Analiza zdolności procesu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza zdolności procesu"

Transkrypt

1 Analiza zdolności - przegląd Analiza zdolności procesu Zdolność procesu dla danych alternatywnych Obliczanie DPU, DPM i DPMO. Obliczanie poziomu sigma procesu. Zdolność procesu dla danych liczbowych Obliczanie wskaźników Obliczanie wskaźników wykonania Pp i Ppk. Obliczanie PPM. Obliczanie poziomu sigma procesu. Analiza zdolności procesu dla danych alternatywnych Obliczanie DPU, DPM i DPMO. DPU (Defects Per Unit) to liczba defektów w sztuce produktu. Jest to zwykle iloraz liczby defektów w próbie przez liczbę sztuk w próbie. DPU= Liczba defektów Liczba sztuk produktu JeŜeli zliczamy zdefektowane sztuki, a nie defekty, to w liczniku ułamka jest liczba sztuk zdefektowanych; DPU oznaczało wtedy będzie liczbę zdefektowanych sztuk a nie defektów. Obliczanie DPU, DPM i DPMO. DPM (Defects Per Million [Units]) to, po prostu DPU razy DPM = DPU x Na przykład proces o DPU równym 0, ma 450 defektów ma milion. Celem obliczania DPM jest otrzymanie liczby łatwiejszej w percepcji, zamiast ułamka z wieloma zerami po przecinku. Obliczanie DPU, DPM i DPMO. DPMO (Defects Per Million Opportunities) to liczba defektów na milion moŝliwości. Jest to DPM podzielone przez liczbę moŝliwości powstania defektu w sztuce produktu. DPU x DPMO = Całkowita liczba moŝliwości defektu w sztuce Na przykład, jeśli zbadaliśmy sztuk i znaleźliśmy w nich defektów, to DPM wynosi JeŜeli jednak w kaŝdej sztuce sprawdzano 10 róŝnych moŝliwości defektu, to DPMO wynosi

2 Sztuki zgodne - niezgodne (karty kontrolne p i np) Najprostszy sposób obliczenia zdolności dla danych alternatywnych. PoniewaŜ kaŝda sztuka jest dobra albo zła, to jest jedna moŝliwość defektu na sztukę. W próbie 500 sztuk uszkodzonych było 5. Tak wiec DPU=0,05 a DPM i DPMO= Poziom sigma tego procesu wynosi 3,15. Liczba defektów w jednostce produktu lub w przedziale czasu (karty kontrolne c i u) Tu dochodzi jeden krok obliczeniowy bo jest więcej niŝ jedna moŝliwość defektu w kaŝdej sztuce produktu. W poniŝszym przykładzie w sztuce produktu bada się zgodność 50 elementów. Sprawdzano 50 elementów w kaŝdej z 500 sztuk; znaleziono 5 defektów. DPU w dalszym ciągu wynosi 0,05, DPM wynosi więc a DPMO = Poziom sigma procesu wynosi 4,59. Komentarz do poziomu sigma dla danych alternatywnych Obliczona wartość DPMO i poziom sigma zaleŝą od definicji moŝliwości defektu. JeŜeli, na przykład powiemy, Ŝe liczba sprawdzanych, moŝliwych miejsc zdefektowanych jest dwa razy większa, otrzymamy dwa razy mniejsze DPMO i powaŝnie poprawimy poziom sigma procesu, przynajmniej dopóki nowe sprawdzane elementy nie okaŝą się zdefektowane. MoŜliwość defektu powinna być tak określona by obliczony poziom sigma procesu zgodny był z ustaloną opinią o rzeczywistym poziomie procesu. Analiza zdolności procesu charakteryzowanego zmiennymi liczbowymi (pomiarowymi, ciągłymi) Zbieranie, wykreślanie i analizowanie danych liczbowych. Rozpoznaną, kluczową miarą procesu moŝe być zmienna liczbowa. Zbieramy dane o zdolności procesu w przeszłości. Powinniśmy znać rozkład tej zmiennej, jej miarę centralną i rozrzut. Postać rozkładu analizujemy uŝywając histogramu, jego normalność testujemy za pomocą wykresów normalności lub testów statystycznych. Środek znajdujemy obliczając średnią. Rozrzut znajdujemy obliczając krótko- i długoterminowe odchylenie standardowe. Stabilność procesu w czasie oceniamy za pomocą kart kontrolnych Xśr/R lub X/Rm. Co prawda, moŝemy znać właściwości procesu, jego rozkład, średnią, zmienność i stabilność w czasie ale dane te musimy odnieść do wymagań klienta. Czynimy to obliczając współczynnik zdolności procesu lub tzw. współczynnik wykonania procesu. Współczynniki te wyliczamy uŝywając statystyk obliczonych na podstawie danych pomiarowych z procesu (średniej, krótko- i długoterminowego odchylenia standardowego, oceny rozkładu) oraz specyfikacji (dolnej, górnej) otrzymanej od klienta.

3 Przypomnijmy rozkład normalny i jego najwaŝniejsze cechy i jak moŝna go narysować mając średnią i odchylenie standardowe obliczone z danych. Prawie wszystkie (poza ogonami 0,13%) wartości mieszczą się wewnątrz +/- 3 odchyleń standardowych wokółśredniej, o ile rozkład jest normalny. Początek krzywej; -3*s od średniej. Koniec krzywej; +3*s od średniej % % % %.14 %.14 % 0.13 % 0.13 % -3*s -*s -1*s +1*s +*s +3*s -3*s (σ)( -*s (σ) -1*s (σ) +1*s (σ) +*s (σ) +3*s (σ)( Mając kompletną charakterystykę procesu, jego kształt, środek, rozrzut i stabilność, popatrzmy na niego na tle wymagań klienta. Wymagania klienta maja formę granic specyfikacji i (Lower/Upper Specification Limit). Granice te porównujemy z rozkładem procesu. Jak w tym (poniŝszym) przypadku wypada porównanie procesu ze specyfikacją? Wygląda, Ŝe proces dokładnie wpasowuje się pomiędzy granice specyfikacji i, o ile się nie przesunie będzie dawał bardzo mało braków. Szerokość procesu zgadza się dokładnie z szerokością pola specyfikacji, a ponadto proces jest idealnie wycentrowany. Wadliwe Porównajmy poprzedni przykład (niŝej, po lewej) z wcześniejszym (niŝej, po prawej). Na drugim wykresie szerokość pola specyfikacji jest równa połowie szerokości procesu. Wskaźnik zdolności Cp bazuje na porównaniu szerokości specyfikacji do szerokości procesu. Współczynnik zdolności Cp mówi ile razy szerokość procesu mieści się w specyfikacji. Szerokość procesu to odległość od śr-3s do śr+3s, a szerokość pola specyfikacji to -, dlatego Cp obliczamy wg następującego wzoru: Cp = 1 Cp = 1/ C p = - 6 s st = Pole specyfikacji Szerokość procesu Co oznacza indeks st? OtóŜ bazują na krótkookresowym (shortterm) odchyleniu standardowym! Co będzie niedługo omówione. 3

4 A jeśli proces nie jest wycentrowany? Cp nie zaleŝy od wycentrowania procesu. Ten wskaźnik zaleŝy tylko od szerokości specyfikacji i procesu. Inny wskaźnik, Cpk, uwzględnia wycentrowanie. Cpk uwzględnia tę granicę specyfikacji, która jest bliŝej średniej procesu. Połowa szerokości procesu odnoszona jest tu do tego, dostępnego pola tolerancji. Współczynnik zdolności Cpk mówi ile razy połowa szerokości procesu mieści się w polu od średniej do bliŝszej granicy specyfikacji. Połowa szerokości procesu wynosi 3*s, a odległość do bliŝszej granicy specyfikacji to mniejsza z dwóch liczb: Xśr- i - Xśr. Tak więc Cpk oblicza się następująco: Odległość do bliŝszej granicy Cp = 1 Cpk = 1/ C pk = Min ( X- - X 3s, 3s ) Uwaga: Dwie wielkości w nawiasach nazywane są C pl i C pu. Przypomnijmy, Ŝe Cpk, podobnie jak Cp, bazuje na krótkoterminowym odchyleniu standardowym. 1/ szer. procesu Przykłady procesów. Celem jest osiągnięcie równego,0 lub więcej. Dalsze przykłady (słabej zdolności): Cp = 1.0 Cpk=1.0 Cp =.0 Cpk=.0 Cp =.0 Cpk=1.0 Cp = 0.5 Cpk=0.0 Cp = 1.0 Cpk=0.0 Cp = 1.0 Cpk= -1.0 obliczane są na podstawie krótkoterminowej zmienności (odchylenia standardowego) obserwowanej w danych. Szybką, krótkookresową zmienność obliczamy z próbek na kartach kontrolnych jako Rśr/d, czyli średni rozstęp podzielony przez współczynnik d. nazywane wskaźnikami zdolności mówią do jakiej jakości proces zdolny jest w krótkim przedziale czasu. Jest to najwyŝsza zdolność procesu. Obliczanie współczynników wykonania Pp i Ppk Współczynniki Pp i Ppk obliczane są na podstawie długoterminowej zmienności (odchylenia standardowego) obserwowanej w danych. Zmienność za długi okres obliczamy jako zwykłe odchylenie standardowe danych (nie z próbek). Pp i Ppk nazywane są wskaźnikami wykonania poniewaŝ mówią o tym co proces moŝe rzeczywiście wykonać w stosunku do wymagań klienta (nie tylko w krótkim czasie). JeŜeli proces jest stabilny w czasie to współczynniki wykonania i współczynniki zdolności są prawie równe. 4

