Elementy Elektrochemii

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elementy Elektrochemii"

Transkrypt

1 Elementy Elektrchemii III.: Ogniw glwniczne Urządzeni służące d czerpni prądu elektryczneg wytwrzneg dzięki zchdzącym w nim przeminm elektrchemicznym Pdstwwą wielkścią chrkteryzującą gniw jest Sił Elektrmtryczn ( SEM ) Jest n równ różnicy ptencjłów bu biegunów gniw w wrunkch bezprądwych. Pdwójn wrstw elektryczn Gdy znurzymy metl (I) w rztwrze wdnym, t pwierzchni metlu nłduje się ujemnie, p strnie rztwru w tzw. wrstwie Helmhltz (II) nstąpi grmdzenie się nieslwtwnych ktinów. W klejnej wrstwie grmdzić się będą niny. Nstępnie w wrstwie dyfuzyjnej ze wzrstem dległści d grnicy fz będzie mlł stpień uprządkwni skłdników rztwru, by w głębi rztwru wykzywć typwe cechy fzy ciekłej. 1

2 Zjwisk elektrchemiczne n grnicy fz różnice ptencjłów pmiędzy wnętrzem rztwru, pwierzchnią elektrdy są dpwiedzilne z istnienie ptencjłu elektrchemiczneg, tzw. ptencjłu półgniw. półgniw ukłd elektrdy metlicznej i elektrlitu w którym zchdzi rekcj typu REDOX. Njprstsze typy półgniw związne są z tzw. elektrdmi 1. rdzju tj. metl znurzny w rztwrze swjej sli, np.: Zn ZnCl 2, Cu CuSO 4, Ag AgNO 3 itp. RT Π K = E + nf x1/ red1 ln x1 red1 SEM = Π RT Π A = E + nf K x2/ red 2 ln A x2 red 2 Knwencj sztkhlmsk Zgdnie z knwencją sztkhlmską definiujemy ptencjł półgniw jk siłę elektrmtryczną (SEM) gniw zbudwneg w ten spsób, że prwym półgniwem jest bdny rztwór z znurzną w nim elektrdą, lewym - stndrdw elektrd wdrw Zgdnie z tą knwencją sił elektrmtryczn gniw wynsi: E = n+ SEM = Π n+ H + X / X X / X H 2 / 2

3 Knwencj sztkhlmsk nd rztwór ndwy rztwór ktdwy ktd skłdniki dnej fzy wymienine są p przecinkch pszczególne fzy ddzielne są pinwymi kreseczkmi: - zncz grnicę fz - zncz klucz elektrlityczny - zncz membrnę półprzepuszczlną SEM = Π prweg leweg Ogniw Pierwtne - niedwrclne gniw, które rz rzłdwne nie mże być już pnwnie nłdwne i wykrzystne przyczyny: fizyczn zmin elektrd (rztwrznie) wyczerpnie substncji elektrktywnych w wyniku rekcji niedwrclnych pwstwnie prduktów ubcznych rekcji elektrdwych uniemżliwijących dlsze bezpieczne wykrzystywnie gniw Ogniw Wtórne - dwrclne gniw, które mżn p użyciu pwtórnie nłdwć tzw. kumultry Npięcie spczynkwe gniw Nzywne tkże npięciem jłwym jest dpwiednikiem SEM gniw. Jest t npięcie dneg źródł prądu w wrunkch bezprądwych, czyli w tzw. ukłdzie rzwrtym Npięcie rbcze Npięcie pd bciążeniem. Jest t wrtść npięci dneg źródł prądu w wrunkch prądwych, tj. w bwdzie zmkniętym. Npięcie spczynkwe mżn wyliczyć teretycznie n pdstwie dznych termdynmicznych. W prktyce jednk jest n niższe d wrtści teretycznej (SEM) z uwgi n: grniczną zdlnść półgniw d siągni stnu równwgi termdynmicznej, występwnie nieprządnych rekcji twrzyszących. 3

4 Pjemnść włściw gniw Jest t ilść łdunku, jki mżn w dnym gniwie zmgzynwć, nstępnie wyzwlić. Wylicz się ją n pdstwie sumryczneg równni rekcji chemicznej przebiegjącej w gniwie z wykrzystniem wzru: C s n F = M [Ah kg 1 ] Gdzie: n - liczb elektrnów wymieninych w sumrycznej rekcji elektrdwej, F - Stł Frdy (26,8 Ah) M - ms mlw skłdników elektrktywnych Pjemnść włściw gniw - przykłd Oblicznie pjemnści włściwej kumultr kwsw-łwiweg: rzłdwnie: PbO 2 + H 2 SO 4 + 2H + + 2e - PbSO H 2 O Pb + H 2 SO 4 PbSO H + +2e - PbO 2 + Pb + 2 H 2 SO 4 2PbSO H 2 O Pb (207), PbO 2 (239), 2H 2 SO 4 (196) stąd M = 207g + 239g + 196g = 0,642 kg n = 2, F=26,8 Ah stąd: C s 26,8 = = 83,5 (Ah kg 0, ) Teretyczn gęstść energii Nzywne tkże energią włściwą lub gęstścią energii gniw. wrtść teretyczn energii bliczn przez pmnżenie wrtści npięci spczynkweg i pjemnści włściwej dneg gniw. Przykłdwe wrtści dl znnych gniw rdzj gniw gęstść energii (Wh kg -1 ) kumultr kwsw - łwiwy 167 gniw Leclnche 245 kumultr Litw-jnwy plimerwy 1090 kumultr NiCd 49 kumultr NiMH 76 kumultr Li-in 120 4

5 Ogniw Pierwtne - niedwrclne - gniw Vlty (A.G.A.A. Vlt 1800r.) - gniw Dniel (Jhn Dniell 1836 r.) - Ogniw cynkw-chlrkwe (Leclnche, ~1866 r.) - Ogniw srebrwe-cynkwe (Andre, ~1930 r.) - Ogniw litwe ~1976 r. Ogniw Wtórne - dwrclne Ogniw Pliwwe - Ogniw wdrw-tlenwe - Ogniw metnlwe - Akumultr kwsw-łwiwy (Pb) - Gstn Plnte, 1859 r - Akumultr niklw-kdmwy (NiCd) - W. Junger, 1895 r - Akumultr niklw-wdrkwy (NiMH) ~1990 r - Akumultr lkliczne mngnwe MnO 2 - Akumultr litw-jnwy (Li-In) - Sny, ~1991 r - Akumultr litw-plimerwy (Li-Plymer) r Chrkterystyk prądw-npięciw Npięcie rbcze (E c ) [V] Mc gniw t ilczyn npięci i ntężeni E c i = P prąd (i) [A] Z wykresu wyznczyć mżn mksymlny prąd dl jkieg nie bserwuje się znczneg spdku npięci gniw 5

OGNIWA. Me (1) Me m+ (c 1. elektrolit anodowy. elektrolit katodowy. anoda. katoda. Luigi Galvani ( ) Alessandro Volta ( )

OGNIWA. Me (1) Me m+ (c 1. elektrolit anodowy. elektrolit katodowy. anoda. katoda. Luigi Galvani ( ) Alessandro Volta ( ) OGNIWA Alessandr Vlta (1745-1827) Ogniw galwaniczne: układ złżny z dwóch półgniw (elektrd), graniczących ze sbą bezpśredni lub ddzielnych przegrdą prwatą umżliwiającą ruch jnów i spełniający warunek, że

Bardziej szczegółowo

Jak pozyskać energię z reakcji redoksowych? Ogniwa galwaniczne

Jak pozyskać energię z reakcji redoksowych? Ogniwa galwaniczne Elektrchemia Jak pzyskać energię z reakcji redkswych? 1 Ogniw galwaniczne t urządzenie, w którym wytwarzany jest prąd elektryczny strumień elektrnów w przewdniku dzięki przebiegwi samrzutnej reakcji chemicznej.

Bardziej szczegółowo

ELEKTRODY i OGNIWA. Elektrody I rodzaju - elektrody odwracalne względem kationu; metal zanurzony w elektrolicie zawierającym jony tego metalu.

ELEKTRODY i OGNIWA. Elektrody I rodzaju - elektrody odwracalne względem kationu; metal zanurzony w elektrolicie zawierającym jony tego metalu. LKTRODY i OGNIWA lektrdy I rdzaju - elektrdy dwracalne względem katinu; metal zanurzny w elektrlicie zawierającym jny teg metalu. Walther H. Nernst (1864-1941) Nagrda Nbla w 190 r. z z z e Utl z e Red

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ. ( i) E( 0) str. 1 WYZNACZANIE NADPOTENCJAŁU RÓWNANIE TAFELA

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ. ( i) E( 0) str. 1 WYZNACZANIE NADPOTENCJAŁU RÓWNANIE TAFELA WYZNACZANIE NADPOTENCJAŁU RÓWNANIE TAFELA Różnica pmiędzy wartścią ptencjału elektrdy mierzneg przy przepływie prądu E(i) a wartścią ptencjału spczynkweg E(0), nsi nazwę nadptencjału (nadnapięcia), η.

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Propozycja przeprowadzenia szkolenia specjalistycznego. Instytut Metali Nieżelaznych Oddział w Poznaniu Centralne Laboratorium Akumulatorów i Ogniw

Propozycja przeprowadzenia szkolenia specjalistycznego. Instytut Metali Nieżelaznych Oddział w Poznaniu Centralne Laboratorium Akumulatorów i Ogniw Prpzycja przeprwadzenia szklenia specjalistyczneg Instytut Metali Nieżelaznych Oddział w Pznaniu Centralne Labratrium Akumulatrów i Ogniw Ramwe prgramy szkleń IMN CLAiO przeprwadza szklenia specjalistyczne

Bardziej szczegółowo

ZASTOSOWANIE POMIARU SEM OGNIW GALWANICZNYCH DO WYZNACZANIA WIELKOŚCI FIZYKOCHEMICZNYCH

ZASTOSOWANIE POMIARU SEM OGNIW GALWANICZNYCH DO WYZNACZANIA WIELKOŚCI FIZYKOCHEMICZNYCH Ćwiczenie nr 6 ZASTOSOWANIE POMIARU SEM OGNIW GALWANICZNYCH DO WYZNACZANIA WIELKOŚCI IZYKOCHEMICZNYCH I. Cel ćwiczeni Celem ćwiczeni jest: wyznczenie iloczynu rozpuszczlności soli trudno rozpuszczlnych

Bardziej szczegółowo

Elementy Elektrochemii

Elementy Elektrochemii Elementy Elektrochemii IV.: Ogniwa galwaniczne przykłady Ogniwa Pierwotne - nieodwracalne - ogniwo Volty (A.G.A.A. Volta 1800r.) - ogniwo Daniela (John Daniell 1836 r.) - Ogniwo cynkowo-manganowe (Leclanche,

Bardziej szczegółowo

ELEKTROCHEMIA. Wykład VII i VIII

ELEKTROCHEMIA. Wykład VII i VIII ELEKTROCHEMIA Wykłd VII i VIII 1 Rekcje przenoszeni Przenoszenie tomu HCl (g) + H 2 OCl - (q) + H 3 O + (q) Przenoszenie elektronu Cu (s) +2Ag + (q) Cu 2+ (q) +2Ag (s) utleninie -2e - +2e - redukcj 3 Rekcje

Bardziej szczegółowo

KINETYKA PROCESÓW ELEKTRODOWYCH

KINETYKA PROCESÓW ELEKTRODOWYCH KINETYKA PROCESÓW ELEKTRODOWYCH Zstswnie metdy ykliznej hrnwltmpermetrii w nlizie prmetrów kinetyznyh presów elektrutlenini i elektrredukji w ukłdzie Fe 3+, Fe + i Fe(CN) 3-, Fe(CN) 4- (Chemi Fizyzn II)

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):

Bardziej szczegółowo

PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =?

PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =? PROPAGACJA BŁĘDU Zad 1. Rzpuszczalnść gazów w rztwrach elektrlitów pisuje równanie Seczenwa: S ln = k c S Gdzie S i S t rzpuszczalnści gazu w czystym rzpuszczalniku i w rztwrze elektrlitu stężeniu c. Obliczy

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami) List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f

Bardziej szczegółowo

Przykład 2.1. Wyznaczanie prędkości i przyśpieszenia w ruchu bryły

Przykład 2.1. Wyznaczanie prędkości i przyśpieszenia w ruchu bryły Przykłd 1 Wyzncznie prędkści i przyśpieszeni w ruchu bryły Stżek kącie rzwrci twrzących i pdstwie, której prmień wynsi tczy się bez pślizgu p płszczyźnie Wektr prędkści śrdk pdstwy m stłą długść równą

Bardziej szczegółowo

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy

Bardziej szczegółowo

Pompy ciepła. Podział pomp ciepła. Ogólnie możemy je podzielić: ze wzgledu na sposób podnoszenia ciśnienia i tym samym temperatury czynnika roboczego

Pompy ciepła. Podział pomp ciepła. Ogólnie możemy je podzielić: ze wzgledu na sposób podnoszenia ciśnienia i tym samym temperatury czynnika roboczego Pmpy ciepła W naszym klimacie bardz isttną gałęzią energetyki jest energetyka cieplna czyli grzewanie. W miesiącach letnich kwestia ta jest mniej isttna, jednak z nadejściem jesieni jej znaczenie rśnie.

Bardziej szczegółowo

Przetworniki Elektromaszynowe st. n. st. sem. V (zima) 2018/2019

Przetworniki Elektromaszynowe st. n. st. sem. V (zima) 2018/2019 Kolokwium główne Wrint A Przetworniki lektromszynowe st. n. st. sem. V (zim 018/019 Trnsormtor Trnsormtor trójzowy m nstępujące dne znmionowe: S 00 kva 50 Hz HV / LV 15 ±x5% / 0,4 kv poł. Dyn Pondto widomo,

Bardziej szczegółowo

Obliczenia z wykorzystaniem równowagi w roztworach

Obliczenia z wykorzystaniem równowagi w roztworach Obliczeni z wykorzystniem równowgi w roztworch Obliczeni w roztworch Jkie są skłdniki roztworu? tóre rekcje dysocjcji przebiegją cłkowicie (1% dysocjcji)? tóre rekcje osiągją stn równowgi? tóre z rekcji

Bardziej szczegółowo

Chemia defektów punktowych (I) Równowagi defektowe w związkach o składzie stechiometrycznym.

Chemia defektów punktowych (I) Równowagi defektowe w związkach o składzie stechiometrycznym. Chem defektów punktwych (I) Równwg defektwe w zwązkch skłdze stechmetrycznym http://hme.gh.edu.pl/~grzesk RYSZTAŁY RZECZYWISTE RDZAJE DEETÓW PUNTWYCH hetertm w pzycj węzłwej tm w pzycj węzłwej brk tmu

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

Podstawy Chemii Nieorganicznej

Podstawy Chemii Nieorganicznej Pdstawy Chemii Nierganicznej kd kursu: CHC012001 l Ćwiczenia labratryjne AKTYWNOŚĆ CHEMICZNA I ELEKTROCHEMICZNA METALI Opracwał: Tmasz Chmielewski W P R O W A D Z E N I E Aktywnść metalu, lub inaczej jeg

Bardziej szczegółowo

Ćwiczenie 23. Maria Bełtowska-Brzezinska. ZALEŻNOŚĆ POTENCJAŁU PÓŁOGNIWA SREBRNEGO OD STĘŻENIA JONÓW Ag + W ROZTWORZE

Ćwiczenie 23. Maria Bełtowska-Brzezinska. ZALEŻNOŚĆ POTENCJAŁU PÓŁOGNIWA SREBRNEGO OD STĘŻENIA JONÓW Ag + W ROZTWORZE Ćwiczenie 23 aria Bełtwska-Brzezinska ZALEŻNOŚĆ POTENCJAŁU PÓŁOGNIWA SREBRNEGO OD STĘŻENIA JONÓW Ag + W ROZTWORZE Zagadnienia: Półgniwa rdzaje, budwa, reakcje, względna skala ptencjałów, wzór Nernsta.

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

WYZNACZANIE PUNKTU ŁADUNKU ZEROWEGO Al 2 O 3

WYZNACZANIE PUNKTU ŁADUNKU ZEROWEGO Al 2 O 3 Ćwiczenie nr II WYZNACZANIE PUNKTU ŁADUNKU ZERWEG Al 2 3 I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie punktu ładunku zerweg (PZC) tlenku glinu, tzn. wartści ph, przy której gęstść ładunku pwierzchniweg

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

Ćwiczenie 3. Charakteryzacja wysokotemperaturowego potencjometrycznego czujnika CO 2

Ćwiczenie 3. Charakteryzacja wysokotemperaturowego potencjometrycznego czujnika CO 2 Ćwiczenie 3. Charakteryzacja wysktemperaturweg ptencjmetryczneg czujnika CO (na prawach rękpisu) Wśród chemicznych czujników grupą najstarszą i najszerzej stswaną są sensry elektrchemiczne. Najczęściej

Bardziej szczegółowo

MOMENTY BEZWŁADNOŚCI FIGUR PŁASKICH

MOMENTY BEZWŁADNOŚCI FIGUR PŁASKICH MOMENT BEZWŁNOŚC FGU PŁSKCH Przekrje pprzeczne prętów włów i elek figur płskie crkterzujące się nstępującmi prmetrmi: plem pwierzcni przekrju [mm cm m ] płżeniem śrdk ciężkści przekrju mmentmi sttcznmi

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

KINETYKA PROCESÓW ELEKTRODOWYCH

KINETYKA PROCESÓW ELEKTRODOWYCH KINTYKA PROCSÓW LKTRODOWYCH Zstswnie metdy ykliznej hrnwltmpermetrii w nlizie prmetrów kinetyznyh presów elektrutlenini i elektrredukji w ukłdzie Fe 3+, Fe 2+ i Fe(CN 3-, Fe(CN 4- (Chemi Fizyzn II Mri

Bardziej szczegółowo

CAŁKA OZNACZONA JAKO SUMA SZEREGU

CAŁKA OZNACZONA JAKO SUMA SZEREGU CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych M O D E L O W A N I E I S Y M U L A C J A

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych M O D E L O W A N I E I S Y M U L A C J A POLTECHNKA GDAŃSKA Wydził Elektrotechniki i Automtyki Ktedr Energoelektroniki i Mszyn Elektrycznych M O D E L O W A N E S Y M U L A C J A S Y S T E M Ó W M E C H A T O N K Kierunek Automtyk i obotyk Studi

Bardziej szczegółowo

MA M + + A - K S, s M + + A - MA

MA M + + A - K S, s M + + A - MA ROZPUSZCZANIE OSADU MA M + + A - K S, s X + ; Y - M + ; A - H + L - (A - ; OH - ) jony obce jony wspólne protonowanie A - kompleksowanie M + STRĄCANIE OSADU M + + A - MA IS > K S czy się strąci? przy jakim

Bardziej szczegółowo

Jak działają baterie, czyli krótko o reakcjach redoks

Jak działają baterie, czyli krótko o reakcjach redoks Jak działają baterie, czyli krótk reakcjach redks Aleksandra Lewandwska Zimwe Warsztaty Naukwe Klubu Astrnmiczneg Almukantarat Łódź Luty 2009 Pdstawwe pjęcia Terminem utleniania kreślan pczątkw prces przyłączania

Bardziej szczegółowo

Ogniwo wzorcowe Westona

Ogniwo wzorcowe Westona WZOZEC SEM - OGNWO WESTON mieszczne jest w szklanym naczyniu, w które wtpine są platynwe elektrdy. Ddatni i ujemny biegun gniwa stanwią dpwiedni rtęć (Hg) i amalgamat kadmu (Cd 9-Hg), natmiast elektrlitem

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

Problemy do samodzielnego rozwiązania

Problemy do samodzielnego rozwiązania Problemy do samodzielnego rozwiązania 1. Napisz równania reakcji dysocjacji elektrolitycznej, uwzględniając w zapisie czy jest to dysocjacja mocnego elektrolitu, słabego elektrolitu, czy też dysocjacja

Bardziej szczegółowo

Prawo Coulomba i pole elektryczne

Prawo Coulomba i pole elektryczne Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx& LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy

Bardziej szczegółowo

Elektrochemia. Jak pozyskać energię z reakcji redoksowych?

Elektrochemia. Jak pozyskać energię z reakcji redoksowych? Elektrochemia Jak pozyskać energię z reakcji redoksowych? 1 Ogniwo galwaniczne to urządzenie, w którym wytwarzany jest prąd elektryczny strumień elektronów w przewodniku dzięki przebiegowi samorzutnej

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

START JESTEŚ WSPANIAŁYM ODKRYWCĄ!

START JESTEŚ WSPANIAŁYM ODKRYWCĄ! STRT JESTEŚ WSPNIŁYM DKRYWCĄ! TEN ZESZYT JEST WŁSNŚCIĄ ZESZYT ETNSKRB IMIĘ MTYWEM PRZEWDNIM ZESZYTU JEST ETNSKRB, CZYLI SKRB, KTÓRY NWIĄZUJE D ŻYCI NSZYCH PRZDKÓW, D ICH TRDYCJI I BYCZJÓW. NZWISK WIEK

Bardziej szczegółowo

http://www.clausius-tower-society.koszalin.pl/index.html

http://www.clausius-tower-society.koszalin.pl/index.html yłd rc zminy objętości czynni roboczego rc techniczn w ułdzie otwrtym n przyłdzie turbiny RównowŜność prcy i ciepł w obiegu zmniętym I zsd termodynmii dl zminy stnu msy ontrolnej Szczególne przypdi I zsdy

Bardziej szczegółowo

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych

Bardziej szczegółowo

ILOCZYN ROZPUSZCZALNOŚCI

ILOCZYN ROZPUSZCZALNOŚCI ILOCZYN ROZPUZCZALNOŚCI W nasycnym rztwrze trudn rzpuszczalneg elektrlitu występuje równwaga między fazą stałą i jnami elektrlitu w rztwrze znajdującym się nad sadem. Jest t stan równwagi dynamicznej,

Bardziej szczegółowo

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODZIAŁ KOROZJI ZE WZGLĘDU NA MECHANIZM Korozja elektrochemiczna zachodzi w środowiskach wilgotnych, w wodzie i roztworach wodnych, w glebie, w wilgotnej atmosferze oraz

Bardziej szczegółowo

cz. 2 dr inż. Zbigniew Szklarski

cz. 2 dr inż. Zbigniew Szklarski Wykłd 11: Elektrosttyk cz. 2 dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://lyer.uci.gh.edu.pl/z.szklrski/ Pole elektryczne przewodnik N powierzchni metlicznej (przewodzącej) cły łdunek gromdzi się n

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Półogniwo Podstawowe pojęcia 1 układ złożony z min. dwóch faz pozostających ze sobą w kontakcie, w którym w wyniku zachodzących procesów utleniania lub redukcji ustala się stan równowagi,

Bardziej szczegółowo

ĆWICZENIE NR 1 WYŁĄCZANIE PRĄDU STAŁEGO PRZEZ STYCZNIKI

ĆWICZENIE NR 1 WYŁĄCZANIE PRĄDU STAŁEGO PRZEZ STYCZNIKI ĆWICZENIE NR 1 WYŁĄCZANIE PRĄDU STAŁEGO PRZEZ STYCZNIKI Autor: mgr inż. Tdeusz Dszczyński Mil: dszczyt@ee.pw.edu.pl SPIS TREŚCI 1. Cel ćwiczeni... 2 2. Wstęp teoretyczny... 2 2.1. Styczniki... 2 2.2. Elektryczny

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

guziny gwar i dialektów polskich nudle kónd Jak wykorzystać Mapę gwar i dialektów polskich na zajęciach? galanty

guziny gwar i dialektów polskich nudle kónd Jak wykorzystać Mapę gwar i dialektów polskich na zajęciach? galanty sie c dzi uk, b łch n be rw n r ysk r cz cz yć p iec przód wiel któr ysik ś t m l by k c tmk w u r si f k glnty p m guziny bin u sz n kónd ek cz ć y s k nudle gwr i dilektów plskich Jk wykrzystć Mpę gwr

Bardziej szczegółowo

... Numer dokumentu 07. NIP

... Numer dokumentu 07. NIP Agencj Restrukturyzcji i Modernizcji Rolnictw Symbol formulrz : W-1/01 WNIOSEK o przyznnie płtności bezpośrednich do gruntów rolnych lub o przyznnie płtności z tytułu wsprci dziłlności rolniczej n obszrch

Bardziej szczegółowo

Ó ź Ó ź Ź Ó Ź Ó Ó Ę Ź Ą Ć Ó Ó Ź Ś Ź ź Ę Ź ŚÓ Ś Ó ź Ó Ę Ź Ó Ó Ó ŚÓ Ź Ó ź ź Ź ź ź Ę Ś ź Ą Ś Ź ź Ę Ł Ś Ź Ś ź ź Ł Ś ź Ś Ś Ś Ę Ę Ł Ł Ą Ś Ę Ą Ę Ź Ę Ę Ó Ś Ę Ń Ś Ć Ś Ś Ó Ś Ę Ę Ł Ą Ę Ą Ś Ź Ć Ó Ł ź Ń Ź Ą ź Ę Ź Ź

Bardziej szczegółowo

Ś Ś Ś ż Ł Ą Ą Ń Ś ż Ś ż Ą ż ż Ó Ź Ź ć ć ż ć Ą ć ć Ś ć ŚÓ ć ć ć ż ź Ł ż Ś Ł Ą Ó ż Ź ż ć Ś Ą Ó ż ć ż ź ż ć Ś ć Ź ż Ń Ł Ł ż ż Ą Ś ź ż ć ć Ł Ą Ą Ś Ś ż ć Ó Ó Ś Ź ź ź ż Ą ż ż ć Ść Ó ż ć Ś ź Ś Ś Ł Ś Ł Ł Ł Ł Ł

Bardziej szczegółowo

ó ś ń Ś Ó Ó Ó Ó ś Ó ż Ó Ś Ę Ó ó Ó ó Ś Ó óó Ś ś Ó ć Ź Ó ś ś ż ó ó ś Ó Ó ń Ś ś Ó ń ż ś ś Ó Ę Ó Ó Ó ś ó ś Ó Ś Ó Ś ń ń Ó ó ń ż ś Ó Ó ż ń Ś ó ż ń Ó Ś ż ń Ś ść ż ó ń ż Ś ż Ś Ś Ś Ó ń ś Ś Ó ń Ó Ą Ó Ą ć ż Ą ś ń

Bardziej szczegółowo

ń ń ś Ś Ó Ó ń ń ść ś ś ś ś ś ś ś ś ć ś ść ś ś ć ś Ż ć ś ś ś ść ć ś ń ć Ź Ż ń ń ś Ż Ą ć ń ń ś śó Ż ś ć Ź ś Ó ś Ż ś Ź ś ś ś Ż ś ś ś Ź ś ń ś Ę ć ś ś ń ś ś ś ń Ż Ż ś ś ś ń ć ć Ż ś ń Ż ś ń Ą ś ś ć ś ś Ż ś ś

Bardziej szczegółowo

Ń ŚÓ Ź Ś ź Ś Ś ć Ą ć Ź ć ć Ś ć Ś ź ć Ś ź Ś ć ź ć Ś ź Ę ć ć Ś Ś Ą ź Ś Ś Ś Ś ć Ś Ś Ś ź Ś Ś Ś Ś Ż ć Ś Ć ć ć ź ć Ś Ś Ś ŚĆ Ś ź Ś Ś ć ć ć Ś Ć ć ć Ć Ś Ś Ś ŚĆ Ś Ś Ś ć ć ź Ś Ż Ś Ś Ś Ś Ś Ś Ą Ż Ś Ś Ś Ś Ś ć ć Ó ź

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 1: lektrstatyka cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Kwantyzacja ładunku Każdy elektrn ma masę m e ładunek -e i Każdy prtn ma masę m p ładunek

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx

Bardziej szczegółowo

ELEKTROCHEMIA CIAŁA STAŁEGO

ELEKTROCHEMIA CIAŁA STAŁEGO ELEKTROCHEMIA CIAŁA STAŁEGO Wykład Ogniwa galwaniczne 1 2015-04-25 HISTORIA Prawdopodobnie pierwsze ogniwa galwaniczne były znane już w III w p.n.e. Pierwszym odkrytym ogniwem było znalezisko z 1936 r.

Bardziej szczegółowo

1 Ćwiczenie Reakcje utleniania - redukcji wstęp teoretyczny. RT nf Procesy utleniania-redukcji

1 Ćwiczenie Reakcje utleniania - redukcji wstęp teoretyczny. RT nf Procesy utleniania-redukcji Ćwiczenie 5. Rekcje utlenini - redukcji wstęp teoretyczny.. Procesy utlenini-redukcji Rekcjmi utlenini-redukcji nzywmy procesy chemiczne, którym towrzyszy zmin stopni utlenieni. Procesem utlenieni nzywmy

Bardziej szczegółowo

Sugerowany sposób rozwiązania problemów. Istnieje kilka sposobów umieszczania wykresów w raportach i formularzach.

Sugerowany sposób rozwiązania problemów. Istnieje kilka sposobów umieszczania wykresów w raportach i formularzach. MS Access - TDane b. Sugerwany spsób rzwiązania prblemów. Pmc dla TDane - ćwiczenie 26. Istnieje kilka spsbów umieszczania wykresów w raprtach i frmularzach. A. B. Przygtuj kwerendę (lub wykrzystaj kwerendę

Bardziej szczegółowo

Tydzień 1. Linie ugięcia belek cz.1. Zadanie 1. Wyznaczyć linię ugięcia metodą bezpośrednią wykorzystując równanie: EJy = -M g.

Tydzień 1. Linie ugięcia belek cz.1. Zadanie 1. Wyznaczyć linię ugięcia metodą bezpośrednią wykorzystując równanie: EJy = -M g. Studi dzienne, kierunek: Budownictwo, semestr IV Studi inżynierskie i mgisterskie (ilość godz. w2, ćw1, proj1) Wytrzymłość mteriłów. Ćwiczeni udytoryjne. Przykłdow treść ćwiczeń. Tydzień 1. Linie ugięci

Bardziej szczegółowo

Zawór regulacyjny ZK210 z wielostopniową dyszą promieniową

Zawór regulacyjny ZK210 z wielostopniową dyszą promieniową Zwór regulcyjny z wielostopniową dyszą promieniową Zwór regulcyjny Opis Zwór regulcyjny służący do prcy przy wysokich ciśnienich różnicowych. Stosowny jest między innymi, w instlcjch przemysłowych i elektrownich,

Bardziej szczegółowo

Ń Ó Ą Ó Ą Ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć Ń ć ć ć ź ź Ą ć ć ć ź Ź ź ć ŚĆ ć ć ć ź ć źń Ć Ż ź ć ć ć ź ć Ż Ą ć Ż ć ź ć ź ź ź Ą ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć Ą ć Ó ź Ó Ó Ń Ą Ó

Bardziej szczegółowo

Ą ż ń ń ń ń ż Ą ń ń ż ć ń ś ż ż ż ś ż ż ż ż ć ć ś Ą ż ń ż ż ć ń ś ź ń ś ż ś ś ń ś ń ś ś ś Ń ś ż ń ś ń ń ść ż Ę ń ś ń ń ń ś ż ć Ą ś ż Ń żń ś ż ż ń ś Ę ŁÓ Ą ż ń ń ś ń ń ż ć ż Ś ź Ń ś Ń ż ń ś ń ż ź

Bardziej szczegółowo

Ł Ł Ś Ę ź ź ź ź Ś ź ż Ę Ę Ś ż Ś ń Ś Ó Ą Ł Ą Ś ź Ę ć Ś ź ż ż ż ż ż ć ż ż Ń ć ń Ś ź ż ń ć ć ż ć ż źń ć ż ż ż ź ń ć ć Ł ż Ę ń ć ż ń ż ż Ś ź ż ń ń Ś ż Ś ń Ś ż ż Ś ń Ą ż Ł ć ż ż ż ń ż ż ż ż ń Ł ń Ę Ę Ą ń ź

Bardziej szczegółowo

ń Ą ń Ż Ż ń Ó ź Ę ź ź Ę ć ć ć Ś ź ŚĆ Ś ź ź ź ź Ś ź ń Ś Ó Ć ŚĆ Ć ć ć ć ź ń ć Ó ń ń ń Ś ń ń Ś ń ź ź ź źń Ź Ś ń Ć Ś Ś Ź ń ń Ś ń ń Ś ź ź Ś ź źń Ś ć ć ń Ś ń ń Ś Ś Ś Ś ń ź ź Ś ź źń ź Ś ń ź Ś Ś Ś ź ń ń Ś ń ń

Bardziej szczegółowo

Ą Ł ń Ź Ź Ą Ą ź ć Ź ń ź Ę Ł Ę Ł ż ć ć ć ż ż ż ć Ż ń ć ń ć Ń Ę ż Ż Ż Ż ć Ń Ż Ż Ą ń Ż Ż Ą Ą ń ż ń Ż Ź ż ż Ź ń ć ć Ą ć ć ć Ż ć ć ż ć ć Ż Ą ć Ż ć Ż ż ń ż ń ć Ż ć ć Ż Ł Ż Ż ć ż ć ć Ń Ń ż Ą ć ć ć ń ć ź ć ż ć

Bardziej szczegółowo

Zintegrowany program gospodarki transportowej dla miasta Łomży

Zintegrowany program gospodarki transportowej dla miasta Łomży 2 2/1 Dignz stnu systemu trnsprtweg Łmży 2.1 Mist Łmż Łmż jest płżn w półncnwschdniej części Plski n terenie wjewództw pdlskieg. W grnicch dministrcyjnych mist zjmuje pwierzchnię 3258 h, w tym 40% pwierzchni

Bardziej szczegółowo

Roztwory rzeczywiste (1) Roztwory rzeczywiste (2) Funkcje nadmiarowe. Również w temp. 298,15K, ale dla CCl 4 (A) i CH 3 OH (B).

Roztwory rzeczywiste (1) Roztwory rzeczywiste (2) Funkcje nadmiarowe. Również w temp. 298,15K, ale dla CCl 4 (A) i CH 3 OH (B). Roztwory rzezywiste (1) Również w tep. 98,15K, le dl CCl 4 () i CH 3 OH (). 15 Τ S 5 H,,4,6,8 1-5 - -15 G - Che. Fiz. TCH II/1 1 Roztwory rzezywiste () Ty rze dl (CH 3 ) CO () i CHCl 3 (). 15 5 Τ S -5,,4

Bardziej szczegółowo

Materiały: Śr. tłoka [mm]

Materiały: Śr. tłoka [mm] cylindry beztłoczyskowe Siłownik suwakowy 1 Ciśnienie robocze min/max 2 bar / 8 bar Temperatura otoczenia min./maks. -10 C / +60 C Medium Sprężone powietrze Maks. wielkość cząstek 5 µm Zawartość oleju

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Obliczenia w roztworach

Obliczenia w roztworach Oblizeni z wykorzystniem równowgi w roztworh Oblizeni w roztworh Jkie są skłdniki roztworu? tóre rekje dysojji przebiegją łkowiie (% dysojji)? tóre rekje osiągją stn równowgi? tóre z rekji równowgowyh

Bardziej szczegółowo

Równanie van der Waalsa - stanu gazu rzeczywistego. Gazy rzeczywiste

Równanie van der Waalsa - stanu gazu rzeczywistego. Gazy rzeczywiste 015-10-9 Gz rzeczywisty Równnie vn der Wls - stnu gzu rzeczywistego Przy ciśnieniu gzu rosnącym do jego objętość dąży do ewnej wrtości stłej Cząsteczki gzu mją skończone objętości! V eff V N b Zmniejszenie

Bardziej szczegółowo

Zadanie 5. Kratownica statycznie wyznaczalna.

Zadanie 5. Kratownica statycznie wyznaczalna. dnie 5. Krtownic sttycznie wyznczln. Wyznczyć wrtości sił w prętch krtownicy sttycznie wyznczlnej przedstwionej n Rys.1: ). metodą nlitycznego równowżeni węzłów, ). metodą gricznego równowżeni węzłów;

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA

Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA Część 2 7. METODA MIESZANA 7. 7. METODA MIESZANA Metod mieszn poleg n jednoczesnym wykorzystniu metody sił i metody przemieszczeń przy rozwiązywniu ukłdów sttycznie niewyznczlnych. Nwiązuje on do twierdzeni

Bardziej szczegółowo

WSTĘP CHARAKTERYSTYKA WZORNICTWA

WSTĘP CHARAKTERYSTYKA WZORNICTWA Annls of Wrsw University of Life Sciences SGGW Forestry nd Wood Technology No 74, 2011: 199-205 (Ann. WULS-SGGW, Forestry nd Wood Technology 74, 2011 Chrkterystyk ozdobnych drewninych posdzek w Muzeum

Bardziej szczegółowo