z klasówki, jeśli teraz średnia jego ocen jest równa 3,5? Odpowiedź:. 6
7 Zadanie 8. (5 punktów) Kwadrat i dwa prostokąty mają jednakowe obwody po 2 cm. Długość pierwszego prostokąta jest 4 razy mniejsza od długości drugiego prostokąta. Szerokość drugiego prostokąta stanowi połowę długości tego prostokąta. Oblicz pola tych figur. Odpowiedź:. 7
8 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA marzec 205 MATEMATYKA klasa V szkoła podstawowa KARTOTEKA TESTU Nr zad. Czynności ucznia punkty wymagania Analizuje warunki zadania i ustala poprawną odpowiedź. DZ, DD 2 Analizuje warunki zadania i ustala poprawną odpowiedź. PN 3 Analizuje warunki zadania i ustala poprawną odpowiedź. OP 4 Analizuje warunki zadania i ustala poprawną odpowiedź. ZU Oblicza powierzchnię przedpokoju Oblicza jaką część mieszkania zajmuje przedpokój Oblicza powierzchnię mieszkania Oblicza powierzchnię dużego pokoju Oblicza kąt ostry w trójkącie prostokątnym równoramiennym Wykonuje rys. pomocniczy (przypadek I) Oblicza miarę kąta CAD Wykonuje rys. pomocniczy (przypadek II) Oblicza miarę kąta CAD Oblicza sumę trzech ocen Adama Oblicza sumę czterech ocen Adama Oblicza jaką ocenę dostał Adam z klasówki Oblicza długość boku kwadratu Oblicza pole kwadratu Oblicza szerokość i długość drugiego prostokąta Oblicza długość i szerokość pierwszego prostokąta Oblicza pola prostokątów RAZEM 20 ZU OP ZG DN, DD OP WYMAGANIA: DN PN DZ DD ZU ZG OP Działania w zbiorze liczb naturalnych Rozpoznawanie podzielności liczb naturalnych Działania na ułamkach zwykłych Działania na ułamkach dziesiętnych, Rozwiązywanie zadań tekstowych z zastosowaniem działań na ułamkach Zadania z zastosowaniem własności trójkątów i czworokątów Obliczanie obwodów wielokątów i pól kwadratów i prostokątów UMIEJĘTNOŚCI: stosowanie języka matematycznego przy zapisywaniu rozwiązań zadań oraz uzasadnianie strategii postępowania; formułowanie wniosków na podstawie analizy podanego tekstu matematycznego; sprawdzanie, czy otrzymany wynik spełnia warunki zadania; dostrzeganie prawidłowości. 8
9 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V marzec 205 SZKICE PRZYKŁADOWYCH ROZWIĄZAŃ ZADAŃ UWAGA: Za prawidłowe rozwiązanie każdego zadania metodą inną niż podane poniżej przyznajemy maksymalną liczbę punktów Zadanie. Zadanie 2. Zadanie 3. Zadanie 4. D B C A Zadanie 5. (4 punkty) Mieszkanie Misia Uszatka ma dwa pokoje, kuchnię, łazienkę i przedpokój. Powierzchnia dużego pokoju jest trzy razy większa od powierzchni małego pokoju i zajmuje połowę powierzchni mieszkania. Powierzchnia kuchni stanowi mieszkania, a łazienki powierzchni powierzchni mieszkania. Oblicz, jaką powierzchnię ma duży pokój Misia, jeśli przedpokój ma wymiary,5 m x 3 m? Rozwiązanie: Powierzchnia przedpokoju,5 m 3 m = 4,5 m 2 Część mieszkania, jaką zajmują pokoje, kuchnia i łazienka + : = Część mieszkania, jaką zajmuje przedpokój - = Powierzchnia mieszkania 4,5 m 2 2 = 54 m 2 Powierzchnia dużego pokoju 54 m 2 : 2 = 27 m 2 Odpowiedź: Duży pokój ma powierzchnie 27 m 2. Zadanie 6. (4 punkty) Trójkąt ABC jest równoboczny, a trójkąt ABD prostokątny i równoramienny. Oblicz, ile może wynosić miara kąta CAD? Rozważ wszystkie możliwości. Wykonaj rysunki pomocnicze. Rozwiązanie: Miara kąta BAD (80 o 90 o ) : 2 = 45 o Przypadek I Miara kąta CAD 60 o 45 o = 5 o 9
10 Przypadek II Miara kąta CAD 60 o + 45 o = 05 o Odpowiedź: Miara kąta CAD może wynosić 5 o lub 05 o. Zadanie 7. (3 punkty) Adam miał wczoraj trzy oceny z matematyki i średnia jego ocen była równa 3,0. Oblicz, jaką ocenę dostał Adam z klasówki, jeśli teraz średnia jego ocen jest równa 3,5? Rozwiązanie: Suma trzech ocen Adama 3,0 3 = 9 Suma czterech ocen Adama 3,5 4 = 4 Ocena z klasówki 4 9 = 5 Odpowiedź: Adam dostał z klasówki 5. Zadanie 8. (5 punktów) Kwadrat i dwa prostokąty mają jednakowe obwody po 2 cm. Szerokość pierwszego prostokąta jest 4 razy mniejsza od długości drugiego prostokąta. Szerokość drugiego prostokąta stanowi połowę długości tego prostokąta. Oblicz pola tych figur. Rozwiązanie: Długość boku kwadratu 2 cm : 4 = 3 cm Pole kwadratu 3 cm 3 cm = 9 cm 2 Szerokość drugiego prostokąta 2 cm : 6 = 2 cm Długość drugiego prostokąta 2 cm 2 = 4 cm Pole drugiego prostokąta 2 cm 4 cm = 8 cm 2 Szerokość pierwszego prostokąta 4 cm : 4 = cm Długość pierwszego prostokąta (2 cm 2 cm) : 2 = 5 cm Pole pierwszego prostokąta cm 5 cm = 5 cm 2 Odpowiedź: Pole kwadratu wynosi 9 cm 2, pierwszego prostokąta 5 cm 2, a drugiego prostokąta 8 cm 2. 0
