RAPORT z diagnozy umiejętności matematycznych
|
|
- Radosław Henryk Borkowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 RAPORT z diagnozy umiejętności matematycznych przeprowadzonej w klasach pierwszych szkół ponadgimnazjalnych 1
2 Analiza statystyczna Wskaźnik Liczba uczniów Liczba punktów Łatwość zestawu Wyjaśnienie Liczba uczniów, którzy przystąpili do sprawdzianu diagnostycznego Liczba punktów możliwa do uzyskania Wartość wskaźnika łatwości wskazuje na łatwość/trudność testu Wartość wskaźnika ,32 Komentarz Łatwość testu liczymy dzieląc sumę punktów zdobytych przez uczniów tej klasy przez sumę punktów możliwych do zdobycia przez wszystkich uczniów tej klasy. MIARY TENDENCJI CENTRALNEJ Średnia arytmetyczna Mediana Suma wszystkich wyników podzielona przez liczbę uczniów Wynik środkowy spośród wyników uczniowskich uporządkowanych malejąco lub rosnąco 7,5 6 Typowy uczeń tej klasy uzyskał 7,6 punktu na 23 punkty możliwe do uzyskania. Oznacza to, że "statystyczny" uczeń opanował 32,4% Środkowy uczeń w uporządkowanym malejąco lub rosnąco rozkładzie wyników uzyskał czynności mierzonych testem. 6 z 23 punktów możliwych do uzyskania. Stanowi to odpowiednio 26% możliwej do uzyskania liczby punktów. MIARY ROZRZUTU Najniższy wynik Najwyższy wynik Rozstęp wyników Odchylenie standardowe Najniższy wynik spośród wyników osiągniętych przez uczniów Najwyższy wynik spośród wyników osiągniętych przez uczniów Różnica między wynikami najwyższym i najniższym osiągniętymi przez uczniów Miara rozproszenia wyników w odniesieniu do wyniku średniego 1 Liczba uczniów, którzy uzyskali najniższy wynik 18 (2,5%) 23 Liczba uczniów, którzy uzyskali najwyższy wynik 4 (0,57%) 22 Uczniowie uzyskali wyniki w zakresie od 1 do 23 punktów (na 23 punkty możliwe do uzyskania). 4,8 Około 7 uczniów z klasy osiąga wyniki z przedziału od 2,7 do 12,2 2
3 Łatwość testu: 0,32 Stosunek liczby punktów uzyskanych za rozwiązanie testu (zadania) przez wszystkich uczniów do maksymalnej liczby punktów możliwych do uzyskania. Uwaga: jeśli współczynnik łatwości jest poniżej 0 badanej umiejętności trzeba nauczyć jeszcze raz. Charakterystyka zróżnicowania współczynnika łatwości zadań lub testu 0 - zadania bardzo trudne (za trudne dla klasy); 0-9 zadania trudne 0,50-9 zadania średniej trudności /łatwości; 0,70-9 zadania łatwe; 0,90-0 zadania bardzo łatwe (za łatwe dla klasy) Rozkład wyników - diagnoza w klasach pierwszych p. 2p. 3p. 4p. 5p. 6p. 7p. 8p. 9p. 10p. 11p. 12p. 13p. 14p. 15p. 16p. 17p. 18p. 19p. 20p. 21p. 22p. 23p. 7 MEDIANA ŚREDNIA Wnioski: Analizując miary tendencji centralnej możemy zauważyć, że średnia (7,5 punktu) jest nieco większa od mediany (6 punktów) co wskazuje na niewielką prawoskośność rozkładu. Wielkość modalna dla tego rozkładu wynosi 4 punkty (uzyskało 70 uczniów = 11% piszących test), co oznacza, że dominującym wynikiem jest zdobycie 17% punktów za test. Może to sugerować, że rozwiązywane zadania sprawiały uczniom bardzo dużą trudność, co potwierdza również wartość współczynnika łatwości testu (0,32). 3
