Estymacja przedziałowa. Przedział ufności
|
|
- Aleksander Brzozowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Estymacja przedziałowa Przedział ufności
2 Estymacja przedziałowa jest to szacowanie wartości danego parametru populacji, ρ za pomocą tak zwanego przedziału ufności. Przedziałem ufności nazywamy taki przedział domknięty a, b, który z zadanym z góry prawdopodobieństwem 1 α, zwanym poziomem ufności, pokrywa nieznaną wartość szacowanego parametru ρ. P ρ a, b = 1 α
3 Przedział ufności dla średniej w populacji, gdy odchylenie standardowe jest znane 1 α 100% przedziałem ufności dla μ, gdy σ jest znane, a próba została pobrana z populacji normalnej lub jest dużą próbą (n 30) wyznacza wzór: x ± z 9 σ 6/8 n, gdzie z 6/8 oznacza taką wartość standaryzowanej zmiennej losowej normalnej Z, która odcina pod prawym ogonem krzywej gęstości normalnej pole o mierze α/2.
4 F z 6/8 = 1 α/2 α/2 z 6/8
5 Przykład 1. Właściciel kopalni miedzi zainteresowany jest oszacowaniem przeciętnej zawartości rudy miedzi w tonie urobku. Próby losowe dokonane na 50 tonach urobku wykazały średnią zawartość rudy na poziomie 66,57 kg w tonie urobku. Prowadząc badania pilotażowe, właściciel kopalni ustalił wcześniej odchylenie standardowe wyników badań w populacji na 15,97 kg. Właścicielowi kopalni wystarczy 95% poziom ufności, że średnia zawartość rudy mieści się w danym przedziale. n = 50 1 α = 0,95 Dystrybuanta standardowego rozkładu normalnego x = 66,57 σ = 15,97 95% przedział ufności α = 0,05 X zmienna losowa, f(x) funkcja gęstości, F(x) dystrybuanta X~N (0, 1), f ( x ) 0, , , ,1 0, , , , , , , , , , ,2 0, , , , , , , , , , α/2 = 0,975 z = 1,96 6/8 1,3 0, , , , , , , , , , ,4 0, , , , , , , , , , ,5 0, , , , , , , , , , ,6 x 0, ,00 0, ,01 0, ,02 0, ,03 0, ,04 0, ,05 0, ,06 0, ,07 0, ,08 0, ,09 1,7 0,0 0, , , , , , , , , , , , , , , , , , , , ,8 0,1 0, , , , , , , , , , , , , , , , , , , , ,9 0,2 0, , , , , , , , , , , , , , , , , , , , ,0 0,3 0, , , , , , , , , , , , , , , , , , , , ,1 0,4 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,98899 x 2 α/2 1 = 0,025 = e 2, F(x)= 2π x f ( t ) dt
6 x ± z 6/8 9 σ n = 66,57 ± 1, ,97 50 = 66,57 ± 4,43 Zatem 95% przedziałem ufności jest: 62,14; 71 Mamy 95% zaufania do tego, że przeciętna zawartość miedzi w tonie urobku będzie mieściła się między 62,14 kg, a 71 kg. Przyjmując, że rocznie kopalnia wydobywa 30 mln ton urobku, właściciel może prognozować, że (na 95%) uzyska: Prognoza pesymistyczna 62,14 kg 9 30 mln = 1 mln 864 tys 200 ton rudy miedzi, Prognoza optymistyczna 71 kg 9 30 mln = 2 mln 130 tys ton rudy miedzi.
7 Przypuśćmy, że właścicielowi kopalni nie wystarczy 95% poziom ufności i poprosił nas o wyznaczenie 99% przedziału ufności, że średnia zawartość rudy miedzi w tonie urobku się w nim znajdzie. n = 50 x = 66,57 1 α/2 = 0,995 z 6/8 = 2,58 σ = 15,97 99% przedział ufności x ± z 6/8 9 σ n 15,97 = 66,57 ± 2,58 9 = 0, , , ,1 0, , , , , , , , , , α = 0,99 1,2 0, , , , , , , , , , ,3 0, , , , , , , , , ,91774 α = 0,01 1,4 0, , , , , , , , , , ,5 0, , , , , , , , , , ,6 0, , , , , , , , , ,95449 α/2 = 0,005 Dystrybuanta standardowego rozkładu normalnego X zmienna losowa, f(x) funkcja gęstości, F(x) dystrybuanta X~N (0, 1), f ( x ) = 66,57 ± 5,83 1 x = e 2, F(x)= 1,7 0, , , , , , , , , , ,8 0, , , , , , , , , , ,9 0, , , , , , , , , , ,0 0, , , , , , , , , , ,1 x 0, ,00 0, ,01 0, ,02 0, ,03 0, ,04 0, ,05 0, ,06 0, ,07 0, ,08 0, ,09 2,2 0,0 0, , , , , , , , , , , , , , , , , , , , ,3 0,1 0, , , , , , , , , , , , , , , , , , , , ,4 0,2 0, , , , , , , , , , , , , , , , , , , , ,5 0,3 0, , , , , , , , , , , , , , , , , , , , ,6 0,4 0, , , , , , , , , , , , , , , , , , , ,68793 x 2 f ( t ) dt 99% 2πprzedział ufności 60,74; 72,4
8 95% przedział ufności - 62,14; 71 99% przedział ufności - 60,74; 72,4 60,74 62,14 μ 71 72,4 95% przedział 99% przedział ufności
9 Przedział ufności dla średniej w populacji, gdy odchylenie standardowe nie jest znane 1 α 100% przedziałem ufności dla μ, gdy σ nie jest znane, a próba została pobrana z populacji normalnej lub jest dużą próbą (n 30) wyznacza wzór: x ± t 6/8 9 s n, gdzie t 6/8 jest wartością rozkładu t Studenta o n 1 stopniach swobody, która odcina pod prawym ogonem krzywej gęstości tego rozkładu pole o mierze α/2.
10 t 6/8 α/2
11 Przykład 2. Analityk giełdowy chce oszacować przeciętny przychód z pewnej akcji (w procentach). Losowa próba z 15 dni wykazała przeciętny przychód x = 10,37%, przy odchyleniu standardowym z próby s = 3,5%. Zakładając, że rozkład przychodów jest normalny, wyznaczymy 95% przedział ufności dla przeciętnego przychodu z tej akcji. n = 15 df = n 1 = 14 1 α = 0,95 α = 0,05 α/2 = 0,025 t 6/8 = t M,M8N = 2,145 Degrees of Freedom t t t t t
12 Przykład 2. Analityk giełdowy chce oszacować przeciętny przychód z pewnej akcji (w procentach). Losowa próba z 15 dni wykazała przeciętny przychód x = 10,37%, przy odchyleniu standardowym z próby s = 3,5%. Zakładając, że rozkład przychodów jest normalny, wyznaczymy 95% przedział ufności dla przeciętnego przychodu z tej akcji. n = 15 df = n 1 = 14 x = 10,37 1 α = 0,95 α = 0,05 s = 3,5 α/2 = 0,025 t 6/8 = t M,M8N = 2,145 Końce 95% przedziału ufności wyrażają się wzorem: x ± t 6/8 9 sn = 10,37 ± 2, ,5 = 10,37 ± 1,94 15
13 Przykład 2. Analityk giełdowy chce oszacować przeciętny przychód z pewnej akcji (w procentach). Losowa próba z 15 dni wykazała przeciętny przychód x = 10,37%, przy odchyleniu standardowym z próby s = 3,5%. Zakładając, że rozkład przychodów jest normalny, wyznaczymy 95% przedział ufności dla przeciętnego przychodu z tej akcji. Końce 95% przedziału ufności wyrażają się wzorem: x ± t 6/8 9 sn = 10,37 ± 2, ,5 = 10,37 ± 1, % przedział ufności dla przeciętnego przychodu z akcji: 8,43; 12,31
14 Ilekroć σ nie jest znane (a rozkład w populacji jest normalny), właściwym rozkładem, którym powinniśmy się posługiwać, jest rozkład t przy n 1 stopniach swobody. Jednak przy dużej liczbie stopni swobody dobrym przybliżeniem rozkładu t jest standardowy rozkład normalny Z. Dla dużej próby (n 30) 1 α 100% przedział ufności dla μ wyznacza wzór: x ± z 6/8 9 s n.
15 Przykład 3. Chcemy oszacować przeciętny stan rachunków czekowych w bankach w danym regionie. W pobranej próbie 100 rachunków otrzymano x = 357,60 $ i s = 140 $. Ponieważ liczebność próby jest duża n = 100 > 30, to 95% przedział ufności możemy wyznaczyć zatem następująco: x ± z 6/8 9 sn = 357,60 ± 1, = 330,16; 385, Możemy mieć zatem 95% zaufanie do tego, że przeciętny stan rachunków czekowych mieści się w przedziale między 330,16 $ i 385,04 $.
16 Korekta wzorów ze względu na skończoność populacji Czynnik korygujący ze względu na skończoność populacji: N n N 1, gdzie N - liczebność populacji, n - liczebność próby. 1 α 100% przedziałem ufności dla μ z uwzględnieniem czynnika korygującego, gdy próba jest duża i n 0,05 9 N: x ± z 6/8 9 sn 9 N n N 1.
17 Przykład 4. Firma ma 1000 należności. W celu oszacowania przeciętnej wartości tych należności pobrano próbę 100 należności. W próbie stwierdzono przeciętną wartość x = 532,25 $, przy odchyleniu standardowym w próbie s = 61,22 $. Znajdźmy 95% przedział ufności dla przeciętnej z 1000 należności. n = 100, N = 1000, n N = 0,1 > 0,05 x ± z 6/8 9 sn 9 N n N 1 61,22 = 532,35 ± 1, = = 532,35 ± 11,39 = 520,96; 543,74 Możemy mieć zatem 95% zaufanie do tego, że przeciętna należność mieści się w przedziale od 520,96 $ i 543,74 $.
18 Przedział ufności dla wariancji w populacji 1 α 100% przedziałem ufności dla wariancji w populacji σ 8, gdy rozkład w populacji jest normalny, wyznacza wzór: (n 1)s 8, χ8 6/8 (n 1)s8, χ8 XY6/8 8 gdzie χ 6/8 jest wartością zmiennej chi- kwadrat o n 1 stopniach swobody, która odcina pole o mierze α/2 z prawej 8 strony, χ XY6/8 jest wartością zmiennej chi- kwadrat, która odcina pole o mierze α/2 z lewej strony (a tym samym pole o mierze 1 α/2 z prawej strony).
19 α/2 α/2 χ 8 XY6/8 χ 8 6/8
20 Przykład 5. Maszyna automatycznie napełnia pojemniki z kawą. Jeżeli przeciętne napełnienie jest różne od normy, pracę maszyny można uregulować tak, by dawała żądaną przeciętną. Jeżeli jednak wariancja procesu napełniania jest zbyt wielka, pracy maszyny nie da się uregulować i trzeba ją oddać do naprawy. Dlatego od czasu do czasu przeprowadza się kontrolę wariancji procesu napełniania. Wybrano próbę 30 pojemników, która dała ocenę wariancji s 8 = Wyznaczmy 95% przedział ufności dla wariancji w populacji σ 8. α 8 = 45,7, χ8 = 16 M,Z[N 2 = 0,025, 1 α 2 = 0,975 χ M,M8N df
21 Przykład 5. Maszyna automatycznie napełnia pojemniki z kawą. Jeżeli przeciętne napełnienie jest różne od normy, pracę maszyny można uregulować tak, by dawała żądaną przeciętną. Jeżeli jednak wariancja procesu napełniania jest zbyt wielka, pracy maszyny nie da się uregulować i trzeba ją oddać do naprawy. Dlatego od czasu do czasu przeprowadza się kontrolę wariancji procesu napełniania. Wybrano próbę 30 pojemników, która dała ocenę wariancji s 8 = Wyznaczmy 95% przedział ufności dla wariancji w populacji σ 8. α 8 = 45,7, χ8 = 16 M,Z[N 2 = 0,025, 1 α 2 = 0,975 χ M,M8N 95% przedział ufności dla wariancji w populacji: ,7 ; = 11765; 33604
22 Wyznaczanie liczebności próby Zanim odpowie się na pytanie o liczebność próby, którą należy pobrać do oszacowania średniej w populacji należy zadać sobie trzy pytania: Jakiego przybliżenia B do nieznanego parametru domagasz się od jego oceny na podstawie próby? Jakiego poziomu ufności oczekujesz od stwierdzenia, że odchylenie oceny na podstawie próby od parametru nie przekroczy B? Jaka jest twoja ocena wariancji (lub odchylenia standardowego) w populacji, którą się interesujesz?
23 Odpowiedź na trzecie pytanie bywa najtrudniejsze. Jeśli mamy przeświadczenie, że rozkład w populacji jest normalny i potrafimy (my, lub klient) oszacować w jakich granicach w przybliżeniu mieści się 95% wartości zmiennej w interesującej nas populacji, to podzielenie rozpiętości między górną i dolną granicą przez 4 da orientacyjny szacunek σ. Można też, ewentualnie pobrać niewielką próbę pilotażową i posłużyć się odchyleniem standardowym z próby jako szacunkiem σ. Minimalna wymagana liczebność próby do oszacowania średniej w populacji μ jest najmniejszą liczbą całkowitą _ n ]^/_ 9`_ a _, gdzie B jest żądanym przybliżeniem odchylenia standardowego.
24 Przykład 6. Firma zajmująca się analizą rynku chce przeprowadzić badania ankietowe w celu oszacowania wydatków na rozrywki przez przeciętnego kuracjusza odwiedzającego popularne uzdrowisko. Osoba, która zlecała badania, chciałaby znać te wydatki z przybliżeniem nie większym niż 120 $, przy poziomie ufności 95%. Na podstawie dotychczasowych obserwacji działalności uzdrowiska odchylenie standardowe w populacji σ szacuje się na 400 $. Jaka jest minimalna wymagana liczebność próby? B = 120, σ 8 = = z = z = 1,96 6/8 M,M8N Minimalna wymagana liczebność próby: n 1, = 42,68 Najmniejsza liczba całkowita, która spełnia tę nierówność to 43.
25 Jednostronne przedziały ufności Gdy jesteśmy zainteresowani tylko górną lub tylko dolną granicą przedziału, w którym mieści się parametr populacji, przydatne są jednostronne przedziały ufności. 1 α 100% przedziałem ufności dla μ, ograniczonym z prawej strony jest: b, x + z 6 9 e f g. 1 α 100% przedziałem ufności dla μ, ograniczonym z lewej strony jest: hx z 9 e, + ). 6 f
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Statystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
WYKŁAD 5 TEORIA ESTYMACJI II
WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak
1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Estymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Wnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
Zawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami
Zadania ze statystyki, cz.6
Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z
LABORATORIUM 6 ESTYMACJA cz. 2
LABORATORIUM 6 ESTYMACJA cz. 2 TEORIA ESTYMACJI I 1. ODRZUCANIE WYNIKÓW WĄTPLIWYCH PRÓBA P (m) (m-elementowa) Obliczenie: ; s bez wyników wątpliwych Odrzucenie wyników z poza przedziału: 3s PRÓBA LOSOWA
ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW
ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW POPULACJI Szkic wykładu Wprowadzenie 1 Wprowadzenie 2 3 4 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy
Rozkłady statystyk z próby. Statystyka
Rozkłady statystyk z próby tatystyka Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających ten
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 11 Anna Skowrońska-Szmer lato 2016/2017 Powtórzenie materiału 2 Zadanie 1 Wykład 1 Eksperyment polega na pojedynczym rzucie symetryczną kostką. Przestrzeń zdarzeń
Estymacja przedziałowa
Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Metody analizy danych ćwiczenia Estymacja przedziałowa Program ćwiczeń obejmuje następująca zadania: 1. Dom handlowy prowadzący
Statystyka matematyczna
Statystyka matematyczna Wykład 8 Magdalena Alama-Bućko 7 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 7 maja 2018 1 / 19 Przypomnijmy najpierw omówione na poprzednim wykładzie postaci przedziałów
Oszacowanie i rozkład t
Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie
STATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
Statystyka w przykładach
w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie
Estymacja parametro w 1
Estymacja parametro w 1 1 Estymacja punktowa: średniej, odchylenia standardowego i frakcji µ - średnia populacji h średnia z próby jest estymatorem średniej populacji = - standardowy błąd estymacji średniej
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15
IV WYKŁAD STATYSTYKA 26/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 4 Populacja generalna, próba, losowanie próby, estymatory Statystyka (populacja generalna, populacja próbna, próbka mała, próbka duża, reprezentatywność,
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją
1.1 Wstęp Literatura... 1
Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego
Rozdział 1 Statystyki Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego X = (X 1,..., X n ). Uwaga 1 Statystyka jako funkcja wektora zmiennych losowych jest zmienną losową
WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może
Dokładne i graniczne rozkłady statystyk z próby
Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba
Metody probabilistyczne
Metody probabilistyczne Teoria estymacji Jędrzej Potoniec Bibliografia Bibliografia Próba losowa (x 1, x 2,..., x n ) Próba losowa (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) Próba losowa (x 1, x 2,...,
Przedziały ufności. Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego
Przedziały ufności Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego czyli P( μ [a,b] ) = 1 α P( μ < a ) = α/2 P( μ > b ) =
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Analiza niepewności pomiarów
Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Rozkłady zmiennych losowych
Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Porównanie modeli statystycznych. Monika Wawrzyniak Katarzyna Kociałkowska
Porównanie modeli statystycznych Monika Wawrzyniak Katarzyna Kociałkowska Jaka jest miara podobieństwa? Aby porównywać rozkłady prawdopodobieństwa dwóch modeli statystycznych możemy użyć: metryki dywergencji
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).
Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano
KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1
KUR TATYTYKA Lekcja Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE www.etrapez.pl trona 1 Część 1: TET Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 We wnioskowaniu statystycznym
Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.
WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
Testowanie hipotez statystycznych
Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY Próba losowa prosta To taki dobór elementów z populacji, że każdy element miał takie samo prawdopodobieństwo znalezienia się w próbie Niezależne
ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
Testowanie hipotez statystycznych cd.
Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:
STATYSTYKA wykład 5-6
TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy
STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2
STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Prawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
Statystyka matematyczna. Wykład VI. Zesty zgodności
Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x
Centralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
METODY STATYSTYCZNE. Studia stacjonarne, semestr zimowy 2017/2018. Motto III: In God we trust. All others must bring data (z internetu)
METODY STATYSTYCZNE Studia stacjonarne, semestr zimowy 017/018 Motto I: Prawie każdy jest statystykiem ale niewielu o tym wie (inspiratorzy: Molier i Joseph Schumpeter) Motto II: Statystyka jest bodajże
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład
Testowanie hipotez statystycznych. Wprowadzenie
Wrocław University of Technology Testowanie hipotez statystycznych. Wprowadzenie Jakub Tomczak Politechnika Wrocławska jakub.tomczak@pwr.edu.pl 10.04.2014 Pojęcia wstępne Populacja (statystyczna) zbiór,
Zadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp.
Zadanie 1 budżet na najbliższe święta. Podać 96% przedział ufności dla średniej przewidywanego budżetu świątecznego jeśli otrzymano średnią z próby równą 600 zł, odchylenie standardowe z próby równe 30
Teoria Estymacji. Do Powyżej
Teoria Estymacji Zad.1. W pewnym przedsiębiorstwie wylosowano niezależnie próbę 25 pracowników. Staż pracy (w latach) tych pracowników w 1996 roku był następujący: 37; 34; 0*; 5; 17; 17; 0*; 2; 24; 33;
Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się.
1 Wstęp Będziemyrozważaćgeneratorytypux n+1 =f(x n,x n 1,...,x n k )(modm). Zakładamy,żeargumentamifunkcjifsąliczbycałkowitezezbioru0,1,...,M 1. Dla ustalenia uwagi mogą to być generatory liniowe typu:
Zmienna bazowa. 100(1 α)% przedział ufności dla µ: 100(α)% test hipotezy dla µ = µ 0; odrzucić, jeżeli Ȳ nie jest w przedziale
Wprowadzenie Wprowadzenie Wnioskowanie podsumowanie Zdefiniuj populację, która będzie przedmiotem badań Zbierz parametry, które będą przedmiotem wnioskowania Wybierz losową próbę z populacji Przeprowadź
Statystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
Matematyka i statystyka matematyczna dla rolników w SGGW
Było: Testowanie hipotez (ogólnie): stawiamy hipotezę, wybieramy funkcję testową f (test statystyczny), przyjmujemy poziom istotności α; tym samym wyznaczamy obszar krytyczny testu (wartość krytyczną funkcji
Jeśli powyższy opis nie jest zrozumiały należy powtórzyć zagadnienie standaryzacji zanim przejdzie się dalej!
CO POWINNIŚMY WIEDZIEĆ (I ROZUMIEĆ) ZABIERAJĄC SIĘ DO CZYTANIA 1. Jeśli mamy wynik (np. z kolokwium) podany w wartościach standaryzowanych (np.: z=0,8) to wiemy, że aby ustalić jaki był wynik przed standaryzacją
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Założenia do analizy wariancji dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Zagadnienia 1. Normalność rozkładu cechy Testy: chi-kwadrat zgodności, Shapiro-Wilka, Kołmogorowa-Smirnowa
TESTOWANIE HIPOTEZ STATYSTYCZNYCH
TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym
Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26
Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych
Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy
Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5
Wykład 3. Rozkład normalny
Funkcje gęstości Rozkład normalny Reguła 68-95-99.7 % Wykład 3 Rozkład normalny Standardowy rozkład normalny Prawdopodobieństwa i kwantyle dla rozkładu normalnego Funkcja gęstości Frakcja studentów z vocabulary
L.Kowalski zadania ze statystyki matematycznej-zestaw 2 ZADANIA - ZESTAW 2
L.Kowalski zadania ze statystyki matematycznej-zestaw ZADANIA - ZESTAW Zadanie.1 Badano maksymalną prędkość pewnego typ samochodów osobowych (cecha X poplacji. W 5 pomiarach tej prędkości otrzymano x 195,8
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ESTYMACJA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ESTYMACJA Symbole w statystyce Symbole Populacja Średnia m Próba x Odchylenie standardowe σ s Odsetek p p Estymacja co to jest? Estymacja punktowa Estymacja przedziałowa
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y