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2014
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 04 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. Zad. 3 Zad. 4 Zad. Zad. 6 Zad. 7 Zad.
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2012
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Poprawna odpowiedź Zad. 4 Zad. 5 Zad.
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI szkoła podstawowa marzec 2012
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI szkoła podstawowa marzec 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 SUMA PUNKTÓW Poprawna Zad.
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2016r.
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2016r. KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. 1 Zad. 2 Zad. 3 Zad. 4 SUMA PUNKTÓW Poprawna Zad.
PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013
PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 03 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. SUMA PUNKTÓW Poprawna Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 odpowiedź
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI PŁOCK 2014
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW Max liczba
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 2014
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW Max liczba
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa marzec 2015
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI marzec 2015
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa II PŁOCK 2014
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa II PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 SUMA PUNKTÓW Max
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 2015
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad.
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa 2012
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Poprawna odpowiedź Zad. 5 Zad.
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa III PŁOCK 2014
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa III PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 2012
PŁOCKA MIĘDZYSZKOLNA LIGA PZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 202 KATA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 SUMA PUNKTÓW Poprawna
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:
Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne w klasie V
Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę
KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MATEMATYCZNY dla uczniów gimnazjów oraz oddziałów gimnazjalnych województwa mazowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie,
Wymagania edukacyjne z matematyki w klasie piątej
Wymagania edukacyjne z matematyki w klasie piątej Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki
Wymagania na poszczególne oceny szkolne KLASA V
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE
Wymagania edukacyjne z matematyki w klasie 5
Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-800 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 3) Podstawa programowa
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4
Życzymy powodzenia w rozwiązywaniu zadań!
Kod Ucznia Porąbka Uszewska, 21 maja 2014 r. Test Liczba punktów za zadanie otwarte Zad. 1-13 1 2 3 4 5 6 7 8 9 10 razem POWIATOWY KONKURS MATEMATYCZNY DLA UCZNIÓW KLAS V ETAP FINAŁOWY Celem obliczeń nie
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 20/205 KOD UCZNIA Etap: Data: Czas pracy: szkolny 7 listopada 20 r. 90 minut Informacje
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..
WYMAGANIA EGZAMINACYJNE DLA KLASY V
TEMAT WYMAGANIA EGZAMINACYJNE DLA KLASY V WYMAGANIA SZCZEGÓŁOWE 1.LICZBY I DZIAŁANIA 1. Zapisywanie i I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. porównywanie liczb. Uczeń: 1) zapisuje i odczytuje
Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2014/2015 ETAP SZKOLNY 4 listopada 2014 roku
Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 201/2015 ETAP SZKOLNY listopada 201 roku 1. Przed Tobą zestaw 21 zadań konkursowych. 2. Na ich rozwiązanie masz 90 minut.
II. Działania na liczbach naturalnych. Uczeń:
TEMAT 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 14. II. 2017. I. Liczby naturalne w dziesiątkowym
Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A
Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test sprawdzający Twoją wiedzę i umiejętności, które nabyłeś na wcześniejszych
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZ. LEKCYJN YCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ I. Liczby
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa II szkoła podstawowa marzec 2012
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa II szkoła podstawowa marzec 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 SUMA PUNKTÓW Poprawna
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2016/2017 18.11.2016 1. Test konkursowy zawiera 22 zadania. Są to zadania zamknięte
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP II - POWIATOWY 18 stycznia 2018 r. Godz.10:00 Kod pracy ucznia Suma punktów Czas pracy: 60 minut Liczba punktów możliwych do uzyskania:
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018 14.02.2018 1. Test konkursowy zawiera 23 zadania. Są to zadania zamknięte i otwarte. Na
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V. Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r.
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r. Działania pamięciowe Potęgowanie 1) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 4. II. 07.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki.
MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku
Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 200 / 20 ETAP SZKOLNY - 7 października 200 roku. Przed Tobą zestaw 20 zadań konkursowych. 2. Na ich rozwiązanie masz 90 minut.
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V OCENA ŚRÓDROCZNA: DOPUSZCZAJĄCY uczeń potrafi: zapisywać i odczytywać liczby w dziesiątkowym
x Kryteria oceniania
Wojewódzki Konkurs z matematyki dla uczniów szkół podstawowych rok szkolny 216/21 Etap I - szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA
Wymagania edukacyjne niezbędne do otrzymania przez ucznia klasy 5 poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych w roku szkolnym2016/2017. TEMAT 1.LICZBY I DZIAŁANIA 1. Zapisywanie i porównywanie
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP SZKOLNY rok szkolny 2018/2019
Kod ucznia Data urodzenia ucznia dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP SZKOLNY rok szkolny 2018/2019 Instrukcja dla ucznia 1. Sprawdź,
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Sprytne rachunki. 4. Szacowanie wyników działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A
Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2018/2019 28.02.2019 R. 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY
...................................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj
STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY V W ROZBICIU NA OCENY
STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY V W ROZBICIU NA OCENY Treści i umiejętności Zakres opanowanej wiedzy i posiadane umiejętności w rozbiciu na poszczególne oceny celująca bardzo
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2015/2016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 14 stron.
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2015/2016 13 STYCZNIA 2016 R. 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2017/2018 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.
Trenuj przed sprawdzianem! Matematyka
mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. nformacja do zadań od 1. do 6. Ogród pani Gabrysi ma kształt
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe.
MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ
MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ Drogi uczniu, przed Tobą test sprawdzający wiadomości i umiejętności matematyczne po klasie V. Rozwiązując zadania dowiesz się, co z matematyki
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 stycznia 2015 r. zawody II stopnia (rejonowe)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 stycznia 205 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 3 zadań.
Szkolna Liga Matematyczna zestaw nr 3 dla klasy 3
zestaw nr 3 dla klasy 3 W magazynie stoją dwa worki z ryżem. W pierwszym worku jest trzykrotnie więcej ryżu niż w drugim, a w drugim o 24 kg mniej niż w pierwszym. Ile ryżu znajduje się łącznie w obydwu
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY. 18 listopada 2013 r. godz. 13:00
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY 18 listopada 2013 r. godz. 13:00 Kod pracy ucznia Suma punktów Czas pracy: 90 minut Liczba punktów możliwych do uzyskania: 30
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2011/2012
Etap wojewódzki 25 lutego 2012 r. M Instrukcja dla ucznia Godzina 11.00 Kod ucznia 1. Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 2. Sprawdź, czy zestaw
KONKURS ZOSTAŃ EUKLIDESEM CZĘŚĆ I
Odpowiedzi Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego KONKURS ZOSTAŃ EUKLIDESEM CZĘŚĆ I Imię i nazwisko:..............................................
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać
Matematyk Roku gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA
Imię i nazwisko:.. Klasa:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 2017 - gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA 1. Przed Tobą zestaw 20 zadań konkursowych.
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013
.... pieczątka WKK Kod ucznia Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 ETAP WOJEWÓDZKI Drogi Uczniu! Witaj na etapie wojewódzkim konkursu matematycznego.
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe)
Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego stycznia 0 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający
Kryteria ocen z matematyki w klasie IV
Kryteria ocen z matematyki w klasie IV odejmuje liczby w zakresie 100 z przekroczeniem progu dziesiętnego, zna kolejność wykonywania działań, gdy nie występuję nawiasy, odczytuje współrzędne punktu na
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Uczeń na ocenę dopuszczającą potrafi: - Oszacować wyniki obliczeń na liczbach dziesiętnych w kontekście zakupów. - Korzystać z gotowego planu. - Narysować prostokąt
KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MATEMATYCZNY dla uczniów szkół podstawowych województwa mazowieckiego w roku szkolnym 01/019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie, inne niż przewidziane
WYMAGANIA EDUKACYJNE z MATEMATYKI ucznia kl. V
WYMAGANIA EDUKACYJNE z MATEMATYKI ucznia kl. V Wymagania na ocenę DOPUSZCZAJĄCĄ Zapisuje liczby za pomocą cyfr Odczytuje liczby zapisane cyframi Przedstawia liczby naturalne na osi liczbowej Pamięciowo
IV WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH F - M A T -
IV WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ROK SZKOLNY 2017/2018 ELIMINACJE WOJEWÓDZKIE Kod pracy F - M A T - Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 6
Klasa 6. Pola wielokątów
Klasa 6. Pola wielokątów gr. A str. 1/4... imię i nazwisko...... klasa data 1. Jedna przekątna rombu ma 6 cm, a druga jest od niej o 3 cm krótsza. Dokończ zdania. Wybierz właściwe odpowiedzi spośród A
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
MATEMATYKA DLA KLASY V W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ
MATEMATYKA DLA KLASY V W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
IV WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
IV WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ROK SZKOLNY 2017/2018 ELIMINACJE REJONOWE Kod pracy - M A T - Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 6 stron
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 08/09.0.09 R.. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2014/2015 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2016/2017 11.01.2017 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2017 Zadanie 1. (0 1) Wymagania szczegółowe Umiejętności z zakresu
Instrukcja dla zdającego Czas pracy: 170 minut
MATEMATYKA klasa pierwsza (pp) CZERWIEC 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego
Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego ETAP WOJEWÓDZKI rok szkolny 2018/2019
Kod ucznia Data urodzenia ucznia dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego ETAP WOJEWÓDZKI rok szkolny 2018/2019 Instrukcja dla ucznia
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2016/2017 ETAP WOJEWÓDZKI 13 marca 2017 roku
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 016/017 ETAP WOJEWÓDZKI 13 marca 017 roku 1. Przed Tobą zestaw 15 zadań konkursowych.. Na ich rozwiązanie masz 10 minut. Piętnaście minut
Matematyk Roku gminny konkurs matematyczny. FINAŁ 20 maja 2016 KLASA PIERWSZA
Twój kod:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 2016 - gminny konkurs matematyczny FINAŁ 20 maja 2016 KLASA PIERWSZA 1. Przed Tobą zestaw 20 zadań konkursowych. Zanim rozpoczniesz
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-Q00-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) Podstawa programowa
Kryteria punktowania zadań - KRAKOWSKA MATEMATYKA 2012/2013. Etap międzyszkolny - KRAKÓW MIASTO UCZONYCH I ŻAKÓW klasa piąta 1 D) 966 1
Kryteria punktowania zadań - KRAKOWSKA MATEMATYKA 0/0 Etap międzyszkolny - KRAKÓW MIASTO UCZONYCH I ŻAKÓW klasa piąta Zadanie Rozwiązanie Kryteria oceniania D) 966 Max. liczba pkt. D) W XIV wieku B) 75
KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych
PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka
PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6 Rok szkolny 2012/2013 Tamara Kostencka 1 LICZBY NA CO DZIEŃ LICZBY NATURALNE I UŁAMKI Wymagania programowe dla klasy VI szkoły podstawowej DZIAŁ WYMAGANIA
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. (dla klas trzecich liceum i klas czwartych technikum)
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WPISUJE UCZEŃ KOD PESEL PRZEDMATURALNA DIAGNOZA KSZTAŁTUJĄCA Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 018 (dla klas trzecich liceum