Zasady sporządzania modelu sieciowego (Wykład 1)
|
|
- Michał Stankiewicz
- 9 lat temu
- Przeglądów:
Transkrypt
1 Zasady sporządzania modelu sieciowego (Wykład 1) Metody planowania sieciowego są stosowane w budownictwie do planowania i kontroli dużych przedsięwzięć, w których z powodu wielu zależności istnieje konieczność zapewnienia precyzji w koordynacji działań. Wspólną cechą wszystkich metod sieciowych jest wykonanie projektu w postaci grafu co zapewnia dobrą czytelność projektu. Klasyfikacja modeli sieciowych Ze względu na strukturę logiczną dzielimy sieci na: deterministyczne i stochastyczne. Deterministyczne stosowane są w warunkach możliwych do dokładnego określenia, tam gdzie nie przewiduje się dużego wpływu warunków losowych. Gdzie określenie nakładów odbywa się za pomocą norm zawartych w katalogach. Przykładem takiego modelu jest metoda CPM(Critaical Pth Method). Sieci stochastyczne stosujemy wszędzie tam gdzie warunki losowe mają duży wpływ na wynik. Przykładem tej rodziny jest metoda PERT(Programm Evaluation and Review Technique. Ze względu na zakres sieci dzielimy na : modele sieciowe funkcji czasu i modele sieciowe funkcji czasu i środków Zasady sporządzania modeli sieciowych: Czynność to jest część projektu, która zabiera czas i pieniądze, w projekcie oznacza się linią ciągłą Czynność pozorna to taka czynność, której czas wynosi 0, określa tylko zależność między dwoma równoległymi czynnościami, w projekcje oznacza się linią przerywaną. Zdarzenie jest to część projektu nie zabierająca ani czasu, ani pieniędzy, określa terminy rozpoczęcia lub zakończenia czynności, w projekcie oznacza się kółkiem. Wszystkie zdarzenia oprócz początkowych muszą mieć czynności poprzedzające. Zdarzenie nie może nastąpić dopóki nie zakończą się wszystkie czynności prowadzące do niego. Wektory określające czynności zawsze skierowane są z lewej do prawej(nie można się cofać). Nie można stosować obiegów zamkniętych, czyli cykli. Czynności nie mogą się krzyżować. Czynności krytyczne to takie czynności dla których nie istnieje zapas czasu. Wszystkie czynności krytyczne w sieci tworzą ścieżkę krytyczną. Etapy sporządzania modeli sieciowych: a)deterministycznych: 1. Zdefiniowanie celu projektu, określenie czasu jego realizacji i wielkości nakładów na podstawie kosztorysu budowlanego 2. Ustalenie listy czynności 3. Ustalenie logicznego następstwa czynności 4. Określenie parametrów czynności; np. czasów trwania 5. Sporządzenie graficznej interpretacji listy czynności w postaci wykresu Gantta 6. Sporządzenie modelu sieciowego z zaznaczeniem czasu oczekiwanego 7. Wyznaczenie ścieżki krytycznej
2 b)stochastycznych: 1. Zdefiniowanie celu projektu, określenie czasu jego realizacji i wielkości nakładów na podstawie kosztorysu budowlanego 2. Ustalenie listy czynności 3. Ustalenie logicznego następstwa czynności 4. Określenie parametrów czynności; np. czasów trwania 5. Obliczenie czasu oczekiwanego to 6. Obliczenie wariancji σ 2 dla oczekiwanego czasu trwania czynności oraz odchylenia standardowego σ. 7. Sporządzenie graficznej interpretacji listy czynności w postaci wykresu Gantta 8. Sporządzenie modelu sieciowego z zaznaczeniem czasu oczekiwanego 9. Wyznaczenie ścieżki krytycznej 10. Obliczenie czasu oczekiwanego dla ścieżki krytycznej 11. Obliczenie wariancji σ 2 i odchylenia standardowego σ dla czasu oczekiwanego 12. Obliczenie czasu standaryzowanego ts 13. Określenie prawdopodobieństwa realizacji zadania w terminie (tablice statystyczne) 14. Określenie najbardziej prawdopodobnego terminu zakończenia zadania(tablice statystyczne) Przykład 1: 1. Temat opracowania: Opracować model sieciowy deterministyczny dla ław i ścian fundamentowych Zakres: roboty ziemne, ławy fundamentowe, ścianki fundamentowe Przybliżony czas realizacji projektu, wyliczony na podstawie kosztorysu 8dni, koszt robocizny 1899zł, zatrudnienie: 3osoby 2. Lista czynności wraz z ustaleniem ich logicznego następstwa A-ławy B-izolacja pozioma ław C-ścianki fundamentowe D przygotowanie zaprawy E izolacja pionowa ścian fundamentowych F- zasypanie wykopów od zewnątrz 3. Określenie parametrów wykonywanych czynności 4. Sporządzenie graficznej interpretacji listy czynności w postaci wykresu Gantta czynn ość opis pop rz Czas Il. dni il. osób A ława - 49, B Izolacja ław A 6,58 0,3 3 C Ścianka fundament. B 98,00 6,13 2 D zaprawa B 8,32 6,13 1 E Izolacja pionowa C,D 3,90 0,14 3 F Zasypanie wykopów E 23,33 0,86 3 C P S N P W S C P S N P W S
3 A/1 A/1 W zasadzie już można powyższy projekt realizacji odrzucić ponieważ zatrudnienie 3 osób na 10 dni spowoduje wydatki w wysokości 10*3*8*10=2400zł a zaplanowany w kosztorysie budżet wynosi 1899zł 5. sporządzenie modelu sieciowego A/2 B/0,3 C/6,13 E/0,14 F/0, D/6, Wyznaczenie ścieżki krytycznej. W naszym przypadku wiedzie ona przez zdarzenia Czas wyliczony dla wyznaczonej ścieżki krytycznej wynosi : =9.43 co potwierdza wyliczenia wykonane dla wykresu Gantta. To nie jest optymalne rozwiązanie. Należy znaleźć lepszy plan realizacji fundamentów. Przykład 1, wersja druga: czynn opis pop Czas Il. dni il. osób C Pt S N P W S C Pt S N P ość rz A ława - 49, B Izolacja ław A 6,58 0,3 3 C Ścianka fundament. B 98,00+8,32 4,5 3 D Izolacja pionowa C 3,90 0,14 3 E Zasypanie wykopów D 23,33 0,86 3 To rozwiązanie daje następujący wynik 8dni*3os*8godz*10zł=1920zł, który jest zdecydowanie korzystniejszy od poprzedniego. A/2 B/0,3 C/4,5 E/0,14 F/0, Czas wykonania zadania wynosi: =7.8 dnia
4 A/1 Przykład 2: 1. Temat opracowania: Opracować model sieciowy stochastyczny dla ław i ścian fundamentowych z pliku fundamenty.doc Założenia: model stochastyczny uwzględnia wpływ warunków losowych na wykonanie zadania. W planie realizacji uwzględnia się je następująco: Oprócz czasu normowego wprowadza się czas optymistyczny ta, pesymistyczny tp i oblicza się oczekiwany czas to, który jest stosowany do dalszych obliczeń i wykonania wykresów. 2. Obliczanie czasu oczekiwanego ze wzoru: to=(ta+4*tn+tp)/6 3. Obliczanie wariancji σ 2 i odchylenia standardowego σ dla poszczególnych czynności σ 2 =((tp-ta)/6) 2 4. Obliczanie czasu oczekiwanego dla przedsięwzięcia sumując wszystkie czasy oczekiwane. W naszym przypadku suma to wynosi 7,92 dni. 5. Obliczanie całkowitego odchylenia standardowego, w naszym przypadku wynosi ono 0,383 czynn. opis pop ta tn tp to σ2 σ C P S N P W S C P S N P A ława B Izol.ław A 0,2 0,3 0,5 0,317 0,0025 0,05 C ścianka B 4 4,5 5,5 4,583 0,0625 0,25 D Izol.pion C 0,1 0,14 0,3 0,16 0, ,0333 E zasypanie D 0,7 0,86 1 0,857 0,0025 0,05 7,917 0,0686 0, Wyznaczanie ścieżki krytycznej wiedzie ona przez zdarzenia :1,2, 3,4,5,6 7. Obliczenie czasu oczekiwanego dla ścieżki krytycznej: 2+0,32+4,58+0,14+0,86=7,92 8. Wariancja czasu oczekiwanego wynosi: 0,0686, odchylenie σ=0,3833 Obliczamy prawdopodobieństwo wykonania zadania w ciągu 8 dni 9. Obliczenie czasu standaryzowanego ts dla założenia wykonania zadania w ciągu 8 dni ts=(8-7,92)/ 0,3833 =0, Określenie prawdopodobieństwa wykonania zadania na podstawie dystrybuanty rozkładu normalnego P(8)=58,3% A/2, B/0,32 C/4,58 E/0,14 F/0, Prawdopodobieństwo wykonania zadania w ciągu 8dni wynosi 58,3% 11. Obliczenie potrzebnego czasu na wykonanie zadania dla prawdopodobieństwa wynoszącego 100% Z tablicy kwanty li odczytujemy wartość ts=3,0902 Obliczamy potrzebny na wykonanie zadania czas tz=to+σ*ts=7,92+3,0902*0,2087=8,56 Odp. Najbardziej prawdopodobne jest wykonanie zadania w ciągu 9 dni.
5
t i L i T i
Planowanie oparte na budowaniu modelu struktury przedsięwzięcia za pomocą grafu nazywa sie planowaniem sieciowym. Stosuje się do planowania i kontroli realizacji założonych przedsięwzięć gospodarczych,
METODA PERT. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA PERT Maciej Patan Programowanie sieciowe. Metoda PERT 1 WPROWADZENIE PERT (ang. Program Evaluation and Review Technique) Metoda należy do sieci o strukturze logicznej zdeterminowanej Parametry opisujace
Przykład: budowa placu zabaw (metoda ścieżki krytycznej)
Przykład: budowa placu zabaw (metoda ścieżki krytycznej) Firma budowlana Z&Z podjęła się zadania wystawienia placu zabaw dla dzieci w terminie nie przekraczającym 20 dni. Listę czynności do wykonania zawiera
Inżynieria oprogramowania. Część 8: Metoda szacowania ryzyka - PERT
UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI Opracował: mgr inż. Przemysław Pardel v1.01 2010 Inżynieria oprogramowania Część 8: Metoda szacowania ryzyka - PERT ZAGADNIENIA DO ZREALIZOWANIA (3H) PERT...
Rozdział 7 ZARZĄDZANIE PROJEKTAMI
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 7 ZARZĄDZANIE PROJEKTAMI 7.2. Ćwiczenia komputerowe Ćwiczenie 7.1 Wykorzystując
Harmonogramowanie przedsięwzięć
Harmonogramowanie przedsięwzięć Mariusz Kaleta Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska luty 2014, Warszawa Politechnika Warszawska Harmonogramowanie przedsięwzięć 1 / 25 Wstęp
BADANIA OPERACYJNE. dr Adam Sojda Pokój A405
BADANIA OPERACYJNE dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Przedsięwzięcie - zorganizowanie działanie ludzkie zmierzające do osiągnięcia określonego
Planowanie przedsięwzięć
K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania
PROGRAMOWANIE SIECIOWE. METODY CPM i PERT
PROGRAMOWANIE SIECIOWE. METODY CPM i PERT Maciej Patan Programowanie sieciowe. 1 WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę logiczna
Zarządzanie czasem projektu
Zarządzanie czasem projektu Narzędzia i techniki szacowania czasu zadań Opinia ekspertów Szacowanie przez analogię (top-down estimating) stopień wiarygodności = f(podobieństwo zadań), = f(dostęp do wszystkich
PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ
PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę
ANALIZA SIECIOWA PROJEKTÓW REALIZACJI
WYKŁAD 5 ANALIZA SIECIOWA PROJEKTÓW REALIZACJI Podstawowe problemy rozwiązywane z wykorzystaniem programowania sieciowego: zagadnienia transportowe (rozdział zadań przewozowych, komiwojażer najkrótsza
EKONOMIKA I ORGANIZACJA BUDOWY
EKONOMIKA I ORGANIZACJA BUDOWY EMA: PROJEK ORGANIZACJI WYKONANIA PRZEDSIĘWZIĘCIA INWESYCYJNEGO (p) ćwiczenia projektowe, pracownia specjalistyczna studia niestacjonarne I stopnia, sem. VI, budownictwo
Zarządzanie projektami
Dr Adam Kucharski Spis treści Podstawowe pojęcia Metoda CPM 3 3 Przykład analizy metodą CPM 5 Podstawowe pojęcia Przedsięwzięcia złożone z wielu czynności spotykane są na każdym kroku. Jako przykład może
Metoda CPM/PERT. dr inż. Mariusz Makuchowski
PM - wstęp PM nazwa metody pochodzi od angielskiego ritical Path Method, jest techniką bazującą na grafowej reprezentacji projektu, używana jest dla deterministycznych danych. PM - modele grafowe projektu
Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A
Ostatnim elementem przykładu jest określenie związku pomiędzy czasem trwania robót na planowanym obiekcie a kosztem jego wykonania. Związek ten określa wzrost kosztów wykonania realizacji całego przedsięwzięcia
Zarządzanie projektami. Tadeusz Trzaskalik
Zarządzanie projektami Tadeusz Trzaskalik 7.1. Wprowadzenie Słowa kluczowe Projekt Sieć czynności zynność bezpośrednio poprzedzająca Zdarzenie, zdarzenie początkowe, zdarzenie końcowe Właściwa numeracja
Modele sieciowe. Badania operacyjne Wykład 6. prof. Joanna Józefowska
Modele sieciowe Badania operacyjne Wykład 6 6-6- 6-6- Plan wykładu Zarządzanie złożonymi przedsięwzięciami Metoda ścieżki krytycznej Metoda PERT Projekty z ograniczonymi zasobami Modele z kontrolą czasu
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
ZARZĄDZANIE PROJEKTAMI METODA ŚCIEŻKI KRYTYCZNEJ HARMONOGRAM PROJEKTU
1 ZARZĄDZANIE PROJEKTAMI METODA ŚCIEŻKI KRYTYCZNEJ HARMONOGRAM PROJEKTU AUTOR: AGENDA LEKCJI 2 CPM wprowadzenie teoretyczne Przykład rozwiązania Zadanie do samodzielnego rozwiązania 3 Critical Path Method
Z Wikipedii, wolnej encyklopedii.
Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to
Statystyka matematyczna
Statystyka matematyczna Wykład 8 Magdalena Alama-Bućko 7 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 7 maja 2018 1 / 19 Przypomnijmy najpierw omówione na poprzednim wykładzie postaci przedziałów
Zarządzanie projektami. mgr inż. Michał Adamczak
Zarządzanie projektami mgr inż. Michał Adamczak Ćwiczenie 2 mgr inż. Michał Adamczak Agenda spotkania: 1. CPM wprowadzenie 2. Tabela czynności 3. Podstawowe elementy budowy diagramu sieciowego 4. Zasady
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
I.1.1. Technik budownictwa 311[04]
I.1.1. Technik budownictwa 311[04] Do egzaminu zostało zgłoszonych: 5790 Przystąpiło łącznie: 5289 przystąpiło: 5066 przystąpiło: 5131 ETAP PISEMNY ETAP PRAKTYCZNY zdało: 4662 (92%) zdało: 3131 (61%) DYPLOM
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Ćwiczenia laboratoryjne - 4. Projektowanie i harmonogramowanie produkcji metoda CPM-COST. Logistyka w Hutnictwie Ćw. L. 4
Ćwiczenia laboratoryjne - 4 Projektowanie i harmonogramowanie produkcji metoda CPM-COST Ćw. L. 4 Metody analizy sieciowej 1) Deterministyczne czasy trwania czynności są określane jednoznacznie (jedna liczba)
Projekt: Część I Część II
Projekt: Część I Wykonanie harmonogramu realizacji budynku gospodarczego w oparciu o dane wyjściowe, oraz z uwzględnieniem następujących wytycznych: - rozpoczęcie robót powinno nastąpić 05.09.2011 - prace
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)?
Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Gdy: badana cecha jest mierzalna (ewentualnie policzalna); dysponujemy dwoma próbami; chcemy porównać, czy wariancje w tych próbach
KARTA MODUŁU KSZTAŁCENIA
I. 1 Nazwa modułu kształcenia Organizacja produkcji budowlanej 2 Nazwa jednostki prowadzącej moduł Zakład Budownictwa KARTA MODUŁU KSZTAŁCENIA 3 Kod modułu 4 Grupa treści kształcenia kierunkowych 6 Poziom
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
Estymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
Wprowadzenie do programu ProjectLibre www.projectlibre.org
Wprowadzenie do programu ProjectLibre www.projectlibre.org prof. UW dr hab. Krzysztof Klincewicz Wydział Zarządzania Uniwersytetu Warszawskiego kklincewicz@mail.wz.uw.edu.pl www.projectlibre.org Nowy projekt
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Kurs: Gospodarka kosztami i zasobami w inwestycjach budowlanych
Kurs: Gospodarka kosztami i zasobami w inwestycjach budowlanych Wyceń, zaplanuj, rozlicz zarządzanie inwestycjami budowlanymi Szkolenie ma na celu przygotowanie do gospodarowania kosztami i zasobami w
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ESTYMACJA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ESTYMACJA Symbole w statystyce Symbole Populacja Średnia m Próba x Odchylenie standardowe σ s Odsetek p p Estymacja co to jest? Estymacja punktowa Estymacja przedziałowa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Statystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28
Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych
PLANOWANIE I KONTROLA REALIZACJI OBIEKTU BUDOWLANEGO
PLANOWANIE I KONTROLA REALIZACJI OBIEKTU BUDOWLANEGO Celem projektu jest nauka budowy harmonogramu sieciowego małego obiektu budowlanego a następnie opanowanie umiejętności śledzenia postępów w przebiegu
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
MONITOROWANIE, KONTROLA I ZAMKNIĘCIA PROJEKTU. Dr Jerzy Choroszczak
MONITOROWANIE, KONTROLA I ZAMKNIĘCIA PROJEKTU Dr Jerzy Choroszczak Kontrola w zarządzaniu projektami Kontrola terminów przygotowania i wykonawstwa projektu Kontrola zużycia zasobów Kontrola kosztów przygotowania
Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?
1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.
Ograniczenia projektu. Zakres (co?) Czas (na kiedy?) Budżet (za ile?)
Harmonogram Ograniczenia projektu Zakres (co?) Czas (na kiedy?) Budżet (za ile?) Pojęcia podstawowe Harmonogram: Daty wykonania działań Daty osiągnięcia kamieni milowych Działanie: Element składowy pakietu
Rozkłady zmiennych losowych
Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
STATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym
Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
Wykład Zarządzanie projektami Zajęcia 3 Zarządzanie czasem w projekcie Zarządzanie kosztami projektu
Wykład Zarządzanie projektami Zajęcia Zarządzanie czasem w projekcie Zarządzanie kosztami projektu dr Stanisław Gasik s.gasik@vistula.edu.pl www.sybena.pl/uv/014-wyklad-eko-zp-9-pl/wyklad.pdf Zarządzanie
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzem Technik budownictwa 311[04]
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzem Technik budownictwa 311[04] 1 2 3 Ad. I. Tytuł pracy egzaminacyjnej Zdecydowana większość zdających sformułowała tytuł pracy prawidłowo,
Statystyka opisowa- cd.
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa- cd. Wykład 4 Dr inż. Adam Deptuła HISTOGRAM UNORMOWANY Pole słupka = wysokość słupka x długość przedziału Pole słupka = n i n h h,
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Jak sprawdzić normalność rozkładu w teście dla prób zależnych?
Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu
Badania operacyjne egzamin
Imię i nazwisko:................................................... Nr indeksu:............ Zadanie 1 Załóżmy, że Tablica 1 reprezentuje jeden z kroków algorytmu sympleks dla problemu (1)-(4). Tablica
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w
SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY
SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY
Zastosowania informatyki w gospodarce Projekt
Zastosowania informatyki w gospodarce Projekt dr inż. Marek WODA 1. Wprowadzenie Czasochłonność 2h/tydzień Obligatoryjne konto na portalu Assembla Monitoring postępu Aktywność ma wpływ na ocenę 1. Wprowadzenie
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Konrad Miziński, nr albumu 233703 26 maja 2015 Zadanie 1 Wartość krytyczna c, niezbędna wyliczenia mocy testu (1 β) wyznaczono za
2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Zmienne losowe skokowe
Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest
), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0
Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Optymalizacja harmonogramów budowlanych - szeregowanie zadań. Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Optymalizacja harmonogramów budowlanych - szeregowanie zadań Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Opis zagadnienia Zadania dotyczące szeregowania zadań należą do szerokiej
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 1
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 1 Konrad Miziński, nr albumu 233703 1 maja 2015 Zadanie 1 Parametr λ wyestymowano jako średnia z próby: λ = X n = 3.73 Otrzymany w
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
ORGANIZACJA I ZARZĄDZANIE
P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Planowanie przedsięwzięcia metodą CPM Instrukcja do ćwiczeń
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1
KUR TATYTYKA Lekcja Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE www.etrapez.pl trona 1 Część 1: TET Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 We wnioskowaniu statystycznym
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech
TATYTYKA wykład 8 Wnioskowanie Weryfikacja hipotez Wanda Olech Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
ECDL/ICDL Zarządzanie projektami Moduł S5 Sylabus - wersja 1.0
ECDL/ICDL Zarządzanie projektami Moduł S5 Sylabus - wersja 1.0 Przeznaczenie Sylabusa Dokument ten zawiera szczegółowy Sylabus dla modułu ECDL/ICDL Zarządzanie projektami. Sylabus opisuje zakres wiedzy
Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa
Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa Test serii (test Walda-Wolfowitza) Założenie. Rozpatrywane rozkłady są ciągłe. Mamy dwa uporządkowane
Instrukcja. Laboratorium Metod i Systemów Sterowania Produkcją.
Instrukcja do Laboratorium Metod i Systemów Sterowania Produkcją. 2010 1 Cel laboratorium Celem laboratorium jest poznanie metod umożliwiających rozdział zadań na linii produkcyjnej oraz sposobu balansowania
6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego
6. Zmienne losowe typu ciagłego (2.04.2007) Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją ciągłą; proste x = a, x = b, a < b, oś OX
Analiza niepewności pomiarów
Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka
Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
METODY PROJEKTOWANIA TECHNOLOGII ROBÓT
Katedra Mostów i Kolei dr inż. Jacek Makuch ZAJĘCIA PROJEKTOWE 1 METODY PROJEKTOWANIA TECHNOLOGII ROBÓT TECHNOLOGIA ROBÓT KOLEJOWYCH studia I stopnia, specjalność ILB / DK, semestr 7 rok akademicki 2018/19
ECDL ZARZĄDZANIE PROJEKTAMI
ECDL ZARZĄDZANIE PROJEKTAMI Przykładowy test egzaminacyjny Zasady oceny testu Test zawiera 32 zadania (6 teoretycznych i 26 praktycznych) za które można uzyskać maksymalnie 36 punktów. Aby zaliczyć test
Wykład 3. Rozkład normalny
Funkcje gęstości Rozkład normalny Reguła 68-95-99.7 % Wykład 3 Rozkład normalny Standardowy rozkład normalny Prawdopodobieństwa i kwantyle dla rozkładu normalnego Funkcja gęstości Frakcja studentów z vocabulary
Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.
Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.
Ocena ryzyka czasu i kosztów w planowaniu produkcji budowlanej
Ocena ryzyka czasu i kosztów w planowaniu produkcji budowlanej Dr hab. inż. Roman Marcinkowski, mgr inż. Artur Koper, Wydział Budownictwa, Mechaniki i Petrochemii, Politechnika Warszawska, Płock 70 1.
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Zawód: technik budownictwa
Zawód: technik budownictwa symbol cyfrowy: 311[04] Etap pisemny egzaminu obejmuje: Część I-zakres wiadomości i umiejętności właściwych dla kwalifikacji w zawodzie Czytać ze zrozumieniem informacje przedstawione
System wspomagania harmonogramowania przedsięwzięć budowlanych
System wspomagania harmonogramowania przedsięwzięć budowlanych Wojciech Bożejko 1 Zdzisław Hejducki 2 Mariusz Uchroński 1 Mieczysław Wodecki 3 1 Instytut Informatyki, Automatyki i Robotyki Politechnika
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza