Języki formalne i automaty Ćwiczenia 9

Wielkość: px
Rozpocząć pokaz od strony:

Download "Języki formalne i automaty Ćwiczenia 9"

Transkrypt

1 Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej do niedeterministycznego automatu ze stosem za pomocą algorytmu LL Konwersja gramatyki bezkontekstowej do niedeterministycznego automatu ze stosem za pomocą algorytmu LR Konwersja niedeterministycznego automatu ze stosem do gramatyki bezkontekstowej... 7 Maszyna Turinga... 8 Maszyna Turinga z wieloma taśmami... 9 Zadania Zadania na Zadania na Zadania na

2 Wstęp teoretyczny Maszyna Mealy'ego Maszyna Mealy'ego składa się z: skończonej liczby stanów Q skończonego alfabetu wejściowego Σ, skończonego alfabetu wyjściowego Γ, δ funkcja tranzycji : δ : Q Q ω funkcja wyjściowa ω : Q Γ q 0 stan startowy, q0 Q Różnice między maszyną Mealy'ego a automatem skończonym: nie ma stanów końcowych tranzycje produkują wyjście za pomocą funkcji wyjściowej nie akceptuje ani nie odrzuca słowa wejściowego, zamiast tego generuje słowo wyjściowe nie może mieć stanów niedeterministycznych Przykład maszyny Mealy'ego zamieniającej w słowie binarnym jedynki na zera i odwrotnie. Przykładowo dla wejścia 0110 zostanie wyprodukowane wyjście Maszyna Moore'a Maszyna Moore'a składa się z: skończonej liczby stanów Q skończonego alfabetu wejściowego Σ,

3 skończonego alfabetu wyjściowego Γ, δ funkcja tranzycji : δ : Q Q ω funkcja wyjściowa ω : Q Γ q 0 stan startowy, q0 Q Różnice między maszyną Mealy'ego i Moore'a. W maszynie Moore'a funkcja wyjściowa zdefiniowana jest dla stanów a nie dla tranzycji. Różnice między maszyną Moore'a a automatem skończonym: nie ma stanów końcowych stany produkują wyjście za pomocą funkcji wyjściowej nie akceptuje ani nie odrzuca słowa wejściowego, zamiast tego generuje słowo wyjściowe nie może mieć stanów niedeterministycznych Przykład maszyny Moore'a zamieniającej w słowie binarnym jedynki na zera i odwrotnie. Przykładowo dla wejścia 0110 zostanie wyprodukowane wyjście W tym celu przechodzimy od stanu q0 do stanu q2, następnie do stanu q1, jeszcze raz do stanu q1, i do stanu q2. Automat ze stosem Niedeterministyczny automat ze stosem składa się z: skończonej liczby stanów Q skończonego alfabetu wejściowego Σ, skończonego alfabetu stosowego Γ, δ funkcja tranzycji :

4 δ : Q Γ skonczone podzbiory Q Γ q 0 stan startowy, q0 Q Z - symbol startowy stosu F zbiór stanów zawarty w Q, zwanych stanami akceptującymi Deterministyczny automat ze stosem różni się tylko tym, że dla danego stanu i symbolu wejściowego istnieje co najwyżej jedna tranzycja oraz wejście nie może być puste. W stanie akceptującym aby zaakceptować dane słowo musi być spełniony dodatkowy warunek, aby stos był pusty lub na stosie znajdował się tylko symbol startowy stosu Z. Przykład. Skonstruujemy deterministyczny automat ze stosem dla języka n n { a b : > 0} L = n Automat będzie kładł na stos symbol a dla każdego a na wejściu, i będzie pobierał ze stosu a dla każdego b na wejściu. Tym sposobem po przeczytaniu słowa tego języka stos będzie zawierał tylko symbol startowy stosu Z. Każda tranzycja posiada 3 wartości. Pierwsza wartość to czytany symbol wejściowy. Druga wartość to słowo, które jest zdejmowane ze stosu. Trzecia wartość to słowo które kładziemy na stos. W stanie q0 na stosie znajduje się tylko symbol startowy stosu Z. Przejście do stanu q1 po przeczytaniu a oznacza zdjęcie ze stosu Z i położenie na stos az. Jest to w zasadzie w tym wypadku to samo co dołożenie na stos a, ale znajduje się tutaj dodatkowa informacja, że na górze stosu musi być Z. Przejście od stanu q1 do q1 po przeczytaniu a oznacza zdjęcie ze stosu a i położenie na stosie aa. Przejście od stanu q1 do stanu q2 po przeczytaniu b oznacza zdjęcie ze stosu a bez dokładania. Przejście ze stanu q2 do stanu q2 oznacza również zdjęcie ze stosu a bez dokładania. Przejście ze stanu q2 do stanu q3 następuje po zdjęciu ze stosu symbol startowego Z i położeniu na stosie tego symbolu. Przejście to nie zmienia stosu, ale zapewnia, że wykonamy to przejście tylko wtedy, gdy na stosie na samej górze będzie znajdował się symbol startowy stosu Z. Gdy dla czytanego symbolu z wejścia oraz aktualnego stosu nie istnieje żadna tranzycja to słowo to nie należy do tego języka. Dla słowa aaabbb otrzymujemy następujące przejścia: q0 q1, stos: az q1 q1, stos: aaz q1 q1, stos: aaaz

5 q1 q2, stos: aaz q2 q2, stos: az q2 q2, stos: Z q2 q3, stos: Z q3 jest stanem końcowym a więc dane słowo należy do tego języka. Inny przykład automatu ze stosem. Automat ten akceptuje tylko słowo aaa. Konwersja gramatyki bezkontekstowej do niedeterministycznego automatu ze stosem za pomocą algorytmu LL. Mamy daną gramatykę bezkontekstową: S aabb A aac A ε B bb B c Przy parsowaniu LL używany jest stos co było pokazane na zajęciach omawiających algorytm LL. Parsowanie LL składa się z dwóch operacji: ściąganie ze stosu terminala, który odpowiada przeczytanemu terminalowi ze słowa wejściowego, oraz zastępowanie nieterminala, który znajduje się na wierzchołku stosu odpowiednią prawą stroną produkcji. Na samym początku na stos kładziemy symbol startowy gramatyki S. Automat z umieszczaniem na stosie symbolu startowego gramatyki, operacją ściągania ze stosu terminali po przeczytaniu wejścia, oraz akceptacją słowa, gdy na stosie pozostanie symbol początkowy automatu Z wygląda następująco: Pozostało dodać do automatu operację zastępowania nieteterminali:

6 Konwersja gramatyki bezkontekstowej do niedeterministycznego automatu ze stosem za pomocą algorytmu LR. Mamy daną gramatykę bezkontekstową: S aabb A aac A ε B bb B c Przy parsowaniu LR również używany jest stos co było pokazane na zajęciach omawiających algorytm LR. Parsowanie LR składa się z dwóch operacji: umieszczanie terminala na stosie przeczytanego ze słowa wejściowego oraz redukcja na stosie. Na samym końcu otrzymujemy symbol startowy gramatyki S. Automat z operacją umieszczania terminala na stosie przeczytanego z wejścia, oraz z usuwaniem symbolu startowego gramatyki S na samym końcu wygląda następująco: Pozostało dodać do automatu operację redukcji:

7 Konwersja niedeterministycznego automatu ze stosem do gramatyki bezkontekstowej Mamy dany automat ze stosem: Algorytm konwersji wymaga aby każda tranzycja zdejmowała dokładnie 1 symbol ze stosu i kładła 0 lub 2 symbole. Może być tylko jeden stan końcowy i każda tranzycja dochodząca do stanu końcowego musi zdejmować ze stosu symbol Z. Każda tranzycja będzie zamieniona na listę produkcji. Na początku zamieńmy wszystkie tranzycje, które nie dokładają nic do stosu, a więc 4 ostatnie tranzycje w naszym przykładzie: (q1aq2) b (q2aq2) b (q2zq2) b (q2zq3) ε Po lewej stronie mamy stan, symbol, który zdejmujemy ze stosu, stan do którego dochodzimy. A po prawej stronie produkcji mamy symbol wejściowy. Ostatecznie po uproszczeniu lista produkcji będzie następująca: (q0zq3) a(q1aq2)(q2zq3) (q1aq2) a(q1aq2)(q2aq2) (q2aq2) b

8 (q1aq2) b (q2zq3) ε Maszyna Turinga Maszyna Turinga składa się z: zbioru stanów wewnętrznych Q alfabetu wejściowego Σ, skończonego zbioru symboli w alfabecie taśmowym Γ, δ funkcja tranzycji : q 0 stan startowy, q0 Q symbol pusty δ : { L, S R} n Q Γ n podzbior Q Γ n, F zbiór stanów zawarty w Q, zwanych stanami akceptującymi n oznacza liczbę taśm Skonstruujmy przykładowo maszynę Turinga z jedną taśmą dla języka gdzie n 0. L = n n n { a b c } Maszyna Turinga dla tego języka wygląda następująco:

9 Każda tranzycja składa się z trzech wartości: pierwsza wartość oznacza aktualną wartość pod głowicą maszyny Turinga. Druga wartość oznacza wartość, która zastąpi tą pierwszą na taśmie. Rozmiar wartości w tych dwóch polach wynosi jeden zgodnie z definicją maszyny Turinga. Trzecia wartość mówi o tym, gdzie przesunie się głowica na taśmie po zamianie. R oznacza przesuń o jeden kwadrat do przodu, L przesuń o jeden kwadrat do tył, S - pozostań w tym samym miejscu. Algorytm podany w przykładzie polega na zamianie w każdym kroku po jednym symbolu a,b,c odpowiednio na x,y,z. Jeśli taka zamiana nie jest możliwa oznacza to różną ilość symboli a, b i c. Wyprowadzenie dla słowa abc. Na początku na taśmie zapisane jest słowo abc, głowica wskazuje na symbol a. Zawsze pogrubiony będzie symbol na taśmie na który wskazuje aktualnie głowica. W pierwszym kroku przechodzimy ze stanu q0 do stanu q1. 1. q0, abc 2. q1, xbc 3. q2, xyc 4. q3, xyz 5. q3, xyz 6. q0, xyz 7. q4, xyz 8. q4, xyz 9. q5, xyz 10. q5, xyz 11. q5, xyz 12. q5, xyz 13. q6, xyz Jesteśmy w stanie końcowym q6, a więc dane słowo należy do języka. Maszyna Turinga z wieloma taśmami W maszynie Turinga z wieloma taśmami tranzycje składają się z kilku części, każda część odpowiada jednej taśmie. Części tranzycji zbudowane są tak samo jak tranzycje w maszynie Turinga z jedną taśmą. Odpalenie tranzycji polega na tym, że rozpatrywane są równocześnie wszystkie taśmy. Reprezentacja języka z poprzedniego przykładu dla maszyny Turinga z trzema taśmami wygląda następująco:

10 Algorytm polega na zapisaniu symboli a na drugą taśmę, symboli b na trzecią taśmę, a następnie poprzez równoczesne przechodzenie przez wszystkie taśmy sprawdzeniu czy jest ta sama liczba symboli a, b i c. Przykładowe wyprowadzenie dla słowa abc. Początkowo na pierwszej taśmie zapisane jest słowo abc, pozostałe taśmy są puste. 1. q0, abc,, 2. q0, abc, a, 3. q1, abc, a, b 4. q2, abc, a, b 5. q2, abc, a, b 6. q3, abc, a, b q3 jest stanem końcowym, a więc słowo należy do tego języka. Stan q4 jest po to aby zaakceptować słowo puste.

11 Zadania Zadania na 3.0 Zadanie 8.1 ze strony Zadania na 4.0 Następujący automat ze stosem przekonwertować na gramatykę. Zadania na 5.0 Implementacja automatu ze stosem w Javie dla przykładu 8.1 z zadania na 3.0. Zadanie dodatkowe nieobowiązkowe Implementacja w Javie automatu Mealy'ego i Moore'a dla przykładu 8.1.

Języki formalne i automaty Ćwiczenia 7

Języki formalne i automaty Ćwiczenia 7 Języki formalne i automaty Ćwiczenia 7 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Automaty... 2 Cechy automatów... 4 Łączenie automatów... 4 Konwersja automatu do wyrażenia

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 4

Języki formalne i automaty Ćwiczenia 4 Języki formalne i automaty Ćwiczenia 4 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Sposób tworzenia deterministycznego automatu skończonego... 4 Intuicyjne rozumienie konstrukcji

Bardziej szczegółowo

Automat ze stosem. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki

Automat ze stosem. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki Automat ze stosem Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Automat ze stosem (1) dno stosu Stos wierzchołek stosu Wejście # B B A B A B A B a b b a b a b $ q i Automat ze

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 3

Języki formalne i automaty Ćwiczenia 3 Języki formalne i automaty Ćwiczenia 3 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Algorytm LL(1)... 2 Definicja zbiorów FIRST1 i FOLLOW1... 3 Konstrukcja tabeli parsowania

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 8

Języki formalne i automaty Ćwiczenia 8 Języki formalne i automaty Ćwiczenia 8 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Konwersja NFA do DFA... 2 Minimalizacja liczby stanów DFA... 4 Konwersja automatu DFA do

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 1

Języki formalne i automaty Ćwiczenia 1 Języki formalne i automaty Ćwiczenia Autor: Marcin Orchel Spis treści Spis treści... Wstęp teoretyczny... 2 Wprowadzenie do teorii języków formalnych... 2 Gramatyki... 5 Rodzaje gramatyk... 7 Zadania...

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 2

Języki formalne i automaty Ćwiczenia 2 Języki formalne i automaty Ćwiczenia 2 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Metoda brute force... 2 Konwersja do postaci normalnej Chomskiego... 5 Algorytm Cocke a-youngera-kasamiego

Bardziej szczegółowo

Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech

Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech anagram(l) = {w : w jest anagaramem v dla pewnego v L}. (a) Czy jeśli L jest

Bardziej szczegółowo

Jaki język zrozumie automat?

Jaki język zrozumie automat? Jaki język zrozumie automat? Wojciech Dzik Instytut Matematyki Uniwersytet Śląski Katowice wojciech.dzik@us.edu.pl 7. Forum Matematyków Polskich, 12-17 września 2016, Olsztyn Prosty Automat do kawy Przemawiamy

Bardziej szczegółowo

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11} Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy

Bardziej szczegółowo

1 Automaty niedeterministyczne

1 Automaty niedeterministyczne Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów

Bardziej szczegółowo

Imię, nazwisko, nr indeksu

Imię, nazwisko, nr indeksu Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za

Bardziej szczegółowo

Hierarchia Chomsky ego Maszyna Turinga

Hierarchia Chomsky ego Maszyna Turinga Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór

Bardziej szczegółowo

Dopełnienie to można wyrazić w następujący sposób:

Dopełnienie to można wyrazić w następujący sposób: 1. (6 punktów) Czy dla każdego regularnego L, język f(l) = {w : każdy prefiks w długości nieparzystej należy do L} też jest regularny? Odpowiedź. Tak, jęsli L jest regularny to też f(l). Niech A będzie

Bardziej szczegółowo

Maszyna Turinga języki

Maszyna Turinga języki Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę

Bardziej szczegółowo

Wykład5,str.1. Maszyny ze stosem ... 1,0 λ r. λ,z λ

Wykład5,str.1. Maszyny ze stosem ... 1,0 λ r. λ,z λ Wykład5,str1 p 0,Z 0Z 0,0 00 q λ,z λ r Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana Z p 0,Z 0Z 0,0 00 q λ,z λ r Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana 0 Z p 0,Z 0Z 0,0 00

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga

Bardziej szczegółowo

Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ)

Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ) Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też L = {vw : vuw L dla pewnego u A takiego, że u = v + w } Rozwiązanie. Niech A =

Bardziej szczegółowo

Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu

Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady

Bardziej szczegółowo

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =

Bardziej szczegółowo

KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 204

KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 204 Opracował: prof. dr hab. inż. Jan Kazimierczak KATEDA INFOMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 204 Temat: Hardware'owa implementacja automatu skończonego pełniącego

Bardziej szczegółowo

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego 2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną G = gdzie: N zbiór symboli nieterminalnych, T zbiór symboli terminalnych, P zbiór

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 6

Języki formalne i automaty Ćwiczenia 6 Języki formalne i automaty Ćwiczenia 6 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Wyrażenia regularne... 2 Standardy IEEE POSIX Basic Regular Expressions (BRE) oraz Extended

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 01 Od maszyn Turinga do automatów komórkowych Jarosław Miszczak IITiS PAN Gliwice 03/03/2016 1 / 16 1 2 3 Krótka historia Znaczenie 2 / 16 Czego dowiedzieliśmy się

Bardziej szczegółowo

Maszyna Turinga (Algorytmy Część III)

Maszyna Turinga (Algorytmy Część III) Maszyna Turinga (Algorytmy Część III) wer. 9 z drobnymi modyfikacjami! Wojciech Myszka 2018-12-18 08:22:34 +0100 Upraszczanie danych Komputery są coraz szybsze i sprawniejsze. Na potrzeby rozważań naukowych

Bardziej szczegółowo

Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń

Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 4 kwietnia 2019 1 Dodajmy kontekst! Rozważaliśmy

Bardziej szczegółowo

Wyrażenie nawiasowe. Wyrażenie puste jest poprawnym wyrażeniem nawiasowym.

Wyrażenie nawiasowe. Wyrażenie puste jest poprawnym wyrażeniem nawiasowym. Wyrażenie nawiasowe Wyrażeniem nawiasowym nazywamy dowolny skończony ciąg nawiasów. Każdemu nawiasowi otwierającemu odpowiada dokładnie jeden nawias zamykający. Poprawne wyrażenie nawiasowe definiujemy

Bardziej szczegółowo

Hierarchia Chomsky ego

Hierarchia Chomsky ego Hierarchia Chomsky ego Gramatyki nieograniczone Def. Gramatyką nieograniczoną (albo typu 0) nazywamy uporządkowaną czwórkę G= gdzie: % Σ - skończony alfabet symboli końcowych (alfabet, nad którym

Bardziej szczegółowo

Turing i jego maszyny

Turing i jego maszyny Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan

Bardziej szczegółowo

złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa

złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa Zadanie 1. Rozważmy jezyk złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa równe. Narysować diagram minimalnego automatu deterministycznego akceptujacego

Bardziej szczegółowo

Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd. Włodzimierz Bielecki WI ZUT

Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd. Włodzimierz Bielecki WI ZUT Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd Analiza Syntaktyczna Wstęp Parser dostaje na wejściu ciąg tokenów od analizatora leksykalnego i sprawdza: czy ciąg ten może być generowany przez gramatykę.

Bardziej szczegółowo

Elementy Teorii Obliczeń

Elementy Teorii Obliczeń Wykład 2 Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 10 stycznia 2009 Maszyna Turinga uwagi wstępne Maszyna Turinga (1936 r.) to jedno z najpiękniejszych i najbardziej intrygujacych

Bardziej szczegółowo

AUTOMATY SKOŃCZONE. Automat skończony przedstawiamy formalnie jako uporządkowaną piątkę:

AUTOMATY SKOŃCZONE. Automat skończony przedstawiamy formalnie jako uporządkowaną piątkę: AUTOMATY SKOŃCZONE DETERMINISTYCZNY AUTOMAT SKOŃCZONY - DAS Automat skończony jest modelem matematycznym systemu o dyskretnych wejściach i wyjściach. System taki w danej chwili może znajdować się w jednym

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 5

Języki formalne i automaty Ćwiczenia 5 Języki formalne i automaty Ćwiczenia 5 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 L-systemy... 2 Grafika żółwia... 2 Bibliografia... 5 Zadania... 6 Zadania na 3.0... 6 Zadania

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Gramatyki bezkontekstowe I Gramatyką bezkontekstową

Bardziej szczegółowo

10110 =

10110 = 1. (6 punktów) Niedeterministyczny automat skończony nazwiemy jednoznacznym, jeśli dla każdego akceptowanego słowa istnieje dokładnie jeden bieg akceptujący. Napisać algorytm sprawdzający, czy niedeterministyczny

Bardziej szczegółowo

JAO - Języki, Automaty i Obliczenia - Wykład 2. JAO - Języki, Automaty i Obliczenia - Wykład 2

JAO - Języki, Automaty i Obliczenia - Wykład 2. JAO - Języki, Automaty i Obliczenia - Wykład 2 Dowodzenie nieregularności języka [lemat o pompowaniu] Jeśli L regularny to istnieje stała c spełniająca : jeżeli z L, z c to istnieje dekompozycja w = u v x tak, że uv i x L dla każdego i 0 [lemat o skończonej

Bardziej szczegółowo

Symbol, alfabet, łańcuch

Symbol, alfabet, łańcuch Łańcuchy i zbiory łańcuchów Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Symbol, alfabet, łańcuch Symbol Symbol jest to pojęcie niedefiniowane (synonimy: znak, litera)

Bardziej szczegółowo

Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych

Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych Opracował: dr inż. Zbigniew Buchalski KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów

Bardziej szczegółowo

1. Maszyna Turinga, gramatyki formalne i ONP

1. Maszyna Turinga, gramatyki formalne i ONP 1. Maszyna uringa, gramatyki formalne i OP 1.1.Maszyna uringa Automat skończony składa się ze skończonego zbioru stanów i zbioru przejść ze stanu do stanu, zachodzących przy różnych symbolach wejściowych

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 9: Własności języków bezkontekstowych Sławomir Lasota Uniwersytet Warszawski 27 kwietnia 2016 Plan 1 Pompowanie języków bezkontekstowych 2 Własności domknięcia 3 Obrazy

Bardziej szczegółowo

(j, k) jeśli k j w przeciwnym przypadku.

(j, k) jeśli k j w przeciwnym przypadku. Zadanie 1. (6 punktów) Rozważmy język słów nad alfabetem {1, 2, 3}, w których podciąg z pozycji parzystych i podciąg z pozycji nieparzystych są oba niemalejące. Na przykład 121333 należy do języka, a 2111

Bardziej szczegółowo

ZADANIA Z AUTOMATU SKOŃCZONEGO SPRAWOZDANIE NR 4

ZADANIA Z AUTOMATU SKOŃCZONEGO SPRAWOZDANIE NR 4 ZADANIA Z AUTOMATU SKOŃCZONEGO SPRAWOZDANIE NR 4 Dla każdego zadania określić: graf przejść tablicę stanów automatu skończonego akceptującego określoną klasę słów podać dwa przykłady ilustrujące parę AS

Bardziej szczegółowo

JAO - Wprowadzenie do Gramatyk bezkontekstowych

JAO - Wprowadzenie do Gramatyk bezkontekstowych JAO - Wprowadzenie do Gramatyk bezkontekstowych Definicja gramatyki bezkontekstowej Podstawowymi narzędziami abstrakcyjnymi do opisu języków formalnych są gramatyki i automaty. Gramatyka bezkontekstowa

Bardziej szczegółowo

Wyrażenia regularne.

Wyrażenia regularne. Teoretyczne podstawy informatyki Wykład : Wyrażenia regularne. Prof. dr hab. Elżbieta Richter-Wąs.2.202 Wyrażenia regularne Wyrażenia regularne (ang. regular expressions) stanowią algebraiczny sposób definiowania

Bardziej szczegółowo

Wprowadzenie do maszyny Turinga

Wprowadzenie do maszyny Turinga Wprowadzenie do maszyny Turinga Deterministyczna Maszyna Turinga (DTM) jest pewną klasą abstrakcyjnych modeli obliczeń. W tej instrukcji omówimy konkretną maszynę Turinga, którą będziemy zajmować się podczas

Bardziej szczegółowo

R O Z D Z I A Ł V I I

R O Z D Z I A Ł V I I R O Z D Z I A Ł V I I 1. Podstawowe definicje RozwaŜane w poprzednim rozdziale automaty Rabina-Scotta były urządzeniami o bardzo ograniczonej zdolności przechowywania informacji. Rzeczywista pojemność

Bardziej szczegółowo

Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia)

Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia) Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia) Kamil Matuszewski 20 lutego 2017 22 lutego 2017 Zadania, które

Bardziej szczegółowo

Języki regularne, rozpoznawanie wzorców regularnych, automaty skończone, wyrażenia regularne

Języki regularne, rozpoznawanie wzorców regularnych, automaty skończone, wyrażenia regularne Języki regularne, rozpoznawanie wzorców regularnych, automaty skończone, wyrażenia regularne Automat skończony (AS), ang. Finite Automaton (FA) Automat skończony (automat czytający, maszyna Rabina-Scotta)

Bardziej szczegółowo

Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty. Literatura

Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty. Literatura Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty Dr inŝ. Janusz Majewski Katedra Informatyki Literatura Aho A. V., Sethi R., Ullman J. D.: Compilers. Principles, Techniques

Bardziej szczegółowo

Gramatyka operatorowa

Gramatyka operatorowa Gramatyki z pierwszeństwem operatorów Teoria kompilacji Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka operatorowa Definicja: G = G BK jest gramatyką operatorową (i) (ii) G jest gramatyką

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 12: Gramatyki i inne modele równoważne maszynom Turinga. Wstęp do złożoności obliczeniowej Sławomir Lasota Uniwersytet Warszawski 20 maja 2015 Plan 1 Gramatyki 2 Języki

Bardziej szczegółowo

0.1 Lewostronna rekurencja

0.1 Lewostronna rekurencja 0.1 Lewostronna rekurencja Sprawdź czy poniższa gramatyka E jest zgodna z LL(1), tzn. czy umożliwia przeprowadzenie analizy bez powrotu z wyprzedzeniem o jeden symbol. Wyjaśnienie pojęcia LL(1): Pierwsze

Bardziej szczegółowo

1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie

1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Metody Kompilacji Wykład 7 Analiza Syntaktyczna

Metody Kompilacji Wykład 7 Analiza Syntaktyczna Metody Kompilacji Wykład 7 Analiza Syntaktyczna Parsowanie Parsowanie jest to proces określenia jak ciąg terminali może być generowany przez gramatykę. Włodzimierz Bielecki WI ZUT 2/57 Parsowanie Dla każdej

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 10: Opis wzorców - wyrażenia regularne. http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Wyrażenia regularne Wyrażenia

Bardziej szczegółowo

3.4. Przekształcenia gramatyk bezkontekstowych

3.4. Przekształcenia gramatyk bezkontekstowych 3.4. Przekształcenia gramatyk bezkontekstowych Definicje Niech będzie dana gramatyka bezkontekstowa G = G BK Symbol X (N T) nazywamy nieużytecznym w G G BK jeśli nie można w tej gramatyce

Bardziej szczegółowo

Algorytmy stochastyczne, wykład 05 Systemy Liendenmayera, modelowanie roślin

Algorytmy stochastyczne, wykład 05 Systemy Liendenmayera, modelowanie roślin Algorytmy stochastyczne, wykład 5, modelowanie roślin Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 214-3-2 1 2 3 ze stosem Przypomnienie gramatyka to system (Σ, A, s,

Bardziej szczegółowo

Gramatyki rekursywne

Gramatyki rekursywne Gramatyki bezkontekstowe, rozbiór gramatyczny eoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyki rekursywne Niech będzie dana gramatyka bezkontekstowa G =

Bardziej szczegółowo

Niestandardowe modele obliczeń

Niestandardowe modele obliczeń Niestandardowe modele obliczeń Zadania kwalifikacyjne Adam Michalik 11 czerwca 2014 1 Uwagi ogólne Do kwalifikacji należy rozwiązać wszystkie zadania o maszynach Turinga, oraz kilka zadań matematycznych

Bardziej szczegółowo

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW NIEDETERMINISTYCZNE MASZYNY TURINGA Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 NIEDETERMINISTYCZNE MASZYNY TURINGA DEFINICJA: NIEDETERMINISTYCZNA

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji www.math.uni.lodz.pl/ radmat Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Lista 5 Gramatyki bezkontekstowe i automaty ze stosem

Lista 5 Gramatyki bezkontekstowe i automaty ze stosem Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Teoretyczne Podstawy Informatyki Lista 5 Gramatyki bezkontekstowe i automaty ze stosem 1 Wprowadzenie 1.1 Gramatyka bezkontekstowa

Bardziej szczegółowo

Efektywność Procedur Obliczeniowych. wykład 5

Efektywność Procedur Obliczeniowych. wykład 5 Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie

Bardziej szczegółowo

Wykład 5. Jan Pustelnik

Wykład 5. Jan Pustelnik Wykład 5 Jan Pustelnik Konstruowanie parsera Istnieje kilka podstawowych metod konstrukcji parsera bez nawracania Ze względów wydajnościowych parser bez nawracania jest jedynym sensownym rozwiązaniem (prawo

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 10b: Wzorce i automaty. http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2009/tpi-2009 Prof. dr hab. Elżbieta Richter-Wąs 1 Wzorce i automaty Problematyka wzorców

Bardziej szczegółowo

Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka

Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka Języki i operacje na językach Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Definicja języka Definicja języka Niech Σ będzie alfabetem, Σ* - zbiorem wszystkich łańcuchów

Bardziej szczegółowo

Analiza leksykalna 1. Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki

Analiza leksykalna 1. Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki Analiza leksykalna 1 Teoria kompilacji Dr inż. Janusz Majewski Katedra Informatyki Zadanie analizy leksykalnej Kod źródłowy (ciąg znaków) Analizator leksykalny SKANER Ciąg symboli leksykalnych (tokenów)

Bardziej szczegółowo

Zadanie analizy leksykalnej

Zadanie analizy leksykalnej Analiza leksykalna 1 Teoria kompilacji Dr inŝ. Janusz Majewski Katedra Informatyki Zadanie analizy leksykalnej Przykład: We: COST := ( PRICE + TAX ) * 0.98 Wy: id 1 := ( id 2 + id 3 ) * num 4 Tablica symboli:

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 11: Obliczalność i nieobliczalność Sławomir Lasota Uniwersytet Warszawski 6 maja 2015 Plan 1 Problemy częściowo rozstrzygalne 2 Problemy rozstrzygalne 3 Funkcje (częściowo)

Bardziej szczegółowo

Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski

Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /

Bardziej szczegółowo

Programowanie w Logice Gramatyki metamorficzne. Przemysław Kobylański na podstawie [CM2003] i [SS1994]

Programowanie w Logice Gramatyki metamorficzne. Przemysław Kobylański na podstawie [CM2003] i [SS1994] Programowanie w Logice Gramatyki metamorficzne Przemysław Kobylański na podstawie [CM2003] i [SS1994] Gramatyki bezkontekstowe Gramatyką bezkontekstową jest uporządkowana czwórka G = Σ, N, S, P, gdzie

Bardziej szczegółowo

Odwrotna Notacja Polska

Odwrotna Notacja Polska Odwrotna Notacja Polska Odwrotna Notacja Polska w skrócie ONP) jest sposobem zapisu wyrażeń arytmetycznych. Znak wykonywanej operacji umieszczany jest po operandach, argumentach tzw. zapis postfiksowy).

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 04 Systemy Lindenmayera Jarosław Miszczak IITiS PAN Gliwice 19/10/2016 1 / 37 1 L-Systemy 2 GroIMP i XL ALife 2 / 37 L-Systemy L-systemy czyli systemy Lindenmayera.

Bardziej szczegółowo

Automaty Büchi ego i równoważne modele obliczeń

Automaty Büchi ego i równoważne modele obliczeń Politechnika Krakowska im. Tadeusza Kościuszki Wydział Fizyki, Matematyki i Informatyki Kierunek Matematyka Paulina Barbara Rozwód Automaty Büchi ego i równoważne modele obliczeń praca magisterska studia

Bardziej szczegółowo

Maszyna Turinga, ang. Turing Machine (TM)

Maszyna Turinga, ang. Turing Machine (TM) Maszyna Turinga, ang. Turing Machine (TM) Alan Turing wybitny angielski matematyk, logik i kryptolog, jeden z najważniejszych twórców informatyki teoretycznej, któremu zawdzięczamy pojęcie maszyny Turinga

Bardziej szczegółowo

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW RELACJE MIEDZY KLASAMI ZŁOŻONOŚCI Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 KLASY ZŁOŻONOŚCI KLASE ZŁOŻONOŚCI OPISUJE SIE PODAJAC: Model

Bardziej szczegółowo

Wprowadzenie do analizy składniowej. Bartosz Bogacki.

Wprowadzenie do analizy składniowej. Bartosz Bogacki. Wprowadzenie do analizy składniowej Bartosz Bogacki Bartosz.Bogacki@cs.put.poznan.pl Witam Państwa. Wykład, który za chwilę Państwo wysłuchają dotyczy wprowadzenia do analizy składniowej. Zapraszam serdecznie

Bardziej szczegółowo

TEORIA ZŁOŻONOŚCI PROBLEMY I ALGORYTMY OGRANICZENIE DOLNE I GÓRNE PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI

TEORIA ZŁOŻONOŚCI PROBLEMY I ALGORYTMY OGRANICZENIE DOLNE I GÓRNE PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI TEORIA ZŁOŻONOŚCI I MASZYNA TURINGA TEORIA ZŁOŻONOŚCI Teoria złożoności poszukuje rozwiązania dla problemów, które są algorytmicznie trudne do rozwiązania

Bardziej szczegółowo

Matematyczna wieża Babel. 3. Gramatyki o językach bezkontekstowych materiały do ćwiczeń

Matematyczna wieża Babel. 3. Gramatyki o językach bezkontekstowych materiały do ćwiczeń Matematyczna wieża Babel. 3. Gramatyki o językach bezkontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 21 marca 2019 1 Gramatyki! Gramatyka to taki przepis

Bardziej szczegółowo

Gramatyki regularne i automaty skoczone

Gramatyki regularne i automaty skoczone Gramatyki regularne i automaty skoczone Alfabet, jzyk, gramatyka - podstawowe pojcia Co to jest gramatyka regularna, co to jest automat skoczony? Gramatyka regularna Gramatyka bezkontekstowa Translacja

Bardziej szczegółowo

Efektywna analiza składniowa GBK

Efektywna analiza składniowa GBK TEORETYCZNE PODSTAWY INFORMATYKI Efektywna analiza składniowa GBK Rozbiór zdań i struktur zdaniowych jest w wielu przypadkach procesem bardzo skomplikowanym. Jego złożoność zależy od rodzaju reguł produkcji

Bardziej szczegółowo

Analizator syntaktyczny

Analizator syntaktyczny Analizator syntaktyczny program źródłowy analizator leksykalny token daj nast. token analizator syntaktyczny drzewo rozbioru syntaktycznego analizator semantyczny kod pośredni tablica symboli Analizator

Bardziej szczegółowo

Podstawy Informatyki Maszyna Turinga

Podstawy Informatyki Maszyna Turinga Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga 2 3 4 Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga,

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze.

Struktura danych. Sposób uporządkowania informacji w komputerze. Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk

Bardziej szczegółowo

Gramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ.

Gramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ. Gramatyki grafowe Def. Nieskierowany NL-graf (etykietowane wierzchołki) jest czwórką g = (V, E, Σ, ϕ), gdzie: V niepusty zbiór wierzchołków, E V V zbiór krawędzi, Σ - skończony, niepusty alfabet etykiet

Bardziej szczegółowo

GRAMATYKI BEZKONTEKSTOWE

GRAMATYKI BEZKONTEKSTOWE GRAMATYKI BEZKONTEKSTOWE PODSTAWOWE POJĘCIE GRAMATYK Przez gramatykę rozumie się pewien układ reguł zadający zbiór słów utworzonych z symboli języka. Słowa te mogą być i interpretowane jako obiekty językowe

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo

Odmiany maszyny Turinga. dr hab. inż. Joanna Józefowska, prof. PP 1

Odmiany maszyny Turinga. dr hab. inż. Joanna Józefowska, prof. PP 1 Odmiany maszyny Turinga 1 Uniwersalna maszyna Turinga Uniwersalna maszyna U nad alfabetem A k jest to maszyna definiująca funkcje: f U, n+1 = {((w(i 1, I 2,..., I n )),y) w - opis maszyny T za pomocą słowa,

Bardziej szczegółowo

Definiowanie języka przez wyrażenie regularne(wr)

Definiowanie języka przez wyrażenie regularne(wr) Wykład3,str1 Definiowanie języka przez wyrażenie regularne(wr) DEFINICJA: (wyrażenia regularne) M(specjalneznakinienależącedoalfabetu:{,},, ) literyalfabetusąwr złożeniawrsąwr: jeśliw 1 iw 2 sąwr,to{w

Bardziej szczegółowo

JĘZYKIFORMALNE IMETODYKOMPILACJI

JĘZYKIFORMALNE IMETODYKOMPILACJI Stefan Sokołowski JĘZYKIFORMALNE IMETODYKOMPILACJI Inst. Informatyki Stosowanej, PWSZ Elbląg, 2009/2010 JĘZYKI FORMALNE reguły gry Wykład1,2X2009,str.1 Zasadnicze informacje: http://iis.pwsz.elblag.pl/

Bardziej szczegółowo

Teoria układów logicznych

Teoria układów logicznych Automat Moore a Automatem Moore a nazywamy uporządkowaną piątkę ( Q, X,,, ) gdzie Q jest skończonym zbiorem niepustym, nazwanym zbiorem stanów automatu, X jest skończonym zbiorem niepustym, nazwanym alfabetem

Bardziej szczegółowo

ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2

ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2 ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2 1. Twierdzenie Sipsera: Dla dowolnej maszyny M działającej w pamięci S(n) istnieje maszyna M taka, że: L(M) = L(M ), M działa w pamięci S(n), M ma własność stopu. Dowód:

Bardziej szczegółowo

Metody Kompilacji Wykład 3

Metody Kompilacji Wykład 3 Metody Kompilacji Wykład 3 odbywa się poprzez dołączenie zasad(reguł) lub fragmentów kodu do produkcji w gramatyce. Włodzimierz Bielecki WI ZUT 2 Na przykład, dla produkcji expr -> expr 1 + term możemy

Bardziej szczegółowo

10. Translacja sterowana składnią i YACC

10. Translacja sterowana składnią i YACC 10. Translacja sterowana składnią i YACC 10.1 Charakterystyka problemu translacja sterowana składnią jest metodą generacji przetworników tekstu języków, których składnię opisano za pomocą gramatyki (bezkontekstowej)

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja

Bardziej szczegółowo

JĘZYKI FORMALNE I METODY KOMPILACJI

JĘZYKI FORMALNE I METODY KOMPILACJI Stefan Sokołowski JĘZYKI FORMALNE I METODY KOMPILACJI Inst Informatyki Stosowanej, PWSZ Elbląg, 2015/2016 JĘZYKI FORMALNE reguły gry Wykład1,str1 Zasadnicze informacje: http://iispwszelblagpl/ stefan/dydaktyka/jezform

Bardziej szczegółowo