4 1 11% 11% 34% 46% 2 14% 25% 16% 16% 13% % 29% 29% 35% 5 35% 26% 14% 2 13% 14% 3 28% 29% 15% 8% 6% 47% 53% 43% 57% 46% 44% 6 52% 39% 46% 54% % 66% 56% 58% 52% 64% 54% 6 62% 75% 71% 84% 9 0 0,16 0,13 6 0,14 0 0,13 0,14 0, , ,57 0,75 0,71 4 Analiza wykonania Łatwości zadań Łatwości czynności punktowanych w zadaniach 0,9 0,7 0,5 0,3 0,1 0,76 0,53 4 0,57 0,31 0,16 6 0,16 0,12 Z.1 Z.2 Z.3 Z.4 Z.5 Z.6 Z.7 Z.8 Z.9 0,9 0,7 0,5 0,3 0,1 Z.1 Z.2 Z.3 Z.4a Z.4b Z.4c Z.5a Z.5b Z.5c Z.6a Z.6b Z.6c Z.7a Z.7b Z.7c Z.7d Z.8a Z.8b Z.8c Z.9a Z.9b Z.9c Z.9d Wybory uczniów Z.1 Z.2 Z.3 Z.4a Z.4b Z.4c Z.5a Z.5b Z.5c Z.6a Z.6b Z.6c Z.7a Z.7b Z.7c Z.7d Z.8a Z.8b Z.8c Z.9a Z.9b Z.9c Z.9d ile pustych ile zer ile jedynek Wnioski: Test składał się z 9 zadań i obejmował dość różnorodny materiał. Większość zadań i poleceń została dobrze i jasno sformułowana. Błąd wkradł się w zadaniu ósmym w grupie A uczeń miał do wykonania cztery czynności, natomiast w analogicznym zadaniu w grupie B trzy. Uwzględniono tę pomyłkę w raporcie diagnostycznym usuwając punkt za liczenie objętości stożka w grupie A. Rachunki w zadaniach testu nie były zbyt skomplikowane, aby uczeń mógł skoncentrować się na istocie zagadnienia. 4
5 Szczegółowa analiza wykonania zadań - przykłady Nr zad. Sprawdzane wiadomości i umiejętności Łatwość zadania Frakcja opuszczeń 1 Proporcjonalność prosta, przekształcanie proporcji. 0,53 0,14% 2 Wykorzystanie i interpretowanie reprezentacji. 4 3 Działania na potęgach o wykładnikach całkowitych. 0,57 8% Odczytywanie i interpretacja informacji przedstawionych za pomocą wykresu. Funkcje - obliczanie wartości funkcji podanych nieskomplikowanym wzorem i zaznaczanie punktów należących do jej wykresu. Oceniane: Wyznacza współrzędne punktu A Stosuje poprawna metodę wyznaczenia współrzędnych punktu B Wyznacza współrzędne punktu B Obliczanie miary kąta odpowiadającego wycinkowi koła, stosowanie twierdzenia Pitagorasa, wyłączanie czynnika przed znak pierwiastka, obliczanie objętości stożka. Oceniane: Stosuje poprawną metodę wyznaczenia miary kąta podanego wycinka Oblicza miarę kąta podanego wycinka Oblicza wysokość stożka (wyłącza liczbę poza znak pierwiastka) 0,76 0,16 34% 0,16 28% Wnioski Zadanie średnio trudne Tylko jeden uczeń opuścił to zadanie, niestety 46% uczniów rozwiązujących zadanie wybrało niepoprawną odpowiedź. Zadanie średnio trudne Wszyscy uczniowie rozwiązywali to zadanie, 36% uczniów wybrało niepoprawną odpowiedź. Zadanie średnio trudne Tylko dwóch uczniów opuściło to zadanie, niestety 42% uczniów rozwiązujących zadanie wybrało niepoprawną odpowiedź. Zadanie łatwe Wszyscy uczniowie rozwiązywali to zadanie, najmniej błędów uczniowie popełnili w punkcie b, w punktach a i c ok. 25% uczniów dokonało złego wyboru. Zadanie bardzo trudne Ponad 1/3 uczniów nie podjęła próby rozwiązania tego zadania. Prawie 5 uczniów źle wyznaczyło współrzędne punktu A (leżącego na osi OY), 3% uczniów, pomimo zastosowania poprawnej metody, źle wyliczyło współrzędne punktu B (leżącego na osi OX). Zadanie bardzo trudne Prawie 1/3 uczniów nie podjęła próby rozwiązania zadania. 21% uczniów zastosowało poprawną metodę wyznaczenia miary kąta podanego wycinka, a tylko 13% uczniów poprawnie obliczyło tę miarę znowu rachunki. 5
6 Interpretacja statystyczna umiejętności matematycznych uczniów przykłady: Wnioski: wymagań programowych: L działania na liczbach i wyrażeniach arytmetycznych WA przekształcanie wyrażeń algebraicznych FiW funkcje i wykresy GP geometria na płaszczyźnie i Łatwości podtestów WA L FiW G Najsłabszą stroną tej grupy uczniów są umiejętności z działań na potęgach (zadanie 3) i pierwiastkach (zadania 7 i 8) przekształcenia wymagały wiedzy na poziomie gimnazjalnym. Dużo kłopotów mieli też uczniowie z zadaniami z geometrii (zadanie 5, 7 i 8). Łatwość dla działu FiW podniosło zadanie 4, ponieważ zadanie 6, dotyczące odczytywania informacji z wykresu funkcji rozwiązało poprawnie mniej niż 2 uczniów. w przestrzeni poznawczych kategorii taksonomicznych: B zrozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych Łatwości kat. taksonomicznych 5 0,33 B C D Analizując współczynniki łatwości w kategorii poznawcze kategorie taksonomiczne można zauważyć, że 65% uczniów rozumie wiadomości zawarte w zadaniach, jednak zastosowanie tych wiadomości zarówno w sytuacjach typowych jak i nietypowych staje się bardzo dużym problemem. Na podstawie wyników badań w projekcie Połowa Drogi 2018 opracowała Grażyna Śleszyńska 6
RAPORT z diagnozy Matematyka na starcie
RAPORT z diagnozy Matematyka na starcie przeprowadzonej w klasach czwartych szkoły podstawowej Analiza statystyczna Wyjaśnienie Wartość wskaźnika Liczba uczniów Liczba uczniów, którzy przystąpili do sprawdzianu
RAPORT z diagnozy umiejętności matematycznych
RAPORT z diagnozy umiejętności matematycznych przeprowadzonej w klasach czwartych szkoły podstawowej 1 Analiza statystyczna Wskaźnik Liczba uczniów Liczba punktów Łatwość zestawu Wyjaśnienie Liczba uczniów,
RAPORT ZBIORCZY z diagnozy Matematyka PP
RAPORT ZBIORCZY z diagnozy Matematyka PP przeprowadzonej w klasach drugich szkół ponadgimnazjalnych Analiza statystyczna Wskaźnik Wartość wskaźnika Wyjaśnienie Liczba uczniów Liczba uczniów, którzy przystąpili
RAPORT ZBIORCZY z diagnozy umiejętności matematycznych
RAPORT ZBIORCZY z diagnozy umiejętności matematycznych przeprowadzonej w klasach szóstych szkół podstawowych Analiza statystyczna Wskaźnik Wartość wskaźnika Wyjaśnienie Liczba uczniów Liczba uczniów, którzy
RAPORT z diagnozy umiejętności matematycznych na poziomie podstawowym uczniów liceów i techników w połowie drogi przed maturą
RAPORT z diagnozy umiejętności matematycznych na poziomie podstawowym uczniów liceów i techników w połowie drogi przed maturą marzec 09 Plan testu wymagania ogólne Wymagania ogólne zapisane w podstawie
Wyniki egzaminu gimnazjalnego 2016/2017 część humanistyczna język polski
Wyniki egzaminu gimnazjalnego 2016/2017 część humanistyczna język polski Gimnazjum w Pietrowicach Wielkich XI 2017 Opracowała Wyniki egzaminu gimnazjalnego `2017 Rozkład punktów w powiecie Strona 2 Wyniki
Wyniki egzaminu gimnazjalnego 2014/2015 część humanistyczna język polski
Wyniki egzaminu gimnazjalnego 2014/2015 część humanistyczna język polski Gimnazjum w Pietrowicach Wielkich X 2015 Opracowała Wyniki egzaminu gimnazjalnego `2015 część humanistyczna j. polski 90 85 80 75
Analiza sprawdzianu 2011 klas szóstych szkoły podstawowej
Zespół Szkolno - Przedszkolny w Rudzicy im. Jana Pawła II Analiza sprawdzianu 2011 klas szóstych szkoły podstawowej Opracowała: mgr Magdalena Balcy SPIS TREŚCI 1. Informacje wstępne... 3 2. Charakterystyka
ANALIZA JAKOŚCIOWA I ILOŚCIOWA TESTÓW SZKOLNYCH MATERIAŁ SZKOLENIOWY
ANALIZA JAKOŚCIOWA I ILOŚCIOWA TESTÓW SZKOLNYCH MATERIAŁ SZKOLENIOWY Instrukcja przeprowadzania analiz badań edukacyjnych i sporządzania raportów po badaniach. Cele prowadzenia analiz jakościowych i ilościowych
Wyniki sprawdzianu matematycznego. Matematyka do Potęgi R
Wyniki sprawdzianu matematycznego Matematyka do Potęgi R przeprowadzonego w dniu 12 kwietnia 2013 r. w szkołach ponadgimnazjalnych Elżbieta Ostaficzuk Grażyna Śleszyńska Monika Jonczak 1 I. Struktura sprawdzianu
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 - wyniki niskie - wyniki średnie - wyniki wysokie liczba
Ewaluacja sprawdzianu 2009 klas szóstych szkoły podstawowej na podstawie sprawozdania sporządzonego przez OKE w Jaworznie
Zespół Szkolno - Przedszkolny w Rudzicy im. Jana Pawła II Ewaluacja sprawdzianu 2009 klas szóstych szkoły podstawowej na podstawie sprawozdania sporządzonego przez OKE w Jaworznie Rudzica 2009 SPIS TREŚCI
Wyniki sprawdzianu matematycznego. Matematyka do Potęgi P
Wyniki sprawdzianu matematycznego Matematyka do Potęgi P przeprowadzonego w dniu 2 kwietnia 23 r. w szkołach ponadgimnazjalnych Elżbieta Ostaficzuk Grażyna Śleszyńska Monika Jonczak I. Struktura sprawdzianu
Rozkład łatwości zadań
Klasa 3a Rozkład łatwości zadań Średni wynik klasy.04 pkt 77% Średni wynik szkoły 16.73 pkt 76% Średni wynik ogólnopolski.34 pkt 47% 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9a 9b
Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki
Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki Zestaw zadań egzaminacyjnych zawierał 23, w tym 20 zadań zamkniętych
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry rozkładu
Rozkład łatwości zadań
Klasa 3a średnia klasy: 8.45 pkt średnia szkoły: 9.34 pkt średnia ogólnopolska: 10.09 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8a 8b 8c 9 10 11 12 Numer
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 34 35 36 37 38 39 4 41 42 43 44 45 46 47 48 49
Rozkład łatwości zadań
Klasa 3a średnia klasy: 22.52 pkt średnia szkoły: 21.93 pkt średnia ogólnopolska: 14.11 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU W CZĘŚCI matematycznej
ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012 WYNIKI ZESTAWU W CZĘŚCI matematycznej Dane statystyczne o uczniach (słuchaczach) przystępujących do egzaminu gimnazjalnego Liczbę uczniów
Analiza sprawdzianu 2010 klas szóstych szkoły podstawowej
Zespół Szkolno - Przedszkolny w Rudzicy im. Jana Pawła II Analiza sprawdzianu 2010 klas szóstych szkoły podstawowej Skład zespołu opracowującego raport: mgr Magdalena Balcy mgr Barbara Gawlik mgr Ilona
Rozkład łatwości zadań
Klasa 3ag 05-1 Legionowo, Mickiewicza 35a Rozkład łatwości zadań Średni wynik klasy.59 pkt 62% Średni wynik szkoły.67 pkt 71% Średni wynik ogólnopolski 10.34 pkt 47% 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3
Rozkład łatwości zadań
Klasa 2a średnia klasy: 9.40 pkt średnia szkoły: 10.26 pkt średnia ogólnopolska: 9.55 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7a 7b 8 9 10 11 12 13 Numer
RAPORT z diagnozy umiejętności matematycznych na poziomie rozszerzonym uczniów liceów i techników w połowie drogi przed maturą
RAPORT z diagnozy umiejętności matematycznych na poziomie rozszerzonym uczniów liceów i techników w połowie drogi przed maturą marzec 09 Plan testu wymagania ogólne II. Wymagania ogólne zapisane w podstawie
EGZAMIN GIMNAZJALNY 2012 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM. sesja wiosenna
EGZAMIN GIMNAZJALNY 2012 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM sesja wiosenna Jaworzno 2012 SPIS TREŚCI 1. WPROWADZENIE... 3 2. WYNIKI SŁUCHACZY GIMNAZJÓW DLA DOROSŁYCH DOTYCZĄCE STANDARDOWYCH
Analiza sprawdzianu 2014 klas szóstych szkoły podstawowej
Zespół Szkolno - Przedszkolny w Rudzicy im. Jana Pawła II Analiza sprawdzianu 2014 klas szóstych szkoły podstawowej Opracowała: mgr Magdalena Balcy SPIS TREŚCI 1. Informacje wstępne... 3 2. Charakterystyka
EGZAMIN GIMNAZJALNY 2011 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM. sesja wiosenna
EGZAMIN GIMNAZJALNY 2011 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM sesja wiosenna Jaworzno 2011 SPIS TREŚCI 1. WPROWADZENIE... 3 2. OGÓLNE WYNIKI UZYSKANE PRZEZ SŁUCHACZY GIMNAZJÓW DLA DOROSŁYCH
EGZAMIN GIMNAZJALNY 2015 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM. sesja zimowa
EGZAMIN GIMNAZJALNY 2015 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM sesja zimowa Jaworzno 2015 SPIS TREŚCI 1. WPROWADZENIE 3 2. WYNIKI SŁUCHACZY GIMNAZJÓW DLA DOROSŁYCH ROZWIĄZUJĄCYCH STANDARDOWE
Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA
Egzamin Gimnazjalny z WSiP LISTOPAD 2015 Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu
Klasa I szkoły ponadgimnazjalnej matematyka
Klasa I szkoły ponadgimnazjalnej matematyka. Informacje ogólne Badanie osiągnięć uczniów I klas odbyło się 7 września 2009 r. Wyniki badań nadesłało 2 szkół. Analizie poddano wyniki 992 uczniów z 4 klas
ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO 2012
PUBLICZNE GIMNAZJUM IM. KRÓLA JANA KAZIMIERZA W RAJCZY ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO 2012 CZĘŚĆ MATEMATYCZNO PRZYRODNICZA Egzamin Gimnazjalny w części matematyczno przyrodniczej składał się z
Podstawowe definicje statystyczne
Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny
Rozkład łatwości zadań
Klasa 1b średnia klasy: 11.00 pkt średnia szkoły: 13.55 pkt średnia ogólnopolska: 10.93 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 Numer zadania
Rozkład łatwości zadań
Klasa 1a średnia klasy: 17.13 pkt średnia szkoły: 17.36 pkt średnia ogólnopolska: 10.93 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 Numer zadania
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry
Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym
Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym Do egzaminu maturalnego w II Liceum Ogólnokształcącego im. Mikołaja Kopernika w Cieszynie z matematyki na poziomie podstawowym
Informacja o wynikach sprawdzianu w 2011 roku
Wydział Badań i Analiz OKE w Krakowie Informacja o wynikach sprawdzianu w 2011 roku 5 kwietnia 2011 roku po raz dziesiąty uczniowie w całym kraju pisali sprawdzian w szóstej klasie szkoły podstawowej.
PODSUMOWANIE EGZEMINU GIMNAZJALNEGO 2017/2018 MATEMATYKA
PODSUMOWANIE EGZEMINU GIMNAZJALNEGO 2017/2018 MATEMATYKA OPIS ARKUSZA STANDARDOWEGO Uczniowie bez dysfunkcji oraz uczniowie z dysleksją rozwojową rozwiązywali zadania zawarte w arkuszu GM-M1-182. Arkusz
PRÓBNY WEWNĘTRZNY SPRAWDZIAN SZÓSTOKLASISTÓW z CKE GRUDZIEŃ 2014
PRÓBNY WEWNĘTRZNY SPRAWDZIAN SZÓSTOKLASISTÓW z CKE GRUDZIEŃ 2014 1 1 Wstęp W kwietniu 2015 roku uczniowie klas szóstych będą pisać swój sprawdzian w nowej formule: część 1. - język polski i matematyka
Analiza sprawdzianu 2013 klas szóstych szkoły podstawowej
Zespół Szkolno - Przedszkolny w Rudzicy im. Jana Pawła II Analiza sprawdzianu 2013 klas szóstych szkoły podstawowej Opracowała: mgr Magdalena Balcy SPIS TREŚCI 1. Informacje wstępne... 3 2. Charakterystyka
Wykorzystanie wyników egzaminów zewnętrznych w pracy nauczycieli
Wojewódzki Ośrodek Doskonalenia Nauczycieli w Skierniewicach al. Niepodległości 4 96-100 Skierniewice www.wodnskierniewice.eu wodn@skierniewice.com.pl Placówka posiada akredytację ŁKO CERTYFIKAT PN-EN
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry rozkładu
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
Rozkład łatwości zadań
Klasa 1a średnia klasy: 14.60 pkt średnia szkoły: 10.88 pkt średnia ogólnopolska: 10.95 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8a 8b 8c 8d 9 10 11 12 13
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry rozkładu
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry rozkładu
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE ZAWODOWE w województwie śląskim
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE ZAWODOWE 2016 w województwie śląskim Jaworzno, styczeń 2016 SPIS TREŚCI 1. INFORMACJE OGÓLNE 3 2. ZDAWALNOŚĆ EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE 6 3. WYNIKI
INFORMACJE O WYNIKACH EGZAMINU ZAWODOWEGO W KWALIFIKACJI M.11. EKSPLOATACJA ZŁÓŻ PODZIEMNYCH
INFORMACJE O WYNIKACH EGZAMINU ZAWODOWEGO W KWALIFIKACJI M.11. EKSPLOATACJA ZŁÓŻ PODZIEMNYCH W WOJEWÓDZTWIE ŚLĄSKIM sesja sierpień-wrzesień Jaworzno 2013 SPIS TREŚCI 1. TERMIN EGZAMINU POTWIERDZAJĄCEGO
Wyniki egzaminu gimnazjalnego 2014/2015 część humanistyczna historia i wiedza o społeczeństwie. Gimnazjum w Pietrowicach Wielkich 2015
Wyniki egzaminu gimnazjalnego 2014/2015 część humanistyczna historia i wiedza o społeczeństwie Gimnazjum w Pietrowicach Wielkich 2015 Opracował: Łukasz Kąś Egzamin z historii i wiedzy o społeczeństwie
Opracował: Łukasz Kąś
Wyniki egzaminu gimnazjalnego 2018 historia i wiedza o społeczeństwie SP w Pietrowicach Wielkich Opracował: Łukasz Kąś Wyniki egzaminu gimnazjalnego arkusz standardowy 2018 Porównanie wyników dla całego
Udział punktów możliwych do uzyskania w zależności od kategorii standardów przedstawia tabela.
Wprowadzenie Na podstawie rozporządzenia Ministra Edukacji Narodowej z dnia 30 kwietnia 2007 roku w sprawie warunków i sposobu oceniania, klasyfikowania i promowania uczniów i słuchaczy oraz przeprowadzania
Analiza sprawdzianu 2008 klas szóstych szkoły podstawowej
Zespół Szkolno - Przedszkolny w Rudzicy im. Jana Pawła II Analiza sprawdzianu 2008 klas szóstych szkoły podstawowej Opracowała: Magdalena Balcy SPIS TREŚCI 1. Informacje wstępne... 3 2. Charakterystyka
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 10 9 8 7 procent uczniów 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 - wyniki niskie -
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 10 9 8 7 procent uczniów 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 - wyniki niskie -
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry rozkładu wyników
Rozkład łatwości zadań
Klasa 2a Rozkład łatwości zadań Średni wynik klasy.26 pkt 59% Średni wynik szkoły 3.55 pkt 7% Średni wynik ogólnopolski.9 pkt 43% 0.9 0. 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0. 0 2 3 4 5 6 7 9a 9b 0 a b 2 3
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 liczba punktów - wyniki niskie - wyniki średnie - wyniki
Próbny egzamin gimnazjalny w części matematyczno-przyrodniczej dnia r.
Próbny egzamin gimnazjalny w części matematyczno-przyrodniczej dnia 06.12.2007r. L.p. Klasa Liczba uczniów w klasie Liczba uczniów, którzy przystąpili do egzaminu Liczba uczniów nieobecnych 1. III a 14
Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum. Część matematyczno-przyrodnicza. LUTY 2016 Analiza wyników
Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum Część matematyczno-przyrodnicza LUTY 2016 Analiza wyników Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu i 3 zadań
EGZAMIN GIMNAZJALNY 2013 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM. sesja wiosenna
EGZAMIN GIMNAZJALNY 2013 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM sesja wiosenna Jaworzno 2013 SPIS TREŚCI 1. WPROWADZENIE... 3 2. WYNIKI SŁUCHACZY GIMNAZJÓW DLA DOROSŁYCH DOTYCZĄCE STANDARDOWYCH
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres podstawowy., Oficyna Edukacyjna
Opracował: Łukasz Kąś
Wyniki egzaminu gimnazjalnego 2016/2017 część humanistyczna historia i wiedza o społeczeństwie Gimnazjum w Pietrowicach Wielkich 2017 Opracował: Łukasz Kąś Wyniki egzaminu gimnazjalnego arkusz standardowy
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je
Miary statystyczne w badaniach pedagogicznych
Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
III. STRUKTURA I FORMA EGZAMINU
III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań
Egzamin gimnazjalny z matematyki 2016 analiza
Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu
1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH
TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. POTĘGI 1. Potęga o wykładniku naturalnym 2-3 2. Iloczyn i iloraz potęg o jednakowych podstawach 3. Potęgowanie potęgi
I. Struktura sprawdzianu matematycznego Po gimnazjum 2010
Wyniki sprawdzianu matematycznego Po gimnazjum 2010 przeprowadzonego 23 września 2010 w klasach pierwszych ponadgimnazjalnych www.polowadrogi.mscdn.pl luty 2011 1 I. Struktura sprawdzianu matematycznego
MATeMAtyka zakres podstawowy
MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie
I.1.1. Technik analityk 311[02]
I.1.1. Technik analityk 311[02] Do egzaminu zostało zgłoszonych:378 Przystąpiło łącznie: 363 przystąpiło: 360 ETAP PISEMNY zdało: 315 (87,5%) DYPLOM POTWIERDZAJĄCY KWALIFIKACJE ZAWODOWE ETAP PRAKTYCZNY
PRÓBNY SPRAWDZIAN SZÓSTOKLASISTY Z OPERONEM
PRÓBNY SPRAWDZIAN SZÓSTOKLASISTY Z OPERONEM Wprowadzenie Na podstawie rozporządzenia Ministra Edukacji Narodowej z dnia 3 kwietnia 27 roku w sprawie warunków i sposobu oceniania, klasyfikowania i promowania
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry rozkładu wyników
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne
PRÓBNY WEWNĘTRZNY SPRAWDZIAN SZÓSTOKLASISTÓW z OPERONEM. styczeń 2015
PRÓBNY WEWNĘTRZNY SPRAWDZIAN SZÓSTOKLASISTÓW z OPERONEM styczeń 2015 1 1 Wstęp Przedstawione poniżej wyniki dotyczą sprawdzianu opracowanego zgodnie z nowymi zasadami przez Wydawnictwo OPERON. Sprawdzian
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
SPRAWDZIAN I EGZAMINY 2013 W SZKOŁACH ARTYSTYCZNYCH. w w o je w ó dztwie śląskim
SPRAWDZIAN I EGZAMINY 2013 W SZKOŁACH ARTYSTYCZNYCH w w o je w ó dztwie śląskim Jaworzno 2013 Spis treści I. WPROWADZENIE 4 II. SPRAWDZIAN 6 2.1. Wyniki uczniów szkół podstawowych artystycznych dotyczące
ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)
ZAKRES PODSTAWOWY Proponowany rozkład materiału kl. I (00 h). Liczby rzeczywiste. Liczby naturalne. Liczby całkowite. Liczby wymierne. Liczby niewymierne 4. Rozwinięcie dziesiętne liczby rzeczywistej 5.
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości
Wymagania edukacyjne klasa druga.
Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie
Rozkład łatwości zadań
Klasa 2a Rozkład łatwości zadań Średni wynik klasy.81 pkt 75% Średni wynik szkoły.81 pkt 80% Średni wynik ogólnopolski 10. pkt 48% 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11
Rozkład łatwości zadań
Klasa 6a średnia klasy: 16.00 pkt średnia szkoły: 14.69 pkt średnia ogólnopolska: 10.93 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9a 9b 9c 10 11 Numer zadania
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM
Potęgi, pierwiastki i logarytmy 23 h DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA Matematyka z plusem dla szkoły ponadgimnazjalnej 1 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH:
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia)
MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Potęgi. Logarytmy. Funkcja wykładnicza sprawnie wykonywać działania na
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 liczba punktów - wyniki niskie - wyniki średnie
Wykorzystanie wyników sprawdzianów diagnozujących umiejętności matematyczne uczniów
XVIII Konferencja Diagnostyki Edukacyjnej, Wrocław 2012 Mariola Frontczak Małgorzata Iwanowska Urszula Jankiewicz Beata Wąsowska-Narojczyk Warszawskie Centrum Innowacji Edukacyjno-Społecznych i Szkoleń
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy
LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.