5 Obliczanie współczynników wykonania Pp i Ppk Wzory na Pp i Ppk: Przypomnijmy wzory na : P p = - P Min ( X- - X pk = 6s LT 3s, LT 3s ) LT C p = - C Min ( X- - X pk = 6s ST 3s, ST 3s ) ST gdzie s LT = LT s = ( x x) + ( x 1 x) ( x n 1 n x) gdzie s ST = N * R N d R * j = d j = 1 Obliczanie PPM z danych liczbowych Obliczanie obserwowanego PPM PPM (Parts Per Million) to liczba braków na milion. PPM obliczać moŝna na trzy sposoby: Obserwowane PPM, na bazie procentu braków, wg danych. Oczekiwane PPM (estymowane), na bazie zmienności krótkoterminowej (C pk ). Oczekiwane PPM (estymowane), na bazie zmienności długoterminowej (P pk ). Termin PPM dotyczy zwykle danych liczbowych, raczej nie naleŝy go mylić z DPM (Defectives Per Million). Obserwowane PPM bazuje na danych: Obserwowane PPM = ( liczba wartości poza specyfik. całkowita liczba wartości ) Obserwowane PPM łatwo obliczyć, najczęściej jednak podawane jest oczekiwane PPM, obliczane na podstawie dopasowanego rozkładu. krótkookresowego Oczekiwane PPM, wg krótkoterminowego odchylenia standardowego: Mając obliczonąśrednią sumaryczną i krótkoterminowe odchylenie standardowe narysować moŝna krzywą rozkładu dla procesu. JeŜeli dodamy do tego granice specyfikacji, to brakami będą sztuki występujące poza specyfikacją. krótkookresowego Oczekiwane PPM, wg krótkoterminowego odchylenia standardowego, cd: Oczekiwany procent niezgodności (krótkoterminowy) obliczamy jako procent pola pod krzywą Gaussa poza specyfikacją (zacienione pole). Procent ten moglibyśmy ocenić na oko. Czy we fioletowych polach jest po 5%? Całe pole to 100%? Niezgodności Jaki % jest w ogonach? Niezgodności Śr - 3s ST Śr + 3s ST Śr - 3s ST Śr + 3sST 5

6 krótkookresowego Oczekiwane PPM, wg s ST : Najpierw odpowiadamy na pytanie Ile odchyleń standardowych jest od średniej do granic specyfikacji? W naszym przykładzie, dolna specyfikacja jest ok. 1.7 s ST poniŝej średniej a górna 1.7 s ST powyŝej. UŜywamy tu wzorów: Liczba odchyleń od średniej do = Liczba odchyleń od średniej do = -Śr. s ST. -Śr. s ST. = Z U = Z L Śr - 3s ST 1.7 s Śr + 3s ST długookresowego Oczekiwane PPM bazujące na długoterminowym odchyleniu standardowym: Sposób obliczania długoterminowego PPM jest taki sam jak krótkoterminowego, poza tym, Ŝe krzywa rozkładu normalnego rysowana jest na bazie długoterminowego odchylenia standardowego. Śr - 3s LT Śr + 3s LT Wadliwe długookresowego Obliczanie oczekiwanego PPM wg s LT : Liczbę odchyleń standardowych (Z) pomiędzy średnią a granicami specyfikacji obliczamy wg wzorów: Liczba odchyleń od -Śr średniej do = s LT. Liczba odchyleń od -Śr średniej do = s LT. = Z U = Z L Śr - 3s LT 1.7 s Śr + 3s LT Sumaryczna frakcję mnoŝymy przez otrzymując estymowane, długoterminowe PPM. A jeŝeli proces nie jest stabilny w czasie? Jak to juŝ było omawiane, w przypadku procesu stabilnego, Cp będzie bliskie Pp, a Cpk nie będzie się bardzo róŝniło od Ppk. Podobnie, oczekiwane PPM wg s ST będzie bliskie oczekiwanemu PPM wg s LT, o ile proces jest stabilny w czasie (w sensie SPC). JeŜeli proces nie jest stabilny, Cp, Cpk i PPM ST mówią o najlepszym, moŝliwym przypadku zdolności procesu, osiąganym w krótkich przedziałach czasu. Natomiast Pp, Ppk i PPM LT wyraŝają rzeczywistą zdolność (wykonanie) procesu, dla całego czasu, w którym pobierano próbki do analizy. Procesy niestabilne w czasie A jeŝeli proces nie jest gaussowski? Często zdarza się, Ŝe tylko kilka punktów na karcie kontrolnej Xśr/R (czy innej) jest poza granicami kontrolnymi, a dla punktów tych znane są przyczyny takich szczególnie duŝych lub szczególnie małych wartości. Takie, pojedyncze pomiary dające punkty wskazujące na rozregulowanie usuwamy z karty przed przystąpieniem do obliczania wskaźników zdolności i wykonania procesu. Nawet jeśli nie znamy przyczyn rozregulowań, lepiej będzie odrzucić wartości odstające przy obliczaniu zdolności. PowyŜsze uwagi mają zastosowanie do pojedynczych wartości odstających, nie do trendów czy przesunięć poziomu procesu. Procesy generujące dane niezgodne z rozkładem normalnym trzeba potraktować osobno, gdyŝ wskaźniki zdolności jak i PPM bazują na rozkładzie normalnym. Dane niegaussowskie (niezgodne z rozkładem normalnym) moŝemy analizować na dwa sposoby. Jeden sposób polega na dopasowaniu do danych odpowiedniego, innego rozkładu i obliczanie zdolności i PPM na bazie tego rozkładu. Innym sposobem jest przekształcenie danych (transformacja) tak by podlegały rozkładowi normalnemu. UŜycie dopasowanego, innego rozkładu ma tą zaletę, Ŝe na wszystkich wykresach i raportach mieć będziemy rzeczywiste wartości pomiarowe (nie przekształcone, np. zlogarytmowane). 6

7 Zdolność i PPM dla danych niegaussowskich Przykład analizy zdolności dla danych niegaussowskich - podsumowanie: JeŜeli nasze dane mają ładny, symetryczny, dzwonowy rozkład, w przybliŝeniu normalny, to łatwo obliczamy średnią, krótkoterminowe i długoterminowe odchylenie standardowe, by otrzymanych wartości uŝyć do wyznaczenia szerokości procesu (6*sigma) jaki i połówkowej szerokości (3*sigma). Te wartości z kolei porównujemy ze specyfikacją by otrzymać wskaźniki zdolności. W analizowanym przykładzie nie mogliśmy postąpić tak samo z szerokością i połówkową szerokością procesu bo dane nie podlegały rozkładowi normalnemu. Znaleźliśmy najpierw odpowiedni rozkład, by znaleźć wg niego przedział odpowiadający polu 99,74%, tak jak w obliczeniach 6*sigma wg rozkładu normalnego. PoniewaŜ nasz rozkład był skośny przedział wyszedł niesymetryczny: od -1.5 do +3.9 sigma wokółśredniej. Szerokość połówkowa jest tu inna po prawej i po lewej stronie. 7

Zarządzanie procesami

Zarządzanie procesami Metody pomiaru stosowane w organizacjach Zarządzanie procesami Zakres Rodzaje pomiaru metod pomiaru Klasyczne metody pomiaru organizacji Pomiar całej organizacji Tradycyjny rachunek kosztów (np. ROI) Rachunek

Bardziej szczegółowo

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść

Bardziej szczegółowo

Wykład 9 Wnioskowanie o średnich

Wykład 9 Wnioskowanie o średnich Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i

Bardziej szczegółowo

Statystyczne sterowanie procesem

Statystyczne sterowanie procesem Statystyczne sterowanie procesem SPC (ang. Statistical Process Control) Trzy filary SPC: 1. sporządzenie dokładnego diagramu procesu produkcji; 2. pobieranie losowych próbek (w regularnych odstępach czasu

Bardziej szczegółowo

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski Sterowanie procesem i jego zdolność Zbigniew Wiśniewski Wybór cech do kart kontrolnych Zaleca się aby w pierwszej kolejności były brane pod uwagę cechy dotyczące funkcjonowania wyrobu lub świadczenia usługi

Bardziej szczegółowo

CZYM SIĘ RÓŻNI SZEŚĆ SIGMA OD TRZY SIGMA?

CZYM SIĘ RÓŻNI SZEŚĆ SIGMA OD TRZY SIGMA? CZYM SIĘ RÓŻNI SZEŚĆ SIGMA OD TRZY SIGMA? dr hab. inż. Adam Walanus 1 Głośna dziś przełomowa metodologia Sześć sigma zdobyła powszechne uznanie dzięki skuteczności i bardzo dobrym wynikom ekonomicznym.

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Definicje PN ISO Definicje PN ISO 3951 interpretacja Zastosowanie normy PN-ISO 3951:1997

Definicje PN ISO Definicje PN ISO 3951 interpretacja Zastosowanie normy PN-ISO 3951:1997 PN-ISO 3951:1997 METODY STATYSTYCZNEJ KONTROI JAKOŚCI WG OCENY ICZBOWEJ ciągła seria partii wyrobów sztukowych dla jednej procedury analizowana jest tylko jedna wartość, która musi być mierzalna w skali

Bardziej szczegółowo

Zadania ze statystyki, cz.6

Zadania ze statystyki, cz.6 Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr Temat: Karty kontrolne przy alternatywnej ocenie właściwości.

Bardziej szczegółowo

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( ) Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 9 Temat: Karty kontrolne przy alternatywnej ocenie właściwości.

Bardziej szczegółowo

STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)

STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna

Bardziej szczegółowo

STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)

STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości

Bardziej szczegółowo

Konspekt SPC jako metoda pomiaru i doskonalenia procesów.

Konspekt SPC jako metoda pomiaru i doskonalenia procesów. Opracowali: Agata Murmyło Piotr Pokrzywa Michał Sabik Konspekt SPC jako metoda pomiaru i doskonalenia procesów. 1. Istota podejścia SPC. 2. Narzędzia do analizy stabilności procesu 2.1. Karty kontrolne

Bardziej szczegółowo

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła 12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy

Bardziej szczegółowo

Zarządzanie jakością ćwiczenia

Zarządzanie jakością ćwiczenia Zarządzanie jakością ćwiczenia mgr inż. Anna Wąsińska Zakład Zarządzania Jakością pok. 311 B1, tel. 320-42-82 anna.wasinska@pwr.wroc.pl Statystyczne sterowanie procesami SPC kontrolna Konsultacje: SO 13:00

Bardziej szczegółowo

Monitorowanie procesów wytwarzania

Monitorowanie procesów wytwarzania POLITECHNIKA KOSZALIŃSKA WYDZIAŁ MECHANICZNY kierunek Mechanika i Budowa Maszyn Monitorowanie procesów wytwarzania Ocena zdolności jakościowej procesów Koszalin Umiejętności i kompetencje: Umiejętności

Bardziej szczegółowo

I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek

I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek ZADANIA statystyka opisowa i CTG 1. Dokonano pomiaru stężenia jonów azotanowych w wodzie μg/ml 1 0.51 0.51 0.51 0.50 0.51 0.49 0.52 0.53 0.50 0.47 0.51 0.52 0.53 0.48 0.59 0.50 0.52 0.49 0.49 0.50 0.49

Bardziej szczegółowo

Teoria błędów pomiarów geodezyjnych

Teoria błędów pomiarów geodezyjnych PodstawyGeodezji Teoria błędów pomiarów geodezyjnych mgr inŝ. Geodeta Tomasz Miszczak e-mail: tomasz@miszczak.waw.pl Wyniki pomiarów geodezyjnych będące obserwacjami (L1, L2,, Ln) nigdy nie są bezbłędne.

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: STATYSTYCZNA KONTROLA PROCESU 1. Cel ćwiczenia Zapoznanie studentów z podstawami wdrażania i stosowania metod

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii.

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii. Wykład 5. Opis struktury zbiorowości 1. Miary asymetrii. 2. Miary koncentracji. Przykład Zbadano stawkę godzinową (w zł) pracowników dwóch branŝ, otrzymując następujące charakterysty ki liczbowe: Stawka

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

DR HAB INŻ. TADEUSZ SAŁACIŃSKI POLITECHNIKA WARSZAWSKA

DR HAB INŻ. TADEUSZ SAŁACIŃSKI POLITECHNIKA WARSZAWSKA -1- DR HAB INŻ. TADEUSZ SAŁACIŃSKI POLITECHNIKA WARSZAWSKA ANALIZA ZDOLNOŚCI PROCESÓW PRODUKCYJNYCH Z WYKORZYSTANIEM SPC Statystyczne sterowanie procesami Zgodnie z normą ISO 9001:2000 Systemy Zarządzania

Bardziej szczegółowo

Wykład 3. Rozkład normalny

Wykład 3. Rozkład normalny Funkcje gęstości Rozkład normalny Reguła 68-95-99.7 % Wykład 3 Rozkład normalny Standardowy rozkład normalny Prawdopodobieństwa i kwantyle dla rozkładu normalnego Funkcja gęstości Frakcja studentów z vocabulary

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

SPRAWDZIAN NR 1 ROBERT KOPERCZAK, ID studenta : k4342

SPRAWDZIAN NR 1 ROBERT KOPERCZAK, ID studenta : k4342 TECHNIKI ANALITYCZNE W BIZNESIE SPRAWDZIAN NR 1 Autor pracy ROBERT KOPERCZAK, ID studenta : k4342 Kraków, 22 Grudnia 2009 2 Spis treści 1 Zadanie 1... 3 1.1 Szereg rozdzielczy wag kobiałek.... 4 1.2 Histogram

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny

Bardziej szczegółowo

Rozkład Gaussa i test χ2

Rozkład Gaussa i test χ2 Rozkład Gaussa jest scharakteryzowany dwoma parametramiwartością oczekiwaną rozkładu μ oraz dyspersją σ: METODA 2 (dokładna) polega na zmianie zmiennych i na obliczeniu pk jako różnicy całek ze standaryzowanego

Bardziej szczegółowo

RAPORT WSKAŹNIK EDUKACYJNEJ WARTOŚCI DODANEJ PO EGZAMINIE GIMNAZJALNYM W ROKU SZKOLNYM 2012/2013

RAPORT WSKAŹNIK EDUKACYJNEJ WARTOŚCI DODANEJ PO EGZAMINIE GIMNAZJALNYM W ROKU SZKOLNYM 2012/2013 RAPORT WSKAŹNIK EDUKACYJNEJ WARTOŚCI DODANEJ PO EGZAMINIE GIMNAZJALNYM W ROKU SZKOLNYM 2012/2013 ZESPÓŁ SZKÓŁ NR 14 W BYDGOSZCZY GIMNAZJUM NR 37 INTEGRACYJNE Opracowanie A. Tarczyńska- Pajor na podstawie

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)

Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące

Bardziej szczegółowo

Analiza metod prognozowania kursów akcji

Analiza metod prognozowania kursów akcji Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl

Bardziej szczegółowo

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez

Bardziej szczegółowo

SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec

SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec SMOP - wykład Rozkład normalny zasady przenoszenia błędów Ewa Pawelec 1 iepewność dla rozkładu norm. Zamiast dodawania całych zakresów uwzględniamy prawdopodobieństwo trafienia dwóch wartości: P x 1, x

Bardziej szczegółowo

DZISIAJ. Jeszcze trochę o PROJEKTACH JAK PREZENTOWAĆ: JAK OBLICZAĆ: PROSTE INFORMACJE O PRÓBIE KORELACJE DWÓCH CECH PODSTAWOWE MIARY

DZISIAJ. Jeszcze trochę o PROJEKTACH JAK PREZENTOWAĆ: JAK OBLICZAĆ: PROSTE INFORMACJE O PRÓBIE KORELACJE DWÓCH CECH PODSTAWOWE MIARY PREZENTACJA DANYCH DZISIAJ Jeszcze trochę o PROJEKTACH Następnie metodą prób b i błęb łędów: JAK PREZENTOWAĆ: PROSTE INFORMACJE O PRÓBIE KORELACJE DWÓCH CECH JAK OBLICZAĆ: PRZEDZIAŁY Y UFNOŚCI PODSTAWOWE

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

KTÓRY PROCES JEST NAJLEPSZY PRZYKŁAD PRAKTYCZNEGO WYKORZYSTANIA KART KONTROLNYCH I ANALIZY ZDOLNOŚCI DO OCENY PROCESÓW

KTÓRY PROCES JEST NAJLEPSZY PRZYKŁAD PRAKTYCZNEGO WYKORZYSTANIA KART KONTROLNYCH I ANALIZY ZDOLNOŚCI DO OCENY PROCESÓW KTÓRY PROCES JEST NAJLEPSZY PRZYKŁAD PRAKTYCZNEGO WYKORZYSTANIA KART KONTROLNYCH I ANALIZY ZDOLNOŚCI DO OCENY PROCESÓW Michał Iwaniec, StatSoft Polska Sp. z o.o. Wstęp Zdolność procesu do spełnienia wymagań

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 8 Temat: Statystyczna kontrola procesu SPC przy pomocy

Bardziej szczegółowo

Układy równań liniowych. Ax = b (1)

Układy równań liniowych. Ax = b (1) Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m

Bardziej szczegółowo

Program automatycznej obsługi sklepu i supermarketu

Program automatycznej obsługi sklepu i supermarketu Program automatycznej obsługi sklepu i supermarketu wersja 7 dla Windows Dodatek do instrukcji uŝytkownika Wirtualny kolektor Redakcja 7.2.102.0 2002-2007 Insoft sp. z o.o. 31-227 Kraków ul. Jasna 3a tel.

Bardziej szczegółowo

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami

Bardziej szczegółowo

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej.

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej. ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej. 1. Wartość bezwzględną liczby jest określona wzorem: x, dla _ x 0 x =, x, dla _ x < 0 Wartość bezwzględna liczby nazywana

Bardziej szczegółowo

NAZWA ZMIENNEJ LOSOWEJ PODAJ WARTOŚĆ PARAMETRÓW ROZKŁADU PRAWDOPODOBIEŃSTWA DLA TEJ ZMIENNEJ

NAZWA ZMIENNEJ LOSOWEJ PODAJ WARTOŚĆ PARAMETRÓW ROZKŁADU PRAWDOPODOBIEŃSTWA DLA TEJ ZMIENNEJ WAŻNE INFORMACJE: 1. Sprawdzane będą wyłącznie wyniki w oznaczonych polach, nie czytam tego co na marginesie, nie sprawdzam pokreślonych i niedbałych pól. 2. Wyniki proszę podawać z dokładnością do dwóch

Bardziej szczegółowo

Doświadczalnictwo leśne. Wydział Leśny SGGW Studia II stopnia

Doświadczalnictwo leśne. Wydział Leśny SGGW Studia II stopnia Doświadczalnictwo leśne Wydział Leśny SGGW Studia II stopnia Metody nieparametryczne Do tej pory omawialiśmy metody odpowiednie do opracowywania danych ilościowych, mierzalnych W kaŝdym przypadku zakładaliśmy

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 8 Temat: Statystyczna kontrola procesu SPC przy pomocy

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

Instrukcja warunkowa i złoŝona.

Instrukcja warunkowa i złoŝona. Instrukcja warunkowa i złoŝona. Budowa pętli warunkowej. JeŜeli mielibyśmy przetłumaczyć instrukcję warunkową to brzmiałoby to mniej więcej tak: jeŝeli warunek jest spełniony, to wykonaj jakąś operację

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

Biostatystyka, # 3 /Weterynaria I/

Biostatystyka, # 3 /Weterynaria I/ Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Program 6. Program wykorzystujący strukturę osoba o polach: imię, nazwisko, wiek. W programie wykorzystane są dwie funkcje:

Program 6. Program wykorzystujący strukturę osoba o polach: imię, nazwisko, wiek. W programie wykorzystane są dwie funkcje: Program 6 Program wykorzystujący strukturę osoba o polach: imię, nazwisko, wiek. W programie wykorzystane są dwie funkcje: Funkcja pobierz_osobe wczytuje dane osoby podanej jako argument. Funkcja wypisz_osobe

Bardziej szczegółowo

Rodzaje Kontroli. SPC Statystyczna kontrola procesu. Rodzaje kontroli 2013-12-07. Uproszczony cykl życia wyrobu. Kontrola odbiorcza - stuprocentowa

Rodzaje Kontroli. SPC Statystyczna kontrola procesu. Rodzaje kontroli 2013-12-07. Uproszczony cykl życia wyrobu. Kontrola odbiorcza - stuprocentowa Uproszczony cykl życia projektowanie projektowanie procesów i planowanie prod. zakupy Rodzaje Kontroli marketing i badanie rynku pozbycie się lub odzysk dbałość o wyrób po sprzedaży faza przedprodukcyjna

Bardziej szczegółowo

OPTYMALIZACJA PROCESÓW TECHNOLOGICZNYCH W ZAKŁADZIE FARMACEUTYCZNYM

OPTYMALIZACJA PROCESÓW TECHNOLOGICZNYCH W ZAKŁADZIE FARMACEUTYCZNYM OPTYMALIZACJA PROCESÓW TECHNOLOGICZNYCH W ZAKŁADZIE FARMACEUTYCZNYM POZNAŃ / kwiecień 2013 Wasilewski Cezary 1 Cel: Obniżenie kosztów wytwarzania Kontrolowanie jakości wyrobu Zasady postępowania Odpowiednio

Bardziej szczegółowo

Acusera 24.7 - zarządzanie wynikami kontroli wewnątrzlaboratoryjnej

Acusera 24.7 - zarządzanie wynikami kontroli wewnątrzlaboratoryjnej Acusera 24.7 - zarządzanie wynikami kontroli wewnątrzlaboratoryjnej II Konferencja Diagnostów Laboratoryjnych Śląski Urząd Wojewódzki w Katowicach 14 września 2015 Acusera 24. 7 - główne funkcje: 1.Prowadzenie

Bardziej szczegółowo

STATYSTYKA INDUKCYJNA. O sondaŝach ach i nie tylko

STATYSTYKA INDUKCYJNA. O sondaŝach ach i nie tylko STATYSTYKA INDUKCYJNA O sondaŝach ach i nie tylko DWA DZIAŁY ESTYMACJA Co na podstawie wyników w z próby mogę powiedzieć o wynikach w populacji? WERYFIKACJA HIPOTEZ Czy moje przypuszczenia uczynione przed

Bardziej szczegółowo

Interpretacja krzywych sondowania elektrooporowego; zagadnienie niejednoznaczności interpretacji (program IX1D Interpex) Etapy wykonania:

Interpretacja krzywych sondowania elektrooporowego; zagadnienie niejednoznaczności interpretacji (program IX1D Interpex) Etapy wykonania: Interpretacja krzywych sondowania elektrooporowego; zagadnienie niejednoznaczności interpretacji (program IX1D Interpex) Etapy wykonania: 1. Opisać problem geologiczny, który naleŝy rozwiązać (rozpoznanie

Bardziej szczegółowo

Karta kontrolna budowa i zastosowanie

Karta kontrolna budowa i zastosowanie STATYSTYCZNE STEROWANIE PROCESAMI PRAKTYCZNE PRZYKŁADY ZASTOSOWANIA Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania, Zakład Zarządzania Jakością; Magazyn ZARZĄDZANIE JAKOŚCIĄ

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Streszczenie. Słowa kluczowe: towary paczkowane, statystyczna analiza procesu SPC

Streszczenie. Słowa kluczowe: towary paczkowane, statystyczna analiza procesu SPC Waldemar Samociuk Katedra Podstaw Techniki Akademia Rolnicza w Lublinie MONITOROWANIE PROCESU WAśENIA ZA POMOCĄ KART KONTROLNYCH Streszczenie Przedstawiono przykład analizy procesu pakowania. Ocenę procesu

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna 1 Laboratorium VIII: Analiza kanoniczna Spis treści Laboratorium VIII: Analiza kanoniczna... 1 Wiadomości ogólne... 2 1. Wstęp teoretyczny.... 2 Przykład... 2 Podstawowe pojęcia... 2 Założenia analizy

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Konfiguracja parametrów sondy cyfrowo analogowej typu CS-26/RS/U

Konfiguracja parametrów sondy cyfrowo analogowej typu CS-26/RS/U Konfiguracja parametrów sondy cyfrowo analogowej typu CS-26/RS/U Ostrów Wielkopolski, 25.02.2011 1 Sonda typu CS-26/RS/U posiada wyjście analogowe napięciowe (0...10V, lub 0...5V, lub 0...4,5V, lub 0...2,5V)

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład

Bardziej szczegółowo

KARTY KONTROLNE PRZY OCENIE LICZBOWEJ W STEROWANIU PROCESAMI ZAŁOŻENIA I ANALIZA

KARTY KONTROLNE PRZY OCENIE LICZBOWEJ W STEROWANIU PROCESAMI ZAŁOŻENIA I ANALIZA KRTY KONTROLNE PRZY OENIE LIZOWEJ W STEROWNIU PROESMI ZŁOŻENI I NLIZ dr inż. Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania Wprowadzenie Metody statystycznego sterowania procesami

Bardziej szczegółowo

WSPIERANIE ZADAŃ ANALITYCZNYCH Z ZASTOSOWANIEM STATISTICA NA PRZYKŁADZIE BIOTON S.A.

WSPIERANIE ZADAŃ ANALITYCZNYCH Z ZASTOSOWANIEM STATISTICA NA PRZYKŁADZIE BIOTON S.A. WSPIERANIE ZADAŃ ANALITYCZNYCH Z ZASTOSOWANIEM STATISTICA NA PRZYKŁADZIE BIOTON S.A. Jan Grzesik, Zespół Specjalistów ds. Zapewnienia Jakości w BIOTON S.A. Wymagania statystycznego opracowania wyników

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Estymacja punktowa i przedziałowa

Estymacja punktowa i przedziałowa Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora

Bardziej szczegółowo

KLASYFIKACJI I BUDOWY STATKÓW MORSKICH

KLASYFIKACJI I BUDOWY STATKÓW MORSKICH PRZEPISY KLASYFIKACJI I BUDOWY STATKÓW MORSKICH ZMIANY NR 3/2012 do CZĘŚCI IX MATERIAŁY I SPAWANIE 2008 GDAŃSK Zmiany Nr 3/2012 do Części IX Materiały i spawanie 2008, Przepisów klasyfikacji i budowy statków

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Wykład 2: Tworzenie danych

Wykład 2: Tworzenie danych Wykład 2: Tworzenie danych Plan: Statystyka opisowa a wnioskowanie statystyczne Badania obserwacyjne a eksperyment Planowanie eksperymentu, randomizacja Próbkowanie z populacji Rozkłady próbkowe Wstępna/opisowa

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-

Bardziej szczegółowo

Runda 5: zmiana planszy: < < i 6 rzutów.

Runda 5: zmiana planszy: < < i 6 rzutów. 1. Gry dotyczące systemu dziesiętnego Pomoce: kostka dziesięciościenna i/albo karty z cyframi. KaŜdy rywalizuje z kaŝdym. KaŜdy gracz rysuje planszę: Prowadzący rzuca dziesięciościenną kostką albo losuje

Bardziej szczegółowo

Wyszukiwanie. Wyszukiwanie binarne

Wyszukiwanie. Wyszukiwanie binarne Wyszukiwanie Wejście: posortowana, n-elementowa tablica liczbowa T oraz liczba p. Wyjście: liczba naturalna, określająca pozycję elementu p w tablicy T, bądź 1, jeŝeli element w tablicy nie występuje.

Bardziej szczegółowo

PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW

PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW Grzegorz Migut, StatSoft Polska Sp. z o.o. Teresa Topolnicka, Instytut Chemicznej Przeróbki Węgla Wstęp Zasady przeprowadzania eksperymentów zmierzających

Bardziej szczegółowo

ROZKŁAD NORMALNY. 2. Opis układu pomiarowego

ROZKŁAD NORMALNY. 2. Opis układu pomiarowego ROZKŁAD NORMALNY 1. Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE (Wstęp do teorii pomiarów). 2. Opis układu pomiarowego

Bardziej szczegółowo

Laboratorium nr 8. Temat: Podstawy języka zapytań SQL (część 2)

Laboratorium nr 8. Temat: Podstawy języka zapytań SQL (część 2) Laboratorium nr 8 Temat: Podstawy języka zapytań SQL (część 2) PLAN LABORATORIUM: 1. Sortowanie. 2. Warunek WHERE 3. Eliminacja powtórzeń - DISTINCT. 4. WyraŜenia: BETWEEN...AND, IN, LIKE, IS NULL. 5.

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo