Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
|
|
- Bronisława Kania
- 8 lat temu
- Przeglądów:
Transkrypt
1 Analiza obrazu komputerowego wykład 4 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
2 Filtry górnoprzepustowe - gradienty
3 Gradient - definicje Intuicyjnie, gradient jest wektorem, którego zwrot wskazuje kierunek najszybszego wzrostu wartości funkcji, natomiast długość odpowiada wzrostowi tej funkcji na jednostkę długości. Definicja gradientu jako operatora tworzącego pole wektorowe jest pojęciem analizy matematycznej. Jednak często przez gradient rozumie się zmianę wielkości fizycznej spowodowanej zmianą odległości bez specjalnego wyróżniania kierunku. W tym sensie gradient jest używany jako płynna zmiana lub obszar zmiany i oznacza: istnienie płynnej zmiany wielkości fizycznej (stężenia, ph, temperatury, gęstości ładunku elektrycznego) w określonej przestrzeni (powierzchni/objętości), jasności, koloru w grafice, kierunek wektora gradientu (kierunek największej zmiany), obszar, w którym występuje płynna zmiana. Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
4 Filtry górnoprzepustowe - gradienty Filtry ygórnoprzepustowe p mogą służyć do wydobywania y z obrazu składników odpowiedzialnych za szybkie zmiany jasności, a więc konturów, krawędzi, drobnych elementów faktury, itp. Popularnie mówi się, że filtry górnoprzepustowe dokonują wyostrzenia obrazu rozumianych jako uwypuklenie krawędzi w obrazie. Krawędź jest to linia (czasami prosta) oddzielająca obszary o różnej jasności L 1, L 2. Prosty model matematyczny krawędzi ma postać: 1; z > 0 1 i ( z ) = ; z = 0 2 0; z < 0 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
5 Gradient Robertsa Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
6 Ponieważ gradient Robertsa generuje ujemne i dodatnie d wartości pikseli należy albo dokonać skalowania, albo brać pod uwagę wartość bezwzględną pikseli. Przy skalowaniu tło z reguły staje się szare, piksele dodatnie ciemne, a piksele ujemne jasne. Przy modułach efekty są rozmywane i ukrywana jest informacja które piksele były dodatnie a które ujemne. Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
7 Gradient Robertsa (odwrócony) Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
8 Odwrócony Roberts roberts
9 Maska Prewitta Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
10 Maska Prewitta maska pozioma maska pionowa Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
11 Maska Sobela maska pozioma maska pionowa Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
12 porównanie masek Prewitta i Sobela Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
13 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
14 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
15 Filtry górnoprzepustowe wykrywające y narożniki Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
16
17
18 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
19 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
20 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
21 Filtry górnoprzepustowe wykrywające krawędzie - laplasjany Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
22 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
23 laplasjany Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
24 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
25 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
26 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
27 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
28 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
29 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
30 Filtry nieliniowe Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
31 Filtry nieliniowe Filtry nieliniowe (kombinowane) lokalizują krawędzie dokładniej i w sposób bardziej pewny niż laplasjany. Idea polega na kolejnym zastosowaniu dwóch gradientów w prostopadłych do siebie kierunkach a następnie dokonaniu nieliniowej kombinacji wyników tych gradientów. Dzięki nieliniowej kombinacji liniowych przekształceń obraz wynikowy ma dobrze podkreślone kontury niezależnie od kierunku ich przebiegu. Marek Jan Kasprowicz Analiza komputerowa obrazu 2008 r.
32 Marek Jan Kasprowicz Analiza komputerowa obrazu 2008 r.
33 Marek Jan Kasprowicz Analiza komputerowa obrazu 2008 r.
34
35
36 Marek Jan Kasprowicz Analiza komputerowa obrazu 2008 r.
37
38 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
39 Operacje logiczne Marek Jan Kasprowicz Analiza komputerowa obrazu 2008 r.
40
41
42
43
44
45
46
47
48
49
50
51 Filtry medianowe Większość filtrów niszczy drobne szczegóły i krawędzie przy usuwaniu zakłóceń Lepsze rezultaty uzyskujemy dzięki zastąpieniu wartości obrabianego piksela przez wartość mediany kolorów pikseli sąsiadujących Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
52 Filtry medianowe Filtr medianowy yjest filtrem mocnym gdyż ekstremalne wartości, odbiegające od średniej nie mają dużego wpływu na wartość jaką filtr przekazuje na swoim wyjściu. Filtr medianowy bardzo skutecznie zwalcza wszystkie lokalne szumy nie powodując ich rozmywania na większym obszarze (inaczej niż filtry konwulacyjne). Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
53 przed filtracją Porównanie mediany z filtrem uśredniającym po filtracji mediana filtr uśredniający Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
54 przed filtracją Porównanie mediany z filtrem uśredniającym po filtracji mediana filtr uśredniający Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
55 Filtry medianowe Filtracja medianowa nie wprowadza do obrazu żadnych dodatkowych wartości, więc po dokonaniu filtracji nie trzeba wykonywać dodatkowego skalowania. Najważniejszy atut filtracji medianowej polega na tym, że na ogół nie pogarsza ona krawędzi istniejących na rysunku obiektów. Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
56
57
58
59
60
61
62
63 Marek Jan Kasprowicz Analiza komputerowa obrazu 2008 r.
64
65 Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
Przetwarzanie obrazów wykład 4
Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)
Bardziej szczegółowoPrzetwarzanie obrazów rastrowych macierzą konwolucji
Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność
Bardziej szczegółowoLaboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 11. Filtracja sygnałów wizyjnych
Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 11 Filtracja sygnałów wizyjnych Operacje kontekstowe (filtry) Operacje polegające na modyfikacji poszczególnych elementów obrazu w zależności od stanu
Bardziej szczegółowoPolitechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 8 Filtracja uśredniająca i statystyczna. Cel ćwiczenia Celem ćwiczenia jest zdobycie umiejętności tworzenia i wykorzystywania
Bardziej szczegółowoFiltracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu
Bardziej szczegółowoPrzetwarzanie obrazów wykład 3
Przetwarzanie obrazów wykład 3 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Operacje kontekstowe (filtry) Operacje polegają
Bardziej szczegółowoPolitechnika Świętokrzyska. Laboratorium. Przetwarzanie obrazów medycznych. Ćwiczenie 5. Filtracja kontekstowa obrazów.
Politechnika Świętokrzyska Laboratorium Przetwarzanie obrazów medycznych Ćwiczenie 5 Filtracja kontekstowa obrazów. Cel ćwiczenia Celem ćwiczenia jest zdobucie umiejętności tworzenia funkcji realizujących
Bardziej szczegółowoGrafika komputerowa. Dr inż. Michał Kruk
Grafika komputerowa Dr inż. Michał Kruk Operacje kontekstowe Z reguły filtry używane do analizy obrazów zakładają, że wykonywane na obrazie operacje będą kontekstowe Polega to na wyznaczeniu wartości funkcji,
Bardziej szczegółowoPrzekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu
Definicja Przekształcenia kontekstowe są to przekształcenia które dla wyznaczenia wartości jednego punktu obrazu wynikowego trzeba dokonać określonych obliczeń na wielu punktach obrazu źródłowego. Przekształcenia
Bardziej szczegółowoFiltracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja
Bardziej szczegółowoPrzetwarzanie obrazu
Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego
Bardziej szczegółowoSpośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.
Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoParametryzacja obrazu na potrzeby algorytmów decyzyjnych
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany
Bardziej szczegółowoFiltracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla):
WYKŁAD 3 Operacje sąsiedztwa Są to operacje, w których na wartość zadanego piksla obrazu wynikowego q o współrz. (i,j) mają wpływ wartości piksli pewnego otoczenia piksla obrazu pierwotnego p o współrzędnych
Bardziej szczegółowoDiagnostyka obrazowa
Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie piąte Filtrowanie obrazu Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów
Bardziej szczegółowoDiagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie piate Filtrowanie obrazu Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów przez
Bardziej szczegółowoFiltracja splotowa obrazu
Informatyka, S1 sem. letni, 2012/2013, wykład#3 Filtracja splotowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 53 Proces przetwarzania obrazów Obraz f(x,y)
Bardziej szczegółowoSegmentacja przez detekcje brzegów
Segmentacja przez detekcje brzegów Lokalne zmiany jasności obrazu niosą istotną informację o granicach obszarów (obiektów) występujących w obrazie. Metody detekcji dużych, lokalnych zmian jasności w obrazie
Bardziej szczegółowoAnaliza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
Analiza obrazu komputerowego wykład 3 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Binaryzacja Binaryzacja jest jedną z ważniejszych ż czynności punktowego przetwarzania obrazów. Poprzedza prawie zawsze
Bardziej szczegółowoWSTĘP DO PRZETWARZANIA OBRAZÓW. Jak znaleźć ciekawe rzeczy na zdjęciu? mgr Krzysztof Szarzyński
WSTĘP DO PRZETWARZANIA OBRAZÓW Jak znaleźć ciekawe rzeczy na zdjęciu? mgr Krzysztof Szarzyński Czym jest obraz? Na nasze potrzeby będziemy zajmować się jedynie obrazami w skali szarości. Większość z omawianych
Bardziej szczegółowoWyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 6 Temat: Operacje sąsiedztwa wyostrzanie obrazu Wykonali: 1. Mikołaj Janeczek
Bardziej szczegółowoPOB Odpowiedzi na pytania
POB Odpowiedzi na pytania 1.) Na czym polega próbkowanie a na czym kwantyzacja w procesie akwizycji obrazu, jakiemu rodzajowi rozdzielczości odpowiada próbkowanie a jakiemu kwantyzacja Próbkowanie inaczej
Bardziej szczegółowoAnaliza obrazów - sprawozdanie nr 2
Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która
Bardziej szczegółowoZbigniew Sołtys - Komputerowa Analiza Obrazu Mikroskopowego 2016 część 5
5. FILTRY LINIOWE I STATYSTYCZNE. WYRÓWNYWANIE TŁA. Znacznie większe znaczenie w przetwarzaniu obrazu niż operacje punktowe mają takie przekształcenia w których zmiana poziomu szarości piksela zależy nie
Bardziej szczegółowoProjekt 2: Filtracja w domenie przestrzeni
Projekt 2: Filtracja w domenie przestrzeni 1. 2. Wstęp teoretyczny a. Filtracja w domenie przestrzeni b. Krótko o szumie c. Filtracja d. Usuwanie szumu typu Salt and Pepper filtrem medianowym e. Wnioski
Bardziej szczegółowoDetekcja twarzy w obrazie
Detekcja twarzy w obrazie Metoda na kanałach RGB 1. Należy utworzyć nowy obrazek o wymiarach analizowanego obrazka. 2. Dla każdego piksela oryginalnego obrazka pobiera się informację o wartości kanałów
Bardziej szczegółowoKomputerowe obrazowanie medyczne
Komputerowe obrazowanie medyczne Część II Przetwarzanie i analiza obrazów medycznych Grafika rastrowa i wektorowa W grafice wektorowej obrazy i rysunki składają się z szeregu punktów, przez które prowadzi
Bardziej szczegółowoWyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 8 Temat: Operacje sąsiedztwa detekcja krawędzi Wykonali: 1. Mikołaj Janeczek
Bardziej szczegółowoFiltracja w domenie przestrzeni
1 Filtracja Filtracja w domenie przestrzeni Filtracja liniowa jest procesem splotu (konwolucji) obrazu z maską (filtrem). Dla dwuwymiarowej i dyskretnej funkcji filtracja dana jest wzorem: L2(m, n) = (w
Bardziej szczegółowoZygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab
Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu
Bardziej szczegółowoRozpoznawanie Twarzy i Systemy Biometryczne
Filtry Plan wykładu Przegląd dostępnych filtrów Zastosowanie filtrów na różnych etapach pracy systemu Dalsze badania Kontrast i ostrość Kontrast różnica w kolorze i świetle między częściami ś i obrazu
Bardziej szczegółowoĆwiczenia z grafiki komputerowej 5 FILTRY. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Październik 2015
Ćwiczenia z grafiki komputerowej 5 FILTRY Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 12 Wykorzystanie warstw Opis zadania Obrazy do ćwiczeń Zadanie ilustruje
Bardziej szczegółowoWYKŁAD 3. Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego
WYKŁAD 3 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego 1 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego (c.d.) 2 Zestawienie zbiorcze - Regulacje
Bardziej szczegółowoBIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Bardziej szczegółowoAnaliza obrazu. wykład 6. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
Analiza obrazu komputerowego wykład 6 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze
Bardziej szczegółowomaska 1 maska 2 maska 3 ogólnie
WYKŁAD 4 Detekcja krawędzi, operacje morfologiczne Detekcja (wykrywanie) krawędzi (edge detection) jest to technika segmentacji obrazu, polegająca na znajdowaniu piksli krawędziowych przez sprawdzanie
Bardziej szczegółowoOperacje kontekstowe (filtry)
Operacje kontekstowe (filtry) Operacje polegaj na modyfikacji poszczególnych elementów obrazu w zale no ci od stanu ich samych i stanu ich otoczenia. Ze wzgl du na kontekstowo mog zajmowa du o czasu, ale
Bardziej szczegółowoPrzetwarzanie obrazu
Przetwarzanie obrazu Przekształcenia geometryczne Obroty Przesunięcia Odbicia Rozciągnięcia itp Przekształcenia geometryczne Obroty Wielokrotność 90 stopni Inne Przekształcenia geometryczne Obroty Wielokrotność
Bardziej szczegółowoImplementacja filtru Canny ego
ANALIZA I PRZETWARZANIE OBRAZÓW Implementacja filtru Canny ego Autor: Katarzyna Piotrowicz Kraków,2015-06-11 Spis treści 1. Wstęp... 1 2. Implementacja... 2 3. Przykłady... 3 Porównanie wykrytych krawędzi
Bardziej szczegółowoMetody komputerowego przekształcania obrazów
Metody komputerowego przekształcania obrazów Przypomnienie usystematyzowanie informacji z przedmiotu Przetwarzanie obrazów w kontekście zastosowań w widzeniu komputerowym Wykorzystane materiały: R. Tadeusiewicz,
Bardziej szczegółowoWyższa Szkoła Informatyki Stosowanej i Zarządzania WIT
3-1 Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT Grupa BD2,TC1, Zespół 2 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń laboratoryjnych Ćwiczenie nr3 Temat: Operacje sąsiedztwa wygładzanie i wyostrzanie
Bardziej szczegółowoOperacje morfologiczne w przetwarzaniu obrazu
Przekształcenia morfologiczne obrazu wywodzą się z morfologii matematycznej działu matematyki opartego na teorii zbiorów Wykorzystuje się do filtracji morfologicznej, wyszukiwania informacji i analizy
Bardziej szczegółowoGrafika komputerowa. Zajęcia IX
Grafika komputerowa Zajęcia IX Ćwiczenie 1 Usuwanie efektu czerwonych oczu Celem ćwiczenia jest usunięcie efektu czerwonych oczu u osób występujących na zdjęciu tak, aby plik wynikowy wyglądał jak wzor_1.jpg
Bardziej szczegółowoFiltracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej
Filtracja obrazów w dziedzinie częstotliwości w dziedzinie przestrzennej filtry liniowe filtry nieliniowe Filtracja w dziedzinie częstotliwości Obraz oryginalny FFT2 IFFT2 Obraz po filtracji f(x,y) H(u,v)
Bardziej szczegółowoZnak wersja podstawowa
Księga znaku Spis treści Znak wersja podstawowa...2 Układ poziomy...2 Układ pionowy...2 Konstrukcja znaku...3 Symbol...3 Napis...3 Siatka modułowa...4 Układ poziomy...4 Układ pionowy...4 Pole ochronne
Bardziej szczegółowoPrzetwarzanie obrazów. Grupy metod przetwarzania obrazu. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe
Przetwarzanie obrazów Ogólna definicja Algorytm przetwarzający obraz to algorytm który, otrzymując na wejściu obraz wejściowy f, na wyjściu zwraca takŝe obraz (g). Grupy metod przetwarzania obrazu Przekształcenia
Bardziej szczegółowo6. Algorytmy ochrony przed zagłodzeniem dla systemów Linux i Windows NT.
WYDZIAŁ: GEOLOGII, GEOFIZYKI I OCHRONY ŚRODOWISKA KIERUNEK STUDIÓW: INFORMATYKA STOSOWANA RODZAJ STUDIÓW: STACJONARNE I STOPNIA ROK AKADEMICKI 2014/2015 WYKAZ PRZEDMIOTÓW EGZAMINACYJNYCH: I. Systemy operacyjne
Bardziej szczegółowoMETODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Bardziej szczegółowoOperacje przetwarzania obrazów monochromatycznych
Operacje przetwarzania obrazów monochromatycznych Obraz pobrany z kamery lub aparatu często wymaga dalszej obróbki. Jej celem jest poprawienie jego jakości lub uzyskaniem na jego podstawie określonych
Bardziej szczegółowoWyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT Grupa IZ06TC01, Zespół 3 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat: Modelowanie koloru, kompresja obrazów,
Bardziej szczegółowoProste metody przetwarzania obrazu
Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami
Bardziej szczegółowo3. OPERACJE BEZKONTEKSTOWE
3. OPERACJE BEZKONTEKSTOWE 3.1. Tablice korekcji (LUT) Przekształcenia bezkontekstowe (punktowe) to takie przekształcenia obrazu, w których zmiana poziomu szarości danego piksela zależy wyłącznie od jego
Bardziej szczegółowowszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów
KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją
Bardziej szczegółowoAnaliza obrazów. Segmentacja i indeksacja obiektów
Analiza obrazów. Segmentacja i indeksacja obiektów Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 Analiza obrazu Analiza obrazu
Bardziej szczegółowoLaboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 4 Filtracja 2D Opracowali: - dr inż. Krzysztof Mikołajczyk - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,
Bardziej szczegółowoDetekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych
ZACNIEWSKI Artur 1 Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych WSTĘP Kod kreskowy (ang. barcode) to graficzna reprezentacja informacji, w postaci
Bardziej szczegółowoOperator rozciągania. Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości
Operator rozciągania q = 15 ( p p1 ) ( p p ) 0 2 1 dla p < p p 1 2 dla p p, p > p 1 2 Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości q = 0 dla p p1 q2 dla p1
Bardziej szczegółowoLinie sił pola elektrycznego
Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,
Bardziej szczegółowoAnaliza obrazu. wykład 1. Marek Jan Kasprowicz Uniwersytet Rolniczy Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.
Analiza obrazu komputerowego wykład 1 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Plan wykładu Wprowadzenie pojęcie obrazu cyfrowego i analogowego Geometryczne przekształcenia obrazu Przekształcenia
Bardziej szczegółowo1. Podstawy matematyki
1. Podstawy matematyki 1.1. Pola Pole wiąże wielkość fizyczną z położeniem punktu w przestrzeni W przypadku, gdy pole jest zależne od czasu, możemy je zapisać jako. Najprostszym przykładem pola jest pole
Bardziej szczegółowoInformatyka, studia dzienne, mgr II st. Przetwarzanie obrazu i dźwięku 2011/2012 Prowadzący: dr inż. Bartłomiej Stasiak czwartek, 8:30
Informatyka, studia dzienne, mgr II st. semestr I Przetwarzanie obrazu i dźwięku 2011/2012 Prowadzący: dr inż. Bartłomiej Stasiak czwartek, 8:30 Data oddania: Ocena: Grzegorz Graczyk 178717 Andrzej Stasiak
Bardziej szczegółowozna wybrane modele kolorów i metody transformacji między nimi zna podstawowe techniki filtracji liniowej, nieliniowej dla obrazów cyfrowych
Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Wydział Matematyki i Informatyki Instytut Informatyki Przetwarzanie i analiza obrazów cyfrowych w
Bardziej szczegółowo0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do
0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi
Bardziej szczegółowoPRZETWARZANIE SYGNAŁÓW
PRZETWARZANIE SYGNAŁÓW SEMESTR V Wykład VIII Podstawy przetwarzania obrazów Filtracja Przetwarzanie obrazu w dziedzinie próbek Przetwarzanie obrazu w dziedzinie częstotliwości (transformacje częstotliwościowe)
Bardziej szczegółowoPlan wykładu. Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie. informatyka +
Plan wykładu Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie 2 Wprowadzenie Po co obrabiamy zdjęcia Obrazy wektorowe i rastrowe Wielkość i rozdzielczość obrazu Formaty graficzne
Bardziej szczegółowoWYKŁAD 7. Obraz z wykrytymi krawędziami: gdzie 1 - wartość konturu, 0 - wartość tła.
WYKŁAD 7 Elementy segmentacji Obraz z wykrytymi krawędziami: Detektory wzrostu (DTW); badanie pewnego otoczenia piksla Lokalizacja krawędzi metodami: - liczenie różnicy bezpośredniej, - liczenie różnicy
Bardziej szczegółowoGRAFIKA RASTROWA. WYKŁAD 1 Wprowadzenie do grafiki rastrowej. Jacek Wiślicki Katedra Informatyki Stosowanej
GRAFIKA RASTROWA WYKŁAD 1 Wprowadzenie do grafiki rastrowej Jacek Wiślicki Katedra Informatyki Stosowanej Grafika rastrowa i wektorowa W grafice dwuwymiarowej wyróżnia się dwa rodzaje obrazów: rastrowe,
Bardziej szczegółowoObraz jako funkcja Przekształcenia geometryczne
Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych
Bardziej szczegółowoWOJSKOWA AKADEMIA TECHNICZNA
WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski
Bardziej szczegółowoPrzekształcenia punktowe
Przekształcenia punktowe Przekształcenia punktowe realizowane sa w taki sposób, że wymagane operacje wykonuje sie na poszczególnych pojedynczych punktach źródłowego obrazu, otrzymujac w efekcie pojedyncze
Bardziej szczegółowoWYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku
WYKŁ 3 WYPŁNINI OSZRÓW. Wypełnianie wieloboku Zasada parzystości: Prosta, która nie przechodzi przez wierzchołek przecina wielobok parzystą ilość razy. Plan wykładu: Wypełnianie wieloboku Wypełnianie konturu
Bardziej szczegółowoPhotoshop. Tworzenie tekstu
Photoshop Tworzenie tekstu Wykład 6 Autor: Elżbieta Fedko O czym będziemy mówić? Ustawienia tekstu na palecie Typografia. Ustawienia rodzaju tekstu Ustawienia tekstu dostępne na palecie Akapit Efekty specjalne
Bardziej szczegółowoPlan wykładu. Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie. informatyka +
Plan wykładu Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie 2 Po co obrabiamy zdjęcia Poprawa jasności, kontrastu, kolorów itp. Zdjęcie wykonano w niesprzyjających warunkach (złe
Bardziej szczegółowoAlgorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych.
Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych. Słowa kluczowe: teledetekcja, filtracja obrazu, segmentacja obrazu, algorytmy
Bardziej szczegółowoGrafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38
Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu
Bardziej szczegółowoDiagnostyka obrazowa
Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie siódme Usuwanie tła i segmentacja Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z metodami usuwania tła z obrazu oraz algorytmami
Bardziej szczegółowoNastępnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.
Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,
Bardziej szczegółowoKOREKCJA OBRAZÓW CYFROWYCH DLA OPTYMALIZACJI ICH AUTOMATYCZNEGO POMIARU 1
Alicja Ciach-Żelazko Regina Tokarczyk KOREKCJA OBRAZÓW CYFROWYCH DLA OPTYMALIZACJI ICH AUTOMATYCZNEGO POMIARU Streszczenie: Celem badań opisanych w artykule było przetestowanie wybranych metod korekcji
Bardziej szczegółowoPrzetwarzanie obrazów
Przetwarzanie obrazów Zajęcia 11 Filtracje przestrzenne obrazów rastrowych (2). Zasady wykonania ćwiczenia Obrazy wynikowe do zadań zapisujemy w pliku nazwiskonr.rvc (bieżące nr 1) a komentarze do wyników
Bardziej szczegółowoFiltracja nieliniowa obrazu
Informatyka, S1 sem. letni, 2014/2015, wykład#4 Filtracja nieliniowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów Obraz
Bardziej szczegółowoSpis treści. strona 1 z 11
Spis treści 1. Edycja obrazów fotograficznych...2 1.1. Księżyc...2 1.2. Słońce zza chmur...4 1.3. Rzeka lawy...6 1.4. Śnieżyca...7 1.5. Ulewa...8 1.6. Noktowizor...9 strona 1 z 11 1. Edycja obrazów fotograficznych
Bardziej szczegółowoLaboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 9 Przetwarzanie sygnałów wizyjnych. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z funkcjami pozwalającymi na
Bardziej szczegółowoW naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Bardziej szczegółowoRekonstrukcja obrazu (Image restoration)
Rekonstrukcja obrazu (Image restoration) Celem rekonstrukcji obrazu cyfrowego jest odtworzenie obrazu oryginalnego na podstawie obrazu zdegradowanego. Obejmuje ona identyfikację procesu degradacji i próbę
Bardziej szczegółowoPokażę w jaki sposób można zrobić prostą grafikę programem GIMP. 1. Uruchom aplikację GIMP klikając w ikonę na pulpicie.
Tworzenie grafiki Jest wiele oprogramowania służącego tworzeniu grafiki. Wiele z nich daje tylko podstawowe możliwości (np. Paint). Są też programy o rozbudowanych możliwościach przeznaczone do robienia
Bardziej szczegółowoEfekt rollover ze wskaźnikiem wybranej opcji
Strona 1 Efekt rollover ze wskaźnikiem wybranej opcji Włodzimierz Gajda Wykorzystując moŝliwości warstw, ścieŝek i selekcji zajmiemy się przygotowaniem szablonu witryny WWW. Szablon ten będzie wykorzystywał
Bardziej szczegółowoPlan wykładu. Akcelerator 3D Potok graficzny
Plan wykładu Akcelerator 3D Potok graficzny Akcelerator 3D W 1996 r. opracowana została specjalna karta rozszerzeń o nazwie marketingowej Voodoo, którą z racji wspomagania procesu generowania grafiki 3D
Bardziej szczegółowoAnaliza ruchu. Marek Wnuk < > ZPCiR I-6 PWr. MW: SyWizE p.1/22
Analiza ruchu Marek Wnuk < marek.wnuk@pwr.wroc.pl > ZPCiR I-6 PWr MW: SyWizE p.1/22 Ruch w sekwencji obrazów Podstawowe problemy: złożoność obliczeniowa nadmiar informacji niejednoznaczność MW: SyWizE
Bardziej szczegółowoPrzetwarzanie obrazów wykład 7. Adam Wojciechowski
Przetwarzanie obrazów wykład 7 Adam Wojciechowski Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany zawsze lecz tylko jeśli spełniony jest
Bardziej szczegółowoPrzetwarzanie i Kompresja Obrazów. Filtracja
Przetwarzanie i Kompresja Obrazów. acja Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk 7 kwietnia 206
Bardziej szczegółowoAntyaliasing w 1 milisekundę. Krzysztof Kluczek
Antyaliasing w 1 milisekundę Krzysztof Kluczek Zasada działania Założenia: Metoda bazująca na Morphological Antialiasing (MLAA) wejście: obraz wyrenderowanej sceny wyjście: zantyaliasowany obraz Krótki
Bardziej szczegółowoAlicja Ciach-Żelazko Regina Tokarczyk. 1. Wstęp
Alicja Ciach-Żelazko Regina Tokarczyk Korekcja obrazów cyfrowych dla optymalizacji ich automatycznego pomiaru Streszczenie Celem badań opisanych w artykule było przetestowanie wybranych metod korekcji
Bardziej szczegółowoWykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
Bardziej szczegółowoMatematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012.
Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012 Spis treści Przedmowa 9 CZĘŚĆ I. WSTĘP DO MATEMATYKI 11 Wykład 1. Rachunek
Bardziej szczegółowoCyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych
Bardziej szczegółowoRaport. Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010
Raport Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010 1. Wykrywanie krawędzi 1.0. Obraz oryginalny 1. 1.1. Sobel. Parametry: domyślne. 1.2. Prewitt. Parametry: domyślne. 1.3. Roberts. Parametry: domyślne.
Bardziej szczegółowo