7. MODELE LUKI KRYTYCZNEJ I AKCEPTOWALNEJ
|
|
- Marek Orzechowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Modele luki krytyznej i akeptowalnej MODELE LUKI KRYYCZNEJ I AKCEPOWALNEJ 7.. Przypomnienie o różniah w obrazie statystyznym ruhu samohodowego i kolejowego Lata 9. w Polse są okresem przejśiowym z systemu komunistyznego, w którym na Śląsku wykształiła się speyfizna infrastruktura transportowa, przystosowana do wielkiego wydobyia węgla i pohodnyh dziedzin gospodarzyh, a wię hutnitwa i energetyki węglowej. Dziedziny te jak to stało się w Wielkiej Brytanii, Franji i Niemzeh są likwidowane, jako nieefektywne i zastępowane energetyką jądrową oraz gazową. Do tego obrazu znanego naszym zahodnim sąsiadom, należy dodać niski poziom motoryzaji indywidualnej, który w ostatnih latah gwałtownie wzrasta przy nieprzygotowanej infrastrukturze drogowej. Z drugiej strony, obok bardzo przeiążonej siei dróg samohodowyh, mamy dużą, niewykorzystaną sieć kolejową, która jednak nie ma odpowiednih parametrów tehniznyh, takih jak u naszyh zahodnih sąsiadów. Przeiążone ruhem samohodowym entra miast są zazwyzaj zakorkowane, powodują w ostatnih latah wydłużenie zasu podróży. W miastah już przeiążonyh ruhem transportowym opraowuje się projekty nadająe pierwszeństwo ruhowi zbiorowemu. Stan obeny w końu zostanie przekształony, tak jak u zahodnih sąsiadów, na ałkowite wyłązenia entrów miast dla indywidualnego ruhu pojazdów, jak proponuje Woh (998f). Obserwaje statystyzne odstępów potoków ruhu kolejowego dotyzą na ogół nie zatłozonyh miejs w siei kolejowej, a wię na ogół otrzymuje się przesunięte rozkłady wykładnize, harakterystyzne dla rzadkih potoków ruhu. Natomiast zatłozone drogi samohodowe mają na ogół rozkłady Erlanga wysokiego rzędu, jako efekt sumowania się wielu składników zasu zekania w koleje. Wynika to ze znanej w teorii własnośi rozkładów Erlanga, będąyh w istoie rzezy sumą wielu wykładnizyh strat zasu - zasów zekania.
2 84 Modele luki krytyznej i akeptowalnej 7 Największe różnie są w miejsah ozekiwania, tj. w miejsah tworzenia się kolejek, gdzie sumują się wpływy dużej lizby zasów zekania, a wię wzrasta rząd rozkładu Erlanga opisująego odstęp między pojazdami, jako modelu sumy dużej lizby niezależnyh wykładnizyh zasów zekania. f x x Rys. 7.. Przesunięty rozkład wykładnizy jako model odstępu rzadkiego potoku ruhu f x x Rys. 7.. Przesunięty rozkład Erlanga jako model odstępu gęstego potoku ruhu
3 Modele luki krytyznej i akeptowalnej 7 85 ab.7.. ablia oblizeń wyników obserwaji odstępów zasu w potoku pieszyh whodząyh do sklepu Odstęp w s Lizba obserwaji Oblizenia statystyzne x i i x i i x i i. -.5 x * sek s * sek na podstawie histogramu można postawić hipotezę o przesuniętym rozkładzie wykładnizym i x i Rys.7.3. Histogram odstępu potoku ruhu pieszyh whodząyh do sklepu
4 86 Modele luki krytyznej i akeptowalnej 7 ab. 7.. Pojęia podstawowe modelu akeptowalnej luki podzas włązania się do potoku głównego 3 pas ruhu jednokierunkowego potoku włązanie do potoku głównego (rys. 9. z Drew, 968) pas przyśpieszeń odstęp zasu - rysunek dystans drogi - rysunek luka - rysunek odstęp resztowy - rysunek strata (zas zekania) - rysunek opóźnienie a strata zasu zekania - rysunek pas przyśpieszeń (rampa) dystans odrzuony odstęp resztowy poza r. na rampie A Luka akept. 4 droga ekspr. droga dojazdowa Strata poj. 3 Strata poj. 4 Wykres ruhu w zas A Rys. 7.4 Związki drogowo-zasowe na drodze ekspresowej podzas manewrów włązania wg Drew (968, Rys.9., 95). ab. 7.. Statystyka akeptowalnyh i odrzuonyh luk podzas włązania się do potoku głównego na odinku przyśpieszeń wg Drew (968)
5 Modele luki krytyznej i akeptowalnej 7 87 długość luki w sek zatrzymane pojazdy w ruhu pojazdy akeptująe odrzuająe akept. odrzu. luki < t luki > t luki < t luki >t a3 6 a5 b6 d7 b3 d wszystkie pojazdy akept. odrzu. luki < t luki > t a4 5 b4 d ( a) dt luka krytyzna t + (7.) ( b + ) ( a + d) ( zatrzymane ) 3. ( w' ruhu). 5 ( wszystkie ). 8
6 88 Modele luki krytyznej i akeptowalnej 7 Lizba luk 5 Lizba odrzuonyh luk Krytyzna luka,8 s Lizba akeptowanyh luk Długość luki t Rys Wykres akeptowanyh i odrzuonyh luk dla wszystkih pojazdów badanego odinka włązeń do potoku głównego wg Drew (968, Rys. 9.3, 79). 7.. Rząd rozkładu Erlanga jako wskaźnik równomiernośi potoku ruhu Wskaźnik równomiernośi dla przesuniętego rozkładu Erlanga: w E ( X ). (7.) W ruhu samohodowym, im większy jest stopień wykorzystania drogi, tym większy jest stopień równomiernośi potoku. Wniosek ten można uogólnić na wszystkie potoki ruhu transportowego.
7 Modele luki krytyznej i akeptowalnej Związek między rozkładem Poissona a wykładnizym oraz Erlanga Strumień Poissona to proes stohastyzny, w którym lizba zgłoszeń w ustalonym przedziale zasu t ma rozkład Poissona: P P( X k ) k k e λt ( λt) k! k, k,,... (7.3) a odstęp między kolejnymi zgłoszeniami ma rozkład wykładnizy o funkji gęstośi: f ( x) λe λ x, (7.4) natomiast odstęp między o drugim pojazdem ma rozkład Erlanga rzędu - E, między o trzeim pojazdem - rzędu 3 - E 3 i tak dalej, to znazy, że rząd rozkładu Erlanga opisuje lizbę niezależnyh składników wykładnizyh, które złożyły się na dany odstęp, jak niżej. Odstęp o rozkładzie E 3 Odstęp o r. E Odstęp o r. E 4 3 Strumień Poissona pojazdów t zas Rozkład E a wię wykładnizy Lizba zgłoszeń w ustalonym przedziale ma r. Poissona! Potoki ruhu transportowego nie są strumieniami Poissona, ponieważ zmienność jest ogranizona tendenją do utrzymywania bezpieznyh odstępów, a wię w przypadkah dużego ruhu, jest to tendenja do wyrównywania odstępów.
8 9 Modele luki krytyznej i akeptowalnej Rozkład luki krytyznej Wiadomo, że rozkład luki krytyznej nie może być wykładnizy. W literaturze (patrz np. Drew, 968, rys. 9.6, 89) podaje się ztery poniższe rozkłady tej luki. Rozkład równomierny Przesunięty wykładnizy Erlanga f f e a a f ( a )!. (7.5) ( ) ( ) a e. (7.6) a. (7.7) Logarytmo-normalny f s e π ln ln s. (7.8)
9 Modele luki krytyznej i akeptowalnej 7 9 f Rozkład równomierny zęstośi luki krytyznej f f Przesunięty rozkład wykładnizy zęstośi krytyznej luki f e f Rozkład Erlanga zęstośi luki krytyznej a f ( a )! a a e a f Logarytmo-normalny rozkład zęstośi luki krytyznej ( ln ln ) e π f s s Rys Reprezentatywne formy rozkładów luki krytyznej wg Drew (968, Rys. 9.6, 89)
10 9 Modele luki krytyznej i akeptowalnej Inne modele wyboru luki dopuszzalnej Model odstępu krytyznego, w którym każdy ozekująy na włązenie oenia zy dana luka jest większa zy mniejsza od z góry ustalonego jest mono krytykowana, jak podaje Drew (968). Bardziej realistyzny model, to założenie, że każdy kierowa ma ustaloną funkję prawdopodobieństwo akeptaji P() określająą akeptaję luki o długośi, (patrz Drew, 968, rys. 9.6, 89). P Funkja trapezoidalna prawd. akeptaji luki krytyznej P P( ) Przesunięta wykładniza funkja prawd. akeptaji luki ( ) ( ) P e, > P P Funkja Erlanga prawdopodobieństwa akeptaji luki krytyznej a a, wykladniza a a, stala P ( a ) ( a ) Funkja Logarytmo-normalna prawdopodobieństwa akeptaji luki krytyznej a a ay! y e dy ( ln ln ) π P s y e y s dy Rys Różne funkje prawdopodobieństwa akeptaji luki wg Drew (968, Rys. 9.7, 9)
11 Modele luki krytyznej i akeptowalnej 7 93 Funkja trapezoidalna ( ) P ( ) dla < <. (7.9) Przesunięta wykładniza P e dla >. (7.) a a Funkja Erlanga P ( a )! ay a y e dy. (7.) Funkja logarytmo-normalna P s π (7.) e ln yln s y dy. Widać związki między powyższymi funkjami a gęstośią prawdopodobieństwa odstępu krytyznego - są to odpowiednie dystrybuanty. Dwie skrajne: najłatwiejsza oraz najtrudniejsza, w środku - najwłaśiwsza.
12 94 Modele luki krytyznej i akeptowalnej 7 Problemy rozdziału 7. Modele probabilistyzne odstępów rzadkih potoków ruhu.. Modele probabilistyzne odstępów gęstyh potoków ruhu. 3. Gdzie powstają odstępy o złożonym obrazie statystyznym? 4. Czy w dzisiejszym ruhu kolejowym powstają duże zakłóenia? 5. Czy odstęp potoku pieszyh whodząyh do sklepu może mieć przesunięty rozkład wykładnizy? 6. Wyjaśnić pojęie luki akeptowalnej. 7. Wyjaśnić pojęie odstępu resztowego. 8. Wyjaśnić pojęie straty (zasu zekania) podzas włązania do ruhu drogi ekspresowej. 9. Wyjaśnić różnię między pojęiem straty (zasu zekania) a opóźnienia w modelah ruhu.. Podać wzór na lukę krytyzną.. Narysować wykresy wyznazająe lukę krytyzną.. Dlazego krytykowane są modele luki krytyznej? 3. Czym różnią się modele luki krytyznej i funkji akeptaji luki? 4. Wskaźnik równomiernośi przesuniętego rozkładu Erlanga. 5. Strumień Poissona a rozkład Poissona. 6. Strumień Poissona a rozkład wykładnizy. 7. Strumień Poissona a rozkład Erlanga. 8. Strumień Poissona a rozkład równomierny. 9. Modele luki krytyznej a luki akeptowalnej.. Jaki model luki krytyznej jest najlepszy?. Jaki model luki akeptowalnej jest najlepszy?
4. ZNACZENIE ROZKŁADU WYKŁADNICZEGO
Znaczenie rozkładu wykładniczego 4 51 4. ZNACZENIE ROZKŁADU WYKŁADNICZEGO 4.1. Rozkład wykładniczy Zmienna losowa X ma rozkład wykładniczy, jeżeli funkcja gęstości prawdopodobieństwa f ( x) = λe λx x 0,
Janusz Woch Instytut Transportu Politechniki Śląskiej w Katowicach. Statystyka procesów transportowych
Janusz Woch Instytut Transportu Politechniki Śląskiej w Katowicach Statystyka procesów transportowych Katowice maj 2000 Wstęp 2 SPIS TREŚCI 2 WSTĘP 4 1. Zakres Statystyki Procesów Transportowych 13 1.1
Przykłady do zadania 6.1 :
Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 28/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 6: Zmienna losowa. Rozkład zmiennej losowej. Dystrybuanta. Przykłady
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski
Funkcje charakteryzujące proces eksploatacji Dr inż. Robert Jakubowski Niezawodność Niezawodność Rprawdopodobieństwo, że w przedziale czasu od do t cechy funkcjonalne statku powietrznego Ubędą się mieścić
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 3(89)/2012
ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 3(89)/2012 Jarosław Zalewski 1 PORÓWNANIE NIEKTÓRYCH WSKAŹNIKÓW WYPADKÓW DROGOWYCH W POLSCE I WYBRANYCH KRAJACH EUROPEJSKICH 1. Wstęp W artykule poruszono wybrane problemy
WPROWADZENIE DO BUDOWNICTWA KOMUNIKACYJNEGO WYKŁAD 1
WPROWADZENIE DO BUDOWNICTWA KOMUNIKACYJNEGO WYKŁAD 1 WERSJA 2005 ZAKRES WYKŁADU: 1. DROGOWNICTWO 2. RUCH DROGOWY 3. KOMUNIKACJA ZBIOROWA 4. PIESI I ROWERZYŚCI 5. STEROWANIE RUCHEM Wprowadzenie do Budownictwa
FUNKCJA KWADRATOWA. Poziom podstawowy
FUNKCJA KWADRATOWA Poziom podstawowy Zadanie ( pkt) Wykres funkji y = ax + bx+ przehodzi przez punkty: A = (, ), B= (, ), C = (,) a) Wyznaz współzynniki a, b, (6 pkt) b) Zapisz wzór funkji w postai kanoniznej
Statystyka opisowa- cd.
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa- cd. Wykład 4 Dr inż. Adam Deptuła HISTOGRAM UNORMOWANY Pole słupka = wysokość słupka x długość przedziału Pole słupka = n i n h h,
Rachunek Prawdopodobieństwa Anna Janicka
Rachunek Prawdopodobieństwa Anna Janicka wykład XIV, 24.01.2017 ŁAŃCUCHYMARKOWA CD. KRÓTKIE INFO O RÓŻNYCH WAŻNYCH ROZKŁADACH Plan na dzisiaj Łańcuchy Markowa cd. Różne ważne rozkłady prawdopodobieństwa,
Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.
Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
Analiza regresji - weryfikacja założeń
Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3
ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)
STATYSTYKA MAŁYCH OBSZARÓW II.ESTYMATOR HORVITZA-THOMPSONA, ESTYMATOR KALIBROWANY
STATYSTYKA MAŁYCH OBSZARÓW II.ESTYMATOR HORVITZA-THOMPSONA, ESTYMATOR KALIBROWANY 2.1 Estymator Horvitza-Thompsona 2.1.1 Estymator Horvitza-Thompsona wartości średniej i globalnej w populacji p-nieobciążony
METODA PERT. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA PERT Maciej Patan Programowanie sieciowe. Metoda PERT 1 WPROWADZENIE PERT (ang. Program Evaluation and Review Technique) Metoda należy do sieci o strukturze logicznej zdeterminowanej Parametry opisujace
ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich
ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI Postulaty Einsteina (95 r) I Zasada względnośi: Wszystkie prawa przyrody są takie same we wszystkih inerjalnyh układah odniesienia lub : Równania wyrażająe prawa
Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy
Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5
Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji
Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie
Temat wykładu: Całka nieoznaczona. Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy
Temat wykładu: Całka nieoznazona Kody kolorów: żółty nowe pojęie pomarańzowy uwaga kursywa komentarz * materiał nadobowiązkowy A n n a R a j f u r a, M a t e m a t y k a Zagadnienia. Terminologia i oznazenia.
1 Elementy teorii przeżywalności
1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek
Skrypt 18. Trygonometria
Projekt Innowayjny program nauzania matematyki dla lieów ogólnokształąyh współfinansowany ze środków Unii Europejskiej w ramah Europejskiego Funduszu Społeznego Skrypt 18 Trygonometria 1. Definije i wartośi
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność
N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:
Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )
I.2 Promieniowanie Ciała Doskonale Czarnego
I. Promieniowanie Ciała Doskonale Czarnego Jan Królikowski Fizyka IVBC 1 CIAŁO DOSKONALE CZARNE (CDCz) CDCz jest to takie iało, którego zdolność absorpyjna a(, T) nie zależy od długośi fali i wynosi 100%.
Jednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Dla powstania pola magnetycznego konieczny jest ruch ładunków elektrycznych, a więc przepływ prądu elektrycznego, natomiast pole elektryczne powstaje
Pole elektryzne Dla powstania pola magnetyznego koniezny jest ruh ładunków elektryznyh, a wię przepływ prądu elektryznego, natomiast pole elektryzne powstaje zawsze w przestrzeni otazająej ładunki elektryzne,
Równanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią.
Krzywe stożkowe 1 Powinowatwo prostokątne Nieh l będzie ustaloną prostą i k ustaloną lizbą dodatnią. Definija 1.1. Powinowatwem prostokątnym o osi l i stosunku k nazywamy przekształenie płaszzyzny, które
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
USTAWA 16 kwietnia 2004 r. o czasie pracy kierowców 1)
Typ/organ wydająy Ustawa/Sejm RP Tytuł o zasie pray kierowów Skróony opis zas pray kierowów Data wydania 16 kwietnia 2004 r. Data ogłoszenia 30 kwietnia 2004 r./dz. U. Nr 92, poz. 879 Data obowiązywania/wejśia
Zmienne losowe zadania na sprawdzian
Zmienne losowe zadania na sprawdzian Zad. 1. Podane poniżej dane dotyczą zawartości suchej masy (w %) i sosu (w %) w 24 konserwach ze śledzia w pomidorach: Zawartość suchej masy: 12,0 13,0 14,5 14,0 12,0
4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI
4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI Na wielkość depresji zwieriadła wody w pompowanej studni wpływ mają zjawiska hydraulizne wywołane przepływem laminarnym, występująym w ujętej warstwie wodonośnej
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Drogi i ulice. Materiały do projektowania
Drogi i ulie Materiały do projektowania Nr Lizba pojazdów (%/d) tematu lekkie iężarowe z SDR motoykle osobowe iężarowe maszyny iężarowe przyzepą (poj./d) 1.0 7 15 28 25 20 5 1568 1.1 8 15 23 25 27 2 1890
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
MATEMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY W ROKU SZKOLNYM 06/07 FORMUŁA OD 05 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 07 Kluz punktowania zadań zamkniętyh Numer zadania
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu
Inżynieria bioreaktorów - Rozkład czasu przybywania w reaktorach (2018/2019)
Inżynieria bioreaktorów - Rozkład zasu przybywania w reaktorah (218/219) CEL Wyznazenie rzezywistego rozkładu zasu przebywania w reaktorze mieszalnikowym metodą skokową i w dwóh reaktorah rurowyh metodą
Dyskretne zmienne losowe
Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która
Rozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16)
Rozkład zajęć, statystyka matematyczna, Rok akademicki 05/6, semestr letni, Grupy powtarzających (C5; C6) Lp Grupa C5 Grupa C6 Liczba godzin 0046 w godz 600-000 C03 0046 w godz 600-000 B05 4 6046 w godz
Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014
Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Na podstawie dokonanych obserwacji:
PODSTAWOWE PROBLEMY STATYSTYKI MATEMATYCZNEJ Niech mamy próbkę X 1,..., X n oraz przestrzeń prób X n, i niech {X i } to niezależne zmienne losowe o tym samym rozkładzie P θ P. Na podstawie obserwacji chcemy
Rodzaje zadań w nauczaniu fizyki
Jan Tomczak Rodzaje zadań w nauczaniu fizyki Typologia zadań pisemnych wg. prof. B. Niemierki obejmuje 2 rodzaje, 6 form oraz 15 typów zadań. Rodzaj: Forma: Typ: Otwarte Rozszerzonej odpowiedzi - czynności
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może
Podziałka liniowa czy logarytmiczna?
Podziałka liniowa czy logarytmiczna? Bardzo często do graficznego przedstawienia pewnych zależności odpowiednie jest użycie podziałki liniowej na osi x i osi y wykonywanego wykresu. Są jednak przypadki,
Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3
Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych
Zachowania odbiorców. Grupa taryfowa G
Zachowania odbiorców. Grupa taryfowa G Autor: Jarosław Tomczykowski Biuro PTPiREE ( Energia elektryczna luty 2013) Jednym z założeń wprowadzania smart meteringu jest optymalizacja zużycia energii elektrycznej,
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności
W3 - Niezawodność elementu nienaprawialnego
W3 - Niezawodność elementu nienaprawialnego Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Niezawodność elementu nienaprawialnego 1. Model niezawodności elementu nienaprawialnego
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 25 LUTEGO 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 15! jest podzielna
Excel: niektóre rozkłady ciągłe (1)
MS Ecel niektóre rozkłady ciągłe (1) Ecel: niektóre rozkłady ciągłe (1) 1. ROZKŁAD.BETA (tylko dystrybuanta)...1 2. ROZKŁAD.BETA.ODW (kwantyl w rozkładzie beta)...3 3. ROZKŁAD.LIN.GAMMA (to nie jest żaden
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
MATEMATYKA II. znaleźć f(g(x)) i g(f(x)).
MATEMATYKA II PAWEŁ ZAPAŁOWSKI Równania i nierówności Zadanie Wyznaczyć dziedziny i wzory dla f f, f g, g f, g g, gdzie () f() =, g() =, () f() = 3 + 4, g() = Zadanie Dla f() = 3 5 i g() = 8 znaleźć f(g()),
18. Obliczyć. 9. Obliczyć iloczyn macierzy i. 10. Transponować macierz. 11. Transponować macierz. A następnie podać wymiar powstałej macierzy.
1 Czy iloczyn macierzy, które nie są kwadratowe może być macierzą kwadratową? Podaj przykład 2 Czy każde dwie macierze jednostkowe są równe? Podaj przykład 3 Czy mnożenie macierzy przez macierz jednostkową
= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2
64 III. Zienne losowe jednowyiarowe D Ponieważ D (A) < D (B), więc należy wybrać partię A. Przykład 3.4. Obliczyć wariancję rozkładu jednostajnego. Ponieważ a na podstawie zadania 6 po p. 3.6 wiey, że
Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X
Własności EX, D 2 X i DX przy przekształceniach liniowych Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X Przemnożenie wartości zmiennej losowej przez wartość stałą: Y=a*X
Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].
Zadania 1 28 stanowią przykłady spełniające kryteria na ocenę 3. Zadanie 1 Na rysunku przedstawiony jest wykres funkcji f() określonej dla [-7, 8]. Odczytaj z wykresu i zapisz: a) największą wartość funkcji
Rachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
6. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO
Różnce mędzy obserwacjam statystycznym ruchu kolejowego a samochodowego 7. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO.. Obserwacje odstępów mędzy kolejnym wjazdam na stację
Zmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
ANEMOMETRIA LASEROWA
1 Wstęp ANEMOMETRIA LASEROWA Anemometria laserowa pozwala na bezdotykowy pomiar prędkośi zastezek (elementów) rozpraszajayh światło Źródłem światła jest laser, którego wiazka jest dzielona się nadwiewiazki
Statystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34
Statystyka Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka 5 marca 2018 1 / 34 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: Baza Demografia : https://bdl.stat.gov.pl/
Deska Galtona. Adam Osękowski. Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski
a schemat Bernoulliego Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski XV Festiwal Nauki, 21 września 2011r. a schemat Bernoulliego Schemat Bernoulliego B(n, p)
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.
Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *
Sieć drogowo-uliczna Krakowa
II. TRANSPORT II-1 II.1. System transportowy Transport i komunikacja w Krakowie tworzą wieloelementowy system złożony z sieci drogowo-ulicznej wraz z parkingami, komunikacji zbiorowej tramwajowej i autobusowej,
Laboratorium Inżynierii bioreaktorów Ćwiczenie 2: Rozkład czasu przybywania w reaktorach przepływowych
EL Laboratorium Inżynierii bioreaktorów Ćwizenie 2: Rozkład zasu przybywania w reaktorah przepływowyh Wyznazenie rzezywistego rozkładu zasu przebywania w reaktorze mieszalnikowym metodą skokową oraz w
Matematyka ubezpieczeń majątkowych 1.10.2012 r.
Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna
Matematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku
Cieplne Maszyny Przepływowe. Temat 6 Przepływ przez sprężarki osiowe. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. 6.1.
73 6.. Wstęp W sprężarkah pole przepływu jednowymiarowego rośnie tj. (α > α ) o prowadzi do: - oderwania warstwy przyśiennej - wzrostu strat i redukji odhylenia strugi - redukją przyrostu iśnienia statyznego.
Podstawy symulacji komputerowej
Podstawy symulacji komputerowej Wykład 3 Generatory liczb losowych Wojciech Kordecki wojciech.kordecki@pwsz-legnica.eu Państwowa Wyższa Szkoła Zawodowa im. Witelona w Legnicy Wydział Nauk Technicznych
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Procedura wyznaczania niepewności pomiarowych
Proedura wyznazania niepewnośi poiarowyh -0 Zakład Elektrostatyki i Elektroterii Dr inŝ Dorota Nowak-Woźny Proedura wyznazania niepewnośi poiarowyh Wstęp KaŜdy poiar lub obserwaja obarzona jest pewną niepewnośią
Rozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Grafy Alberta-Barabasiego
Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest
1 Elementy teorii przeżywalności
1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek
Statystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39
Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/
Przedmiot statystyki. Graficzne przedstawienie danych.
Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych