p, q oznaczają obrazy podlegające filtracji.

Wielkość: px
Rozpocząć pokaz od strony:

Download "p, q oznaczają obrazy podlegające filtracji."

Transkrypt

1 . Filtr liniowe Wkład. Filtracja obrazów cfrowch Filtr liniowe Filtr jest liniow jeżeli spełnia warunki liniowości które można sformułować następująco: addtwność: p q p q jednorodność: p p R gdzie jest funkcją opisującą filtr a p q oznaczają obraz podlegające filtracji. W praktce najczęściej stosuje się filtr spełniające dodatkowo warunek niezmienności względem przesunięcia. Oznacza to że każd punkt obrazu jest przekształcan w identczn sposób. Do grup filtrów liniowch możem zaliczć filtr dolnoprzepustowe oraz górnoprzepustowe. Wkorzstwane są one głównie do takich operacji jak wkrwanie krawędzi narożników lub usuwanie zakłóceń z obrazu. Funkcja jasności obrazu Prz konstruowaniu filtrów splotowch wkorzstwane są pochodne funkcji jasności odwzorowującej dskretne współrzędne punktów obrazu cfrowego = = w zbiór poziomów jasności [ ]. Gradient funkcji jasności w punkcie przjmuje postać prz czm składowe wektora gradientu oblicza się następująco:.. Wektor powższego gradientu opiswan jest parametrami modułu

2 . Filtr liniowe oraz kąta. arctg Jeśli gradient funkcji jasności w danm punkcie posiada dużą wartość to należ wnioskować że punkt ten należ do krawędzi. Moduł stanowi siłę krawędzi natomiast ψ wskazuje na kąt nachlenia wektora w punkcie w stosunku do osi OX. Jego nachlenie jest przesunięte w stosunku do krawędzi o ±9 co oznacza że wektor gradientu jest zawsze prostopadł do konturu. aplasjan ciągłej funkcji jasności w punkcie to suma drugich pochodnch cząstkowch postaci. Dokonując dskretzacji powższego wzoru ciągłą pochodną zastępuje się skończonm przrostem postaci:.. W oparciu o wzor. i. konstruowane są filtr wkrwające krawędzie i filtr wostrzające.. Filtr dolnoprzepustowe Filtr dolnoprzepustowe uśredniające mają za zadnie tłumić składowe widma sgnału o dużej częstotliwości a pozostawiać bez zmian składowe o małej częstotliwości. Głównm zastosowaniem filtrów dolnoprzepustow w obróbce cfrowej obrazu jest redukcja szumu o niewielkich rozmiarach jednopikselowego dwupikselowego. Efektem działania filtru dolnoprzepustowego jest łagodniejsze przejście od obszarów jaśniejszch do ciemniejszch i na odwrót. Obiekt znajdujące się na obrazach poddanch działaniu filtru ulegną rozmciu. Stopień rozmcia obrazu zależ od wielkości maski oraz od współcznników w niej

3 . Filtr liniowe zawartch. Stopień rozmcia wzrasta wraz z wielkością maski. Suma współcznników maski filtru dolnoprzepustowego jest zazwczaj większa od zera i każd z nich określa swój wkład w jasność punktu dla którego wznaczan jest splot. Najczęściej stosowane maski przestrzennch filtrów dolnoprzepustowch zestawione został poniżej: filtr dolnoprzepustow bez wartości środkowej. Podczas filtracji obrazu maską. nie jest bran pod uwagę piksel środkow maski. Wartość pierwotna piksela nie wpłwa w żaden sposób na wartość piksela po przetworzeniu. podstawow filtr dolnoprzepustow uśredniając. Filtr z maską. jest podstawowm filtrem dolnoprzepustowm usuwa drobne zakłócenia i wgładza drobne zawirowania krawędzi oraz usuwa efekt falowania jasności na obiektach i na tle. Ma jednak wadę powoduje rozmcie konturów obiektów oraz pogorszenie wrazistości kształtów. Dalsze stosowanie filtru powoduje kolejne zmniejszenie ostrości obrazu oraz znikanie elementów o małch rozmiarach. Po lewej obraz przed filtracją po prawej obraz po zastosowaniu filtru uśredniającego.. źródło: Tadeusiewicz R. Korohoda P. Komputerowa analiza i przetwarzanie obrazów

4 . Filtr liniowe Filtr kwadratow jest uśrednieniem każdego piksela wraz ze swoimi dwudziestoma czteroma sąsiadami. Wnikiem jest odfiltrowanie większej liczb szczegółów niż w przpadku filtru.. filtr kwadratow. Filtr kołow jest podobn do filtru kwadratowego jest on uśrednieniem każdego piksela wraz ze swoimi dwudziestoma sąsiadami. Piksele położone w narożnikach nie biorą udziału w filtracji ze w względu na wagę równą. filtr kołow.6 Zaszumion obrazek przed filtracją z lewej obrazek po filtracji uśredniającej. po środku po filtracji maską kwadratową. z prawej. W celu zmniejszenia negatwnch skutków filtracji uśredniającej stosuje się czasem filtr uśredniające o większej wartości środkowego współcznnika wewnątrz okna K. Dzięki takim maskom jak P P oraz P pierwotna wartość piksela w większm stopniu wpłwa na wartość piksela po przetworzeniu.

5 . Filtr liniowe maska filt maska filt maska fil Zaszu obrazek po filtracji ma Filtr piramidaln oraz zadanie poprawić jakość obraz wartości punktu rośnie wraz ze f f tru P tru P ltru P umion obrazek przed filtracją z lewej aską P pośrodku po filtracji maską P stożkow. i. są kolejnmi filtr zu. Można zaobserwować iż w maskach tc e zmniejszaniem się odległości do obliczaneg filtr piramidaln filtr stożkow z prawej. rami mającmi za ch filtrów znaczenie go punktu...

6 . Filtr liniowe 6 W przpadku osłabienia punktu centralnego następuje mocniejsze rozmcie. Jeśli natomiast wartość jasności centralnej zostaje wzmocniona rozmcie jest słabsze ponieważ centralna jasność ma większ wpłw na jasność wnikową. Odpowiednie dobieranie wag pozwala kontrolować efekt rozmcia prz odpowiednim uśrednianiu otoczenia jasności centralnej obrazu wejściowego. Prz dobieraniu wag dobrze jest posłużć się rozkładem Gaussa. Stosowanie w tm celu liczb całkowitch aproksmującch funkcję Gaussa jest wskazane ze względu na optmalizację działania filtra jednak należ pamiętać że jest ona znacznm przbliżeniem analogowej funkcji Gaussa. Dwuwmiarowa funkcja Gaussa wraża się wzorem G e f gdzie : zmienne funkcji α parametr kształtu. Poszczególne wagi dla maski o rozmiarze można obliczć następująco. b b b b b Przkładowe maski Gaussa są postaci:. 9.. Rsunek. przedstawia realizację filtrów Gaussa. Filtr Gaussa. spowodował większe rozmcie obrazu w stosunku do filtru Gaussa.. Zaszumion obrazek przed filtracją z lewej obrazek po filtracji: maską Gaussa. środkow maską Gaussa. z prawej.

7 . Filtr liniowe 7.. Filtr górnoprzepustowe Filtrów górnoprzepustowch użwa się do wzmocnienia szczegółów o dużej częstotliwości prz zachowaniu integralności elementów o małej częstotliwości. Efektem działania filtru jest uwdatnienie szczegółów obrazu ich większe zaakcentowanie. Zazwczaj zwiększa się ostrość obrazu jednak ujemnm skutkiem jest zwiększenie szumu. Filtr górnoprzepustowe służą do podkreślenia elementów które charakterzują się szbkimi zmianami jasności kontur krawędzie. Na obrazie wnikowm prawie wszstkie punkt należące do wewnętrznch części widzianch obiektów i tła zostają usunięte wzerowane natomiast punkt należące do krawędzi i granic pomiędz obiektami i tłem zostają odpowiednio weksponowane i wzmocnione. Sposób przeprowadzania obliczeń jest podobna jak w filtrach dolnoprzepustowch różnica polega na innch wartościach współcznników w maskach wstępują tu także wartości ujemne. Zasada działania tego filtru jest odwrotna do tej na jakiej działają filtr rozmwające. Jeżeli chcem coś wostrzć to chcem zwiększć różnicę międz sąsiednimi pikselami. W jaki sposób to osiągnąć? Wprowadzim ujemne wagi dla pikseli otaczającch. W rezultacie do obrazu dodajem krawędzie. Maska. jest podstawowm filtrem górnoprzepustowm jej użcie powoduje wostrzenie obrazu a także wzmocnienie szumów oraz zakłóceń. 9 maska filtru Mean removal. Maski filtrów HP cechują się mniejszm wostrzeniem obrazu oraz mniejszm wszczególnieniem szumów w stosunku do filtru.. Filtr HP powoduje najmniejsze z filtrów wostrzającch wzmocnienie szumów. maska filtru HP.6 maska filtru HP.7

8 . Filtr liniowe 8 maskaa filtru HP.8 Przkład realizacji filtrów wostrzającch pokazano na rs... Obraz środkow oraz po prawej stronie został wostrzone. Filtr HP w stosunku do Mean removal nie spowodował znacznego wszczególnienia szumów. obrazek po filtracji HP środkow po filtracji maską Mean removal z prawej. Metoda gradientu Filtr gradientow charakterzującch się zmianami jasności pikseli w określonm kierunku. Punkt obrazu poddan działaniu takiego filtru staje się jasn jeśli istnieje w nim gradient spadek lub wzrost jasności w kierunku określonm przez maskę splotu. Dodatkowo wielkość gradientu określa poziom jasności. Większ gradient odpowiada większej jasności piksela mniejsz powoduje że dan punkt staje się mniej widoczn. Gradient obrazu Obrazek przed filtracją z lewej daje możliwość eksponowania fragmentów w punkcie wraża się wzorem: obrazu gdzie składowe wektora gradientu są równe:.9..

9 . Filtr liniowe 9 Najprostszmi operatorami gradientu są operator Robertsa. Są one proste ze względu na wielkość maski niski poziom reakcji na krawędzie.. Wadami operatorów Robertsa jest wsoka czułość na szum oraz maska filtru pionowego Robertsa. maska filtru poziomego Robertsa. maska filtru poziomo-pionowego Robertsa. W obszarach w którch sąsiednie piksele nie różnią się wartością jasności po odjęciu wartość wnikowa jest bliska zeru kolor czarn. Tam gdzie jest znaczna różnica jasności sąsiednich pikseli otrzmana wartość nowego piksela jest co do wartości bezwzględnej duża kolor biał. Gradient Robertsa oparte na masce można w naturaln sposób przenieść na maski. Poniżej widać maski Robertsa po przeniesieniu na wielkość. maska filtru poziomego. maska filtru pionowego. maska filtru poziomo-pionowego.6 Obraz przed filtracją po filtracji maską. po filtracji maską.6.

10 . Filtr liniowe Rozwinięciem operatorów Robertsa są operator Prewitta aproksmujące pierwszą pochodną. Operator te o rozmiarze umożliwiają estmację gradientu w ośmiu kierunkach gdzie większa wartość wskazuje jego zwrot. SE S SW E W NE N NW Maski Prewitta Obrazek poddan filtracji Prewitta o różnch orientacjach.

11 . Filtr liniowe Filtr do wkrwania krawędzi i konturu Realizacja filtru konturowego jest bardzo podobna do przpadku standardowego filtru splotowego. W stosunku do obrazu wkorzstujem operacje splotu. Różnica polega na tm że analizujem obraz w dwóch niezależnch przebiegach oddzielnie dla konturów poziomch oraz dla pionowch. W celu wkrcia krawędzi najpierw wkonujem operację splotu poziomego filtru.7 z obrazem a następnie stosujem filtr pionow.8. Jako filtr mogą nam posłużć maski filtrów Sobela lub maski filtrów Prewitta. I Obraz Filtr poziom.7 I Obraz Filtr pionow.8 Krokiem kolejnm jest wznaczenie ostatecznej jasności każdego punktu obrazu wnikowego według wzoru: I I I.9 Rsunek poniższ przedstawia realizację filtrów konturowch. Obraz po środku został poddan filtracji konturowej Prewitta złożonej z masek NE oraz SE. Obrazek po prawej stronie został przefiltrowan maskami Sobela SE SW. Obrazki po filtracji konturowej. W wniku działania operatorów Sobela wkrwane są również krawędzie błędne z powodu wstępującch szumów jednak ich intenswność jest o wiele słabsza w odróżnieniu od krawędzi poprawnch. Operator Sobela oraz Prewitta są odporniejsze na szum niż operator Robertsa.

12 . Filtr liniowe SE S SW E W NE N NW Maski Sobela. Obraz poddan filtracji Sobela o różnch orientacjach.

13 . Filtr liniowe Ekspozcja krawędzi z wkorzstaniem filtrów górnoprzepustowch nie zawsze może prznieść oczekiwane rezultat. Jest to powodowane faktem że składniki o wsokich częstotliwościach można wkrć w pozornie jednolitm tle bądź w strefach wewnątrz konturu. Przcznia się do tego zazwczaj faktura powierzchni tła nierównomierne oświetlenie obiektu lub niedoskonałości procesu dskretzacji obrazu. Dla lepszego uwdatnienia wkrtch krawędzi za pomocą opisanch operatorów można dodatkowo zastosować operację binarzacji po wkrciu krawędzi. Odpowiednio ustawion próg może weliminować drobne zakłócenia pozostawiając jednolite krawędzie. Wostrzenie obrazu Filtr wostrzające w przeciwieństwie do filtrów gradientowch mają charakter bezkierunkow. Ich zadaniem jest wkrcie i podkreślenie wstępującch krawędzi niezależnie od ich kierunku. Działanie filtrów wostrzającch realizuje się z wkorzstaniem operatorów aplace a funkcji jasności zwanch laplasjanami. Metod wkrwania krawędzi korzstające z laplasjanu dają ostrzejsze krawędzie niż większość innch metod a w wniku filtracji określają zmian na krawędziach wstępującch w obrazie. aplasjan ciągłej funkcji dwóch zmiennch z punktu widzenia matematki jest określan jako:.. J Drugie pochodne dla funkcji dskretnej są aproksmowane w następując sposób:. Na podstawie wzorów.. oraz. otrzmujem maski filtrów aplace a: maska filtru AP

14 . Filtr liniowe Nie jest to jednak jego jedna postać. Można go skonstruować jako sumę pochodnch dla wszstkich ośmiu kierunków postaci 8 maska filtru AP Maska filtru AP daje mocniejsz sgnał w stosunku do maski AP. Wnikowa jasność jest obliczona z uwzględnieniem sąsiedztwa co powoduje że krawędzie są wkrwane niezależnie od kierunku. Jest to możliwe dzięki smetrcznej postaci maski. Dla zwiększenia odporności można policzć pochodną równocześnie dla trzech równoległch linii w poziomie i w pionie. W wniku otrzmana maska przjmuje postać. Inne bardziej skomplikowane przkład masek wglądają następująco. Pierwsz wariant będzie reagował na krawędzie diagonalne. Drugi wariant to maska AP przemnożona przez. Tworzenie operatorów aplace a może przebiegać ekspermentalnie. Ze względu na czułość laplasjanu na szum warto jest przeprowadzić wcześniej wgładzenie obrazu filtrem Gaussa. W praktce wostrzenie za pomocą operatorów aplace a polega na przemnożeniu przez stałą obliczonej jasności oraz dodaniu do jasności źródłowej postaci F w gdzie: w jasność wnikowa w punkcie jasność źródłowa w punkcie F jasność obliczona za pomocą operatora aplace a w punkcie α stała skalująca stopień wostrzenia np. 7.

15 . Filtr liniowe Przekształcenie Błąd! Nie m postaci maski Wnik tch złożeń obrazują po mask mas maska f Obraz pr maską filtru ukośne Filtr wkrwające nar Jednm ze sposobów w ze wzorcem danej krzwej. De analizowanm obrazem. Mask można odnaleźć źródła odwołania. można oniżej zaprezentowane maski ka filtru AP ska filtru AP filtru ukośnego rzed filtracją z lewej obrazek po filtracji ego środkow po filtracji maską AP z rożniki wkrwania krzwch jako krawędzi obiektó etekcja krawędzi odbwa się przez splot każd ka dająca w określonm punkcie największ zapisać również w prawej. ów jest splot obrazu dej z ośmiu masek z zej wartości funkcji

16 . Filtr liniowe 6 wskazuję na obecność w tm punkcie krawędzi w formie narożnika o określonej orientacji. W celu weliminowania zakłóceń wnik funkcji można porównać z małm progiem t. Na rsunku przedstawiono maski Robinsona potrzebne do przeprowadzenia detekcji narożników. SE S SW E W NE N NW Maski Robinsona wkrwające narożniki. Przefiltrowan obrazek maskami Robinsona o różnch orientacjach.

17 . Filtr liniowe 7 Inne maski do wkrwania narożników podał Kirsch. Mają one podobną strukturę ale inne wartości współcznników: SE S SW E W NE N NW Maski Kirscha wkrwające narożniki. Przefiltrowan obrazek maskami Kirscha o różnch orientacjach.

Przetwarzanie obrazów rastrowych macierzą konwolucji

Przetwarzanie obrazów rastrowych macierzą konwolucji Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja

Bardziej szczegółowo

Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu

Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu Definicja Przekształcenia kontekstowe są to przekształcenia które dla wyznaczenia wartości jednego punktu obrazu wynikowego trzeba dokonać określonych obliczeń na wielu punktach obrazu źródłowego. Przekształcenia

Bardziej szczegółowo

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 4 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Filtry górnoprzepustowe - gradienty Gradient - definicje Intuicyjnie, gradient jest wektorem, którego zwrot wskazuje

Bardziej szczegółowo

Parametryzacja obrazu na potrzeby algorytmów decyzyjnych

Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany

Bardziej szczegółowo

Grafika komputerowa. Dr inż. Michał Kruk

Grafika komputerowa. Dr inż. Michał Kruk Grafika komputerowa Dr inż. Michał Kruk Operacje kontekstowe Z reguły filtry używane do analizy obrazów zakładają, że wykonywane na obrazie operacje będą kontekstowe Polega to na wyznaczeniu wartości funkcji,

Bardziej szczegółowo

Przetwarzanie obrazów wykład 4

Przetwarzanie obrazów wykład 4 Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 11. Filtracja sygnałów wizyjnych

Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 11. Filtracja sygnałów wizyjnych Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 11 Filtracja sygnałów wizyjnych Operacje kontekstowe (filtry) Operacje polegające na modyfikacji poszczególnych elementów obrazu w zależności od stanu

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 6 Temat: Operacje sąsiedztwa wyostrzanie obrazu Wykonali: 1. Mikołaj Janeczek

Bardziej szczegółowo

Implementacja filtru Canny ego

Implementacja filtru Canny ego ANALIZA I PRZETWARZANIE OBRAZÓW Implementacja filtru Canny ego Autor: Katarzyna Piotrowicz Kraków,2015-06-11 Spis treści 1. Wstęp... 1 2. Implementacja... 2 3. Przykłady... 3 Porównanie wykrytych krawędzi

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie piąte Filtrowanie obrazu Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów

Bardziej szczegółowo

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny. Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy

Bardziej szczegółowo

Optyka Fourierowska. Wykład 7 Filtracja przestrzenna

Optyka Fourierowska. Wykład 7 Filtracja przestrzenna Optka Fourierowska Wkład 7 Filtracja przestrzenna Optczna obróbka inormacji Układ liniowe są bardzo użteczne w analizie układów obrazującch Koncepcja ta pozwala na analizę pól optcznch w dziedzinie częstości

Bardziej szczegółowo

Segmentacja przez detekcje brzegów

Segmentacja przez detekcje brzegów Segmentacja przez detekcje brzegów Lokalne zmiany jasności obrazu niosą istotną informację o granicach obszarów (obiektów) występujących w obrazie. Metody detekcji dużych, lokalnych zmian jasności w obrazie

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie piate Filtrowanie obrazu Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów przez

Bardziej szczegółowo

Filtracja splotowa obrazu

Filtracja splotowa obrazu Informatyka, S1 sem. letni, 2012/2013, wykład#3 Filtracja splotowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 53 Proces przetwarzania obrazów Obraz f(x,y)

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Politechnika Świętokrzyska. Laboratorium. Przetwarzanie obrazów medycznych. Ćwiczenie 5. Filtracja kontekstowa obrazów.

Politechnika Świętokrzyska. Laboratorium. Przetwarzanie obrazów medycznych. Ćwiczenie 5. Filtracja kontekstowa obrazów. Politechnika Świętokrzyska Laboratorium Przetwarzanie obrazów medycznych Ćwiczenie 5 Filtracja kontekstowa obrazów. Cel ćwiczenia Celem ćwiczenia jest zdobucie umiejętności tworzenia funkcji realizujących

Bardziej szczegółowo

Analiza obrazu. wykład 6. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 6. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 6 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze

Bardziej szczegółowo

Ćwiczenia z grafiki komputerowej 5 FILTRY. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Październik 2015

Ćwiczenia z grafiki komputerowej 5 FILTRY. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Październik 2015 Ćwiczenia z grafiki komputerowej 5 FILTRY Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 12 Wykorzystanie warstw Opis zadania Obrazy do ćwiczeń Zadanie ilustruje

Bardziej szczegółowo

Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna.

Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna. Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 8 Filtracja uśredniająca i statystyczna. Cel ćwiczenia Celem ćwiczenia jest zdobycie umiejętności tworzenia i wykorzystywania

Bardziej szczegółowo

Detekcja twarzy w obrazie

Detekcja twarzy w obrazie Detekcja twarzy w obrazie Metoda na kanałach RGB 1. Należy utworzyć nowy obrazek o wymiarach analizowanego obrazka. 2. Dla każdego piksela oryginalnego obrazka pobiera się informację o wartości kanałów

Bardziej szczegółowo

Filtracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla):

Filtracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla): WYKŁAD 3 Operacje sąsiedztwa Są to operacje, w których na wartość zadanego piksla obrazu wynikowego q o współrz. (i,j) mają wpływ wartości piksli pewnego otoczenia piksla obrazu pierwotnego p o współrzędnych

Bardziej szczegółowo

Przetwarzanie obrazów wykład 3

Przetwarzanie obrazów wykład 3 Przetwarzanie obrazów wykład 3 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Operacje kontekstowe (filtry) Operacje polegają

Bardziej szczegółowo

Wektory. P. F. Góra. rok akademicki

Wektory. P. F. Góra. rok akademicki Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.

Bardziej szczegółowo

Rozpoznawanie Twarzy i Systemy Biometryczne

Rozpoznawanie Twarzy i Systemy Biometryczne Filtry Plan wykładu Przegląd dostępnych filtrów Zastosowanie filtrów na różnych etapach pracy systemu Dalsze badania Kontrast i ostrość Kontrast różnica w kolorze i świetle między częściami ś i obrazu

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Filtracja w domenie przestrzeni

Filtracja w domenie przestrzeni 1 Filtracja Filtracja w domenie przestrzeni Filtracja liniowa jest procesem splotu (konwolucji) obrazu z maską (filtrem). Dla dwuwymiarowej i dyskretnej funkcji filtracja dana jest wzorem: L2(m, n) = (w

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 8 Temat: Operacje sąsiedztwa detekcja krawędzi Wykonali: 1. Mikołaj Janeczek

Bardziej szczegółowo

Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38

Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38 Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI Zastosowania matematki w analitce medcznej zestaw do kol. semestr. - rozwiązania i odpowiedzi (część I). ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. a) Rozważając dwa przpadki ze względu na moduł mam: skąd ostatecznie,3>.

Bardziej szczegółowo

Analiza obrazów. Segmentacja i indeksacja obiektów

Analiza obrazów. Segmentacja i indeksacja obiektów Analiza obrazów. Segmentacja i indeksacja obiektów Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 Analiza obrazu Analiza obrazu

Bardziej szczegółowo

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

maska 1 maska 2 maska 3 ogólnie

maska 1 maska 2 maska 3 ogólnie WYKŁAD 4 Detekcja krawędzi, operacje morfologiczne Detekcja (wykrywanie) krawędzi (edge detection) jest to technika segmentacji obrazu, polegająca na znajdowaniu piksli krawędziowych przez sprawdzanie

Bardziej szczegółowo

WSTĘP DO PRZETWARZANIA OBRAZÓW. Jak znaleźć ciekawe rzeczy na zdjęciu? mgr Krzysztof Szarzyński

WSTĘP DO PRZETWARZANIA OBRAZÓW. Jak znaleźć ciekawe rzeczy na zdjęciu? mgr Krzysztof Szarzyński WSTĘP DO PRZETWARZANIA OBRAZÓW Jak znaleźć ciekawe rzeczy na zdjęciu? mgr Krzysztof Szarzyński Czym jest obraz? Na nasze potrzeby będziemy zajmować się jedynie obrazami w skali szarości. Większość z omawianych

Bardziej szczegółowo

Interpolacja. Układ. x exp. = y 1. = y 2. = y n

Interpolacja. Układ. x exp. = y 1. = y 2. = y n MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami?

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

WYKŁAD 3. Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego

WYKŁAD 3. Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego WYKŁAD 3 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego 1 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego (c.d.) 2 Zestawienie zbiorcze - Regulacje

Bardziej szczegółowo

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia. rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

Zbigniew Sołtys - Komputerowa Analiza Obrazu Mikroskopowego 2016 część 5

Zbigniew Sołtys - Komputerowa Analiza Obrazu Mikroskopowego 2016 część 5 5. FILTRY LINIOWE I STATYSTYCZNE. WYRÓWNYWANIE TŁA. Znacznie większe znaczenie w przetwarzaniu obrazu niż operacje punktowe mają takie przekształcenia w których zmiana poziomu szarości piksela zależy nie

Bardziej szczegółowo

MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami?

MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami? MES- 07 Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami? Na razie rozpatrwaliśm

Bardziej szczegółowo

KURS FUNKCJE WIELU ZMIENNYCH

KURS FUNKCJE WIELU ZMIENNYCH KURS FUNKCJE WIELU ZMIENNYCH Lekcja 1 Pochodne cząstkowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tlko jedna jest prawdziwa). Ptanie 1 Funkcja dwóch zmiennch a)

Bardziej szczegółowo

Grafika komputerowa. Zajęcia IX

Grafika komputerowa. Zajęcia IX Grafika komputerowa Zajęcia IX Ćwiczenie 1 Usuwanie efektu czerwonych oczu Celem ćwiczenia jest usunięcie efektu czerwonych oczu u osób występujących na zdjęciu tak, aby plik wynikowy wyglądał jak wzor_1.jpg

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej

Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej Filtracja obrazów w dziedzinie częstotliwości w dziedzinie przestrzennej filtry liniowe filtry nieliniowe Filtracja w dziedzinie częstotliwości Obraz oryginalny FFT2 IFFT2 Obraz po filtracji f(x,y) H(u,v)

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku

WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku WYKŁ 3 WYPŁNINI OSZRÓW. Wypełnianie wieloboku Zasada parzystości: Prosta, która nie przechodzi przez wierzchołek przecina wielobok parzystą ilość razy. Plan wykładu: Wypełnianie wieloboku Wypełnianie konturu

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski

Bardziej szczegółowo

Projekt 2: Filtracja w domenie przestrzeni

Projekt 2: Filtracja w domenie przestrzeni Projekt 2: Filtracja w domenie przestrzeni 1. 2. Wstęp teoretyczny a. Filtracja w domenie przestrzeni b. Krótko o szumie c. Filtracja d. Usuwanie szumu typu Salt and Pepper filtrem medianowym e. Wnioski

Bardziej szczegółowo

Spis treści. strona 1 z 10

Spis treści. strona 1 z 10 Spis treści 1. Zaawansowane techniki obróbki fotografii...2 1.1. Odbicia na samochodzie...2 1.2. Mokra nawierzchnia...4 1.3. Odbicie od powierzchni wody...5 1.4. Koloryzacja fotografii...7 1.5. Phantasy...8

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 3

Analiza obrazów - sprawozdanie nr 3 Analiza obrazów - sprawozdanie nr 3 Przekształcenia morfologiczne Przekształcenia morfologiczne wywodzą się z morfologii matematycznej, czyli dziedziny, która opiera się na teorii zbiorów, topologii i

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

MATURA PRÓBNA 2 KLASA I LO

MATURA PRÓBNA 2 KLASA I LO IMIE I NAZWISKO MATURA PRÓBNA KLASA I LO CZAS PRACY: 90 MIN. SUMA PUNKTÓW: 60 ZADANIE (5 PKT) Znajdź wszstkie funkcje liniowe określone na zbiorze ;, którch zbiorem wartości jest przedział ; 0. ZADANIE

Bardziej szczegółowo

Techniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów

Techniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Techniki wizualizacji Ćwiczenie 4 Podstawowe algorytmy przetwarzania obrazów

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW

PRZETWARZANIE SYGNAŁÓW PRZETWARZANIE SYGNAŁÓW SEMESTR V Wykład VIII Podstawy przetwarzania obrazów Filtracja Przetwarzanie obrazu w dziedzinie próbek Przetwarzanie obrazu w dziedzinie częstotliwości (transformacje częstotliwościowe)

Bardziej szczegółowo

Rozwiązywanie układu równań metodą przeciwnych współczynników

Rozwiązywanie układu równań metodą przeciwnych współczynników Rozwiązwanie układu równań metodą przeciwnch współcznników Sposob postępowania krok po kroku: I. przgotowanie równań. pozbwam się ułamków mnoŝąc kaŝd jednomian równania równań przez najmniejszą wspólną

Bardziej szczegółowo

Ćwiczenie 361 Badanie układu dwóch soczewek

Ćwiczenie 361 Badanie układu dwóch soczewek Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika

Bardziej szczegółowo

Grafika 2D. Przekształcenia geometryczne 2D. opracowanie: Jacek Kęsik

Grafika 2D. Przekształcenia geometryczne 2D. opracowanie: Jacek Kęsik Grafika 2D Przekształcenia geometrczne 2D opracowanie: Jacek Kęsik Wkład obejmuje podstawowe przekształcenia geometrczne stosowane w grafice komputerowej. Opisane są w nim również współrzędne jednorodne

Bardziej szczegółowo

Automatyczne nastawianie ostrości

Automatyczne nastawianie ostrości Automatyczne nastawianie ostrości Systemy automatycznego nastawiania ostrości (AF) - budowa, działanie, zalety, wady, zastosowanie, algorytmy wyostrzania - przykłady Jakub Skalak http://www.fis.agh.edu.pl/~4skalak/

Bardziej szczegółowo

Metody komputerowego przekształcania obrazów

Metody komputerowego przekształcania obrazów Metody komputerowego przekształcania obrazów Przypomnienie usystematyzowanie informacji z przedmiotu Przetwarzanie obrazów w kontekście zastosowań w widzeniu komputerowym Wykorzystane materiały: R. Tadeusiewicz,

Bardziej szczegółowo

Operacje przetwarzania obrazów monochromatycznych

Operacje przetwarzania obrazów monochromatycznych Operacje przetwarzania obrazów monochromatycznych Obraz pobrany z kamery lub aparatu często wymaga dalszej obróbki. Jej celem jest poprawienie jego jakości lub uzyskaniem na jego podstawie określonych

Bardziej szczegółowo

Laboratorium Cyfrowego Przetwarzania Obrazów

Laboratorium Cyfrowego Przetwarzania Obrazów Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 4 Filtracja 2D Opracowali: - dr inż. Krzysztof Mikołajczyk - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,

Bardziej szczegółowo

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 3 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Binaryzacja Binaryzacja jest jedną z ważniejszych ż czynności punktowego przetwarzania obrazów. Poprzedza prawie zawsze

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przekształcenia geometryczne Obroty Przesunięcia Odbicia Rozciągnięcia itp Przekształcenia geometryczne Obroty Wielokrotność 90 stopni Inne Przekształcenia geometryczne Obroty Wielokrotność

Bardziej szczegółowo

Przetwarzanie obrazów. Grupy metod przetwarzania obrazu. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe

Przetwarzanie obrazów. Grupy metod przetwarzania obrazu. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe Przetwarzanie obrazów Ogólna definicja Algorytm przetwarzający obraz to algorytm który, otrzymując na wejściu obraz wejściowy f, na wyjściu zwraca takŝe obraz (g). Grupy metod przetwarzania obrazu Przekształcenia

Bardziej szczegółowo

XIII Konferencja Sieci i Systemy Informatyczne Łódź, październik 2005 SZYBKIE WYZNACZANIE GŁĘBI W SCENIE TRÓJWYMIAROWEJ ZE STEREOSKOPII

XIII Konferencja Sieci i Systemy Informatyczne Łódź, październik 2005 SZYBKIE WYZNACZANIE GŁĘBI W SCENIE TRÓJWYMIAROWEJ ZE STEREOSKOPII XIII Konferencja Sieci i Sstem Informatczne Łódź, październik 005 PAWEŁ PEŁCZYŃSKI PAWEŁ STRUMIŁŁO Insttut Elektroniki Politechniki Łódzkiej SZYBKIE WYZNACZANIE GŁĘBI W SCENIE TRÓJWYMIAROWEJ ZE STEREOSKOPII

Bardziej szczegółowo

Komputerowe obrazowanie medyczne

Komputerowe obrazowanie medyczne Komputerowe obrazowanie medyczne Część II Przetwarzanie i analiza obrazów medycznych Grafika rastrowa i wektorowa W grafice wektorowej obrazy i rysunki składają się z szeregu punktów, przez które prowadzi

Bardziej szczegółowo

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej 1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm

Bardziej szczegółowo

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych autor: Robert Drab opiekun naukowy: dr inż. Paweł Rotter 1. Wstęp Zagadnienie generowania trójwymiarowego

Bardziej szczegółowo

Systemy przetwarzania sygnałów

Systemy przetwarzania sygnałów Sstem przetwarzania sgnałów x(t) (t)? x(t) Sstem przetwarzania sgnałów (t) Sstem przetwarzania sgnałów sgnał ciągł x(t) (t)=h(x(t)) Sstem czasu ciągłego (t) np. megafon - wzmacniacz analogow sgnał dskretn

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT Grupa IZ06TC01, Zespół 3 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat: Modelowanie koloru, kompresja obrazów,

Bardziej szczegółowo

Informatyka, studia dzienne, mgr II st. Przetwarzanie obrazu i dźwięku 2011/2012 Prowadzący: dr inż. Bartłomiej Stasiak czwartek, 8:30

Informatyka, studia dzienne, mgr II st. Przetwarzanie obrazu i dźwięku 2011/2012 Prowadzący: dr inż. Bartłomiej Stasiak czwartek, 8:30 Informatyka, studia dzienne, mgr II st. semestr I Przetwarzanie obrazu i dźwięku 2011/2012 Prowadzący: dr inż. Bartłomiej Stasiak czwartek, 8:30 Data oddania: Ocena: Grzegorz Graczyk 178717 Andrzej Stasiak

Bardziej szczegółowo

Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.

Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów. Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób

Bardziej szczegółowo

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX3 Globalne transformacje obrazów Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami globalnych

Bardziej szczegółowo

POB Odpowiedzi na pytania

POB Odpowiedzi na pytania POB Odpowiedzi na pytania 1.) Na czym polega próbkowanie a na czym kwantyzacja w procesie akwizycji obrazu, jakiemu rodzajowi rozdzielczości odpowiada próbkowanie a jakiemu kwantyzacja Próbkowanie inaczej

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4 ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?

Bardziej szczegółowo

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych.

Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych. Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych. Słowa kluczowe: teledetekcja, filtracja obrazu, segmentacja obrazu, algorytmy

Bardziej szczegółowo

Ekstrema funkcji dwóch zmiennych

Ekstrema funkcji dwóch zmiennych Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu

Bardziej szczegółowo

Pierwiastki kwadratowe z liczby zespolonej

Pierwiastki kwadratowe z liczby zespolonej Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C

Bardziej szczegółowo

Przetwarzanie i Kompresja Obrazów. Filtracja

Przetwarzanie i Kompresja Obrazów. Filtracja Przetwarzanie i Kompresja Obrazów. acja Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk 7 kwietnia 206

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem

Bardziej szczegółowo

Elementy algebry i analizy matematycznej II

Elementy algebry i analizy matematycznej II Element algebr i analiz matematcznej II Wkład 1. Ekstrema unkcji dwóch zmiennch Deinicja 1 Funkcja dwóch zmiennch, z = (, ), ma w punkcie z = (, ), maksimum lokalne, jeżeli istnieje takie otoczenie punktu

Bardziej szczegółowo

Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy

Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy Wykorzystane materiały: Zadanie W dalszej części prezentacji będzie omawiane zagadnienie rozpoznawania twarzy Problem ten można jednak uogólnić

Bardziej szczegółowo

Rekonstrukcja obrazu (Image restoration)

Rekonstrukcja obrazu (Image restoration) Rekonstrukcja obrazu (Image restoration) Celem rekonstrukcji obrazu cyfrowego jest odtworzenie obrazu oryginalnego na podstawie obrazu zdegradowanego. Obejmuje ona identyfikację procesu degradacji i próbę

Bardziej szczegółowo

Wykład 10. Funkcje wielu zmiennych

Wykład 10. Funkcje wielu zmiennych Wkład 1. Funkcje wielu zmiennch dr Mariusz Grządziel 6 maja 1 (ostatnie poprawki: 1 maja 1) Funkcje wielu zmiennch Przestrzeń dwuwmiarowa, oznaczana w literaturze matematcznej smbolem R, może bć utożsamiona

Bardziej szczegółowo

Pochodna funkcji wykład 5

Pochodna funkcji wykład 5 Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren

Bardziej szczegółowo