Równanie van der Waalsa - stanu gazu rzeczywistego. Gazy rzeczywiste
|
|
- Sławomir Kania
- 9 lat temu
- Przeglądów:
Transkrypt
1 Gz rzeczywisty Równnie vn der Wls - stnu gzu rzeczywistego Przy ciśnieniu gzu rosnącym do jego objętość dąży do ewnej wrtości stłej Cząsteczki gzu mją skończone objętości! V eff V N b Zmniejszenie ciśnieni w wrstwie rzy ścince n RT N V N b V Równnie vn der Wls (Nobel 1910) : rzyciągnie gdzie: R k B N A stł Boltzmnn: 3 k B J K W. Dominik Wydził Fizyki UW Termodynmik 015/016 1/6 Równnie stnu gzów Gzy rzeczywiste Wrtości rmetrów i b w równniu vn der Wls dl wybrnych substncji Substncj [J m 3 /mol ] b [cm 3 /mol] He H N O CO Xe Jk jest wielkość orwek objętości i ciśnieni w stosunku do gzu doskonłego w wrunkch normlnych? T = 0 º C, 0 ciśnienie normlne V eff V N b eff N V W temerturze bliskiej okojowej i rzy ciśnieniu normlnym rzybliżenie gzu doskonłego jest brdzo dobre. Odstęstw ojwiją się rzy niskich temerturch i dużych ciśnienich. W. Dominik Wydził Fizyki UW Termodynmik 015/016 /6 1
2 ciecz Równnie stnu gzów Digrmy -V Izotermy gzu doskonłego i gzu rzeczywistego T 3 > T > T 1 gz r T k T k - temertur krytyczn Izotermy := linie V=const n digrmie V W. Dominik Wydził Fizyki UW Termodynmik 015/016 3/6 Przeminy gzowe Powierzchni,V,T stnów gzu doskonłego Powierzchni stnów gzu doskonłego dl ustlonej liczby moli. izoterm V = Nk b T izobr ( = const.) V=const T=const izochor Wszystkie kwzisttyczne rzeminy gzu doskonłego możn rzedstwić jko linie n tej owierzchni. P=const Podstwy fizyki kwntowej i budowy mterii z elementmi termodynmiki W. Dominik Wydził Fizyki UW Termodynmik 015/016 4/6
3 Równnie vn der Wls n V V nb nrt lbo nrt n V nb V Ustlmy ilość substncji n jeden mol (n = 1) i omnóżmy obie strony równni rzez: V ( V b) : V V V 3 3 ( V b) RTV bv V b RTV RT V ( V b), V b 0, b 0. Jest to równnie 3-go stoni względem V. Równnie to m lbo trzy ierwistki rzeczywiste lbo jeden. Ztem dl ustlonej wrtości T, kżdej wrtości odowidją lbo trzy wrtości V lbo jedn. W. Dominik Wydził Fizyki UW Termodynmik 015/016 5/6 Izotermy vn der Wls Kłdziemy n = 1 i rozwżmy izotermy, czyli linie T = const. RT V b V [j.u.].0 skl liniow [j.u.] 10 skl logrytmiczn V [j.u.] T = 1.5 T = 1. T = 1.05 T = T = 0.95 T = T = 0.85 T = V [j.u.] Dl dużych wrtości T izotermy są tkie jk dl gzu doskonłego. W. Dominik Wydził Fizyki UW Termodynmik 015/016 6/6 3
4 Fizyczn orwk izotermy vn der Wls Rozwżmy izotermę dl T < T k 1.5 k 1.5 k Konstrukcj Mxwell T 0. 9T k 0.5 A b B T 0. 9T k V V k Przebieg izotermy w tym miejscu jest niefizyczny! Ciśnienie nie może mleć rzy izotermicznym srężniu! V V k Wrowdzmy odcinek AB tk, by ole części było równe olu części b. Twierdzimy, że odcinek ten rerezentuje rzeczywisty rzebieg izotermy między unktmi A i B. W. Dominik Wydził Fizyki UW Termodynmik 015/016 7/6 Interretcj izotermy v.d.w. o wyrostowniu : Gz (r) jest izotermicznie srężny, objętość mleje, ciśnienie rośnie. k V V k 1 W unkcie mmy rę nsyconą. Dlsze srężnie rzez stny równowgi biegnie rostym odcinkiem 5. 5: Skrlnie ry, n tym odcinku wsółistnieją dwie fzy: ciekł i gzow. W unkcie 5 mmy smą ciecz. Punkty 3 i 4 oisują stny fizycznie możliwe, le nietrwłe. W unkcie 3 mmy rę rzesyconą, w unkcie 4 ciecz rzegrzną. 5 6: Srężnie cieczy, ciśnienie rośnie gwłtownie wrz ze zmniejszniem się objętości. W. Dominik Wydził Fizyki UW Termodynmik 015/016 8/6 4
5 Powierzchni stnów wg równni vn der Wls Jedn izoterm jest wyróżnion. Jest to lini dl tkiej temertury T k, że dl kżdej wrtości T T k równnie n V m tylko jeden ierwistek rzeczywisty. To jest izoterm krytyczn. M on unkt rzegięci (znik ierwsz i drug ochodn). Jest to unkt krytyczny. Wrtości T k, V k i k w unkcie krytycznym to rmetry krytyczne substncji. Możn wykzć, że rmetry krytyczne dl r-ni vn der Wls (dl n = 1) wynoszą: 8 Tk, Vk 7Rb 3b, k. 7b W. Dominik Wydził Fizyki UW Termodynmik 015/016 9/6 Gzy rzeczywiste Prmetry krytyczne wybrnych substncji Substncj k [tm] V k [cm 3 /mol] T k [K] He H N O CO H O Hg Li z k Łtwo okzć, że rmetry krytyczne dl równni vn der Wls sełniją związek: z k kv RT k k (wsółczynnik krytyczny) W. Dominik Wydził Fizyki UW Termodynmik 015/016 10/6 5
6 ciecz Digrm fzowy w modelu vn der Wls obszr wsółistnieni fz krzyw wsółistnieni (lini równowgi) gz unkt krytyczny ciecz gz ciecz i r nsycon r Przy temerturze T > T k nie d się skrolić gwłtownie gzu rzez zwiększnie ciśnieni W. Dominik Wydził Fizyki UW Termodynmik 015/016 11/6 k ciecz r T k T Okrążjąc unkt krytyczny możemy w sosób ciągły rzeksztłcić rę w ciecz. W unkcie krytycznym znik różnic omiędzy fzą ciekłą gzową. Wystęują znczne fluktucje gęstości rzyczyn olescencji krytycznej. W. Dominik Wydził Fizyki UW Termodynmik 015/016 1/6 6
7 Przejści fzowe Stny skuieni mterii unkt krytyczny Digrm rzejść fzowych wody Punkt krytyczny T= const > T k zmienne brk ostrego rzejści fzowego =const T zmienne kżdy stn możliwy Ksztłt grnic fz n digrmie -T zleży od rodzju mterii T = const zmienne dw stny możliwe W. Dominik Wydził Fizyki UW Termodynmik 015/016 13/6 Przeminy gzowe Powierzchnie,V,T substncji rzeczywistych Substncje rzeczywiste mogą wystęowć w ostci (fzie) gzowej, ciekłej, le tkże stłej. Powierzchni stnów dl substncji, któr zwiększ swoją objętość rzy tonieniu (zchownie tkie wykzuje większość cił, n. rfin lub CO ). Dl tkiej substncji wzrost ciśnieni owoduje wzrost temertury tonieni. Dl wody jest rzeciwnie! W. Dominik Wydził Fizyki UW Termodynmik 015/016 14/6 7
8 Ciśnienie [br] Powierzchnie,V,T substncji rzeczywistych Przykłdowy roces rzy T = const : b: srężnie gzu, b c: skrlnie, c d: srężnie cieczy, d e: krzenięcie, e f: srężnie cił stłego. B D E F A C Przykłdowy roces rzy = const : A B: wzrost tem. cił stłego, B C: tonienie, C D: wzrost tem. cieczy, D E: wrzenie, E F: wzrost tem. gzu. W. Dominik Wydził Fizyki UW Termodynmik 015/016 15/6 Digrm fzowy (tyowy) CO unkt krytyczny ciło stłe ciecz gz unkt otrójny Temertur [ºC] Lini wsółistnieni fzy stłej i lotnej m dodtnie nchylenie dl wszystkich znnych substncji temertur sublimcji rośnie wrz ze wzrostem ciśnieni. Podobnie, lini wsółistnieni fzy ciekłej i lotnej m dodtnie nchylenie dl wszystkich znnych substncji temertur wrzeni rośnie wrz ze wzrostem ciśnieni. Lini wsółistnieni fzy stłej i ciekłej m dodtnie nchylenie tyko dl substncji, które się rozszerzją rzy tonieniu temertur tonieni rośnie wrz z ciśnieniem. W. Dominik Wydził Fizyki UW Termodynmik 015/016 16/6 8
9 Ciśnienie [br] Powierzchni,V,T (substncji rzeczywistej) wody! Powierzchni stnów dl substncji, któr zmniejsz swoją objętość rzy tonieniu (zchownie tkie wykzuje n. wod). Wówczs wzrost ciśnieni owoduje zmniejszenie temertury tonieni. f 4 Nie d się wtedy zestlić cieczy orzez izotermiczny wzrost ciśnieni (1 4). e d 3 Ale możn roztoić ciło stłe : b: srężnie gzu, b c: resublimcj, c d: srężnie cił stłego, d e: tonienie, e f: srężnie cieczy. c b 1 W. Dominik Wydził Fizyki UW Termodynmik 015/016 17/6 Digrm fzowy wody H O unkt krytyczny ciło stłe ciecz gz unkt otrójny Temertur [ºC] Lini wsółistnieni fzy stłej i ciekłej m ujemne nchylenie dl substncji, które się kurczą rzy tonieniu temertur tonieni mleje wtedy ze wzrostem ciśnieni. W. Dominik Wydził Fizyki UW Termodynmik 015/016 18/6 9
10 Ciśnienie [br] ? unkt krytyczny ciło stłe ciecz gz unkt otrójny Temertur [ºC] Lini wsółistnieni cieczy i gzu kończy się unktem krytycznym. Zgdk: czy lini wsółistnieni fzy stłej i ciekłej też może kończyć się jkimś unktem krytycznym? W. Dominik Wydził Fizyki UW Termodynmik 015/016 19/6 10
Skraplanie gazów metodą Joule-Thomsona. Wyznaczenie podstawowych parametrów procesu. Podstawy Kriotechniki. Laboratorium
Skralanie gazów metodą Joule-omsona. Wyznaczenie odstawowyc arametrów rocesu. Podstawy Kriotecniki Laboratorium Instytut ecniki Cielnej i Mecaniki Płynów Zakład Cłodnictwa i Kriotecniki 1. Skralarki (cłodziarki)
Wykład 3. Prawo Pascala
018-10-18 Wykład 3 Prawo Pascala Pływanie ciał Ściśliwość gazów, cieczy i ciał stałych Przemiany gazowe Równanie stanu gazu doskonałego Równanie stanu gazu van der Waalsa Przejścia fazowe materii W. Dominik
POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA
Ćwiczenie 50 POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA 50.. Widomości ogólne Soczewką nzywmy ciło pzeźoczyste oczyste ogniczone dwiem powiezchnimi seycznymi. Post pzechodząc pzez śodki kzywizny ob powiezchni
Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.
Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.
Jan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia
Procesy z Procesy z Jan Olek Uniwersytet Stefana ardynała Wyszyńskiego 2013 Wzór równania logistycznego: Ṅ(t)=rN(t)(1- N ), gdzie Ṅ(t) - przyrost populacji w czasie t r - rozrodczość netto, (r > 0) N -
Stechiometria równań reakcji chemicznych, objętość gazów w warunkach odmiennych od warunków normalnych (0 o C 273K, 273hPa)
Karta pracy I/2a Stechiometria równań reakcji chemicznych, objętość gazów w warunkach odmiennych od warunków normalnych (0 o C 273K, 273hPa) I. Stechiometria równań reakcji chemicznych interpretacja równań
Wykład 4. Przypomnienie z poprzedniego wykładu
Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika
1 Granice funkcji. Definicja 1 (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f(x) w punkcie x = a, co zapisujemy.
Granice funkcji Definicja (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f() w punkcie = a, co zapisujemy f() = g (.) a jeżeli dla każdego ε > 0 można wskazać taką liczbę (istnieje
Właściwości materii - powtórzenie
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Czy zjawisko
2.Prawo zachowania masy
2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco
7. REZONANS W OBWODACH ELEKTRYCZNYCH
OBWODY SYGNAŁY 7. EZONANS W OBWODAH EEKTYZNYH 7.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód
Olej rzepakowy, jako paliwo do silników z zapłonem samoczynnym
Coraz częściej jako paliwo stosuje się biokomponenty powstałe z roślin oleistych. Nie mniej jednak właściwości fizykochemiczne oleju napędowego i oleju powstałego z roślin znacząco różnią się miedzy sobą.
Zestaw 11- Działania na wektorach i macierzach, wyznacznik i rząd macierzy
Zestw - Dziłni n wektorch i mcierzch, wyzncznik i rząd mcierzy PRZYKŁADOWE ZADANIA Z ROZWIAZANIAMI Dodjąc( bądź odejmując) do siebie dw wektory (lub więcej), dodjemy (bądź odejmujemy) ich odpowiednie współrzędne
KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI LABORATORIUM ELEKTROENERGETYKI. Rys. 7.7.1. Pomiar impedancji pętli zwarcia dla obwodu L2
6.7. ntrukcj zczegółow Grup:... 4.. 6.7. Cel ćwiczeni Celem ćwiczeni jet zpoznnie ię z metodmi pomirowymi i przepimi dotyczącymi ochrony przeciwporżeniowej w zczególności ochrony przed dotykiem pośrednim.
GRAFY i SIECI. Graf: G = ( V, E ) - para uporządkowana
GRAFY podstwowe definicje GRAFY i SIECI Grf: G = ( V, E ) - pr uporządkown V = {,,..., n } E { {i, j} : i j i i, j V } - zbiór wierzchołków grfu - zbiór krwędzi grfu Terminologi: grf = grf symetryczny,
W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1
W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 3. Rozwiąż równanie: sin 5x cos x + sin x = 0. W rozwiązaniach podobnych zadań często korzystamy ze wzorów trygonometrycznych
PRÓG RENTOWNOŚCI i PRÓG
PRÓG RENTOWNOŚCI i PRÓG WYPŁACALNOŚCI (MB) Próg rentowności (BP) i margines bezpieczeństwa Przychody Przychody Koszty Koszty całkowite Koszty stałe Koszty zmienne BP Q MB Produkcja gdzie: BP próg rentowności
STA T T A YSTYKA Korelacja
STATYSTYKA Korelacja Pojęcie korelacji Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Charakteryzując korelację dwóch cech podajemy dwa czynniki: kierunek oraz
Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych ul. Koszykowa 75, 00-662 Warszawa
Zamawiający: Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej 00-662 Warszawa, ul. Koszykowa 75 Przedmiot zamówienia: Produkcja Interaktywnej gry matematycznej Nr postępowania: WMiNI-39/44/AM/13
Je eli m, n! C i a, b! R[ m a. = -x. a a. m = d n pot ga ilorazu. m m m. l = a pot ga pot gi. a $ b = a $ b pierwiastek stopnia trzeciego
0 Podzi kàtów ze wzgl du mir Przyk dy kàtów 0 B B W soêi Kàt wkl s y m mir wi kszà od 80 i miejszà od 60. Kàty wyuk e to kàty, któryh mir jest wi ksz àdê rów 0 i miejsz àdê rów 80, lu rów 60. Ni ej rzedstwimy
Matematyka:Matematyka I - ćwiczenia/granice funkcji
Matematyka:Matematyka I - ćwiczenia/granice funkcji 1 Matematyka:Matematyka I - ćwiczenia/granice funkcji Granice funkcji Zadanie 1 Wykorzystując definicję Heinego granicy funkcji, znaleźć (1) Zadanie
Ć W I C Z E N I E N R C-6
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA MECHANIKI I CIEPŁA Ć W I C Z E N I E N R C-6 WYZNACZANIE SPRAWNOŚCI CIEPLNEJ GRZEJNIKA ELEKTRYCZNEGO
Ćwiczenie nr 6 BADANIE WYDAJNOŚCI KOMPRESOROWEJ POMPY CIEPŁA
Ćwiczenie nr 6 BADAIE WYDAJOŚCI KOMPRESOROWEJ POMPY CIEPŁA CEL I ZAKRES ĆWICZEIA Celem ćwiczenia jest badanie efektywności omy cieła. Ćwiczenie olega na dokonaniu omiarów temeratur i ciśnień odczas racy
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe)
Pieczęć KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe) Witamy Cię na trzecim etapie Konkursu Przedmiotowego z Fizyki i życzymy
PL 205289 B1 20.09.2004 BUP 19/04. Sosna Edward,Bielsko-Biała,PL 31.03.2010 WUP 03/10 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 205289
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 205289 (13) B1 (21) Numer zgłoszenia: 359196 (51) Int.Cl. B62D 63/06 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 17.03.2003
Metrologia cieplna i przepływowa
Metrologia cieplna i przepływowa Systemy, Maszyny i Urządzenia Energetyczne, I rok mgr Pomiar małych ciśnień Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków
Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych
Podstawowe pojęcia: Badanie statystyczne - zespół czynności zmierzających do uzyskania za pomocą metod statystycznych informacji charakteryzujących interesującą nas zbiorowość (populację generalną) Populacja
Epidemiologia weterynaryjna
Jarosław Kaba Epidemiologia weterynaryjna Testy diagnostyczne I i II i III Zadania 04, 05, 06 Warszawa 2009 Testy diagnostyczne Wzory Parametry testów diagnostycznych Rzeczywisty stan zdrowia chore zdrowe
Przygotowały: Magdalena Golińska Ewa Karaś
Przygotowały: Magdalena Golińska Ewa Karaś Druk: Drukarnia VIVA Copyright by Infornext.pl ISBN: 978-83-61722-03-8 Wydane przez Infornext Sp. z o.o. ul. Okopowa 58/72 01 042 Warszawa www.wieszjak.pl Od
Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a
Dokumentacja Techniczna Zbiorniki podziemne Monolith
Dokumentacja Techniczna Zbiorniki podziemne Monolith Monolit h DORW2045 07.04.2009 1 / 11 1. Lokalizacja 1.1 Lokalizacja względem budynków Nie wolno zabudowywać terenu nad zbiornikiem. Minimalną odległość
1. Rozwiązać układ równań { x 2 = 2y 1
Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,
Kilka zasad o których warto trzeba pamiętać
Kilka zasad o których warto trzeba pamiętać Pamiętaj o celu pisania dokumentu. Dostosuj do niego format strony i jej układ. Pozostaw rozsądnie duże marginesy, nie stłaczaj tekstu. Jeżeli strony będą spięte,
Ogólna charakterystyka kontraktów terminowych
Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do
2010 W. W. Norton & Company, Inc. Nadwyżka Konsumenta
2010 W. W. Norton & Company, Inc. Nadwyżka Konsumenta Pieniężny Pomiar Korzyści z Handlu Możesz kupić tyle benzyny ile chcesz, po cenie 2zł za litr. Jaka jest najwyższa cena, jaką zapłacisz za 1 litr benzyny?
XIII KONKURS MATEMATYCZNY
XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania
MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.
INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję
(13) B1 PL 172025 B1. (21) Numer zgłoszenia 298568 F24H 1/36. Vetter Richard, Peine-Dungelbeck, DE. Richard Vetter, Peine-Dungelbeck, DE
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 172025 (13) B1 (21) Numer zgłoszenia 298568 Urząd Patentowy (22) Data zgłoszenia 15.04.1993 Rzeczypospolitej Polskiej (5 1) Int.Cl.6 F24H 1/36 (54)
1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i
Ukły yrow (loizn) 1.1. Ukły o zminy koów (kory, kory, nkory) i Są to ukły kominyjn, zminiją sposó koowni lu przstwini ny yrowy. 1.1.1. kory kory to ukły kominyjn, zminiją n yrow, zpisn w owolnym kozi innym
Rys.1. Rys.1. str.1. 19h 20h 21h 22h 23h 24h 0h 1h 2h 3h 4h 5h 6h. kopia. Nr1
niewidoczny skrypt Romny (R) dl wszystkich ludzi świt NIESAMWITE MŻLIWŚCI SZABLNÓW LISTWWYCH: "A"; "B", "C" ZWIĄZANE Z ŁUKAMI, PDZIAŁEM RÓWNMIERNIE RZŁŻNYM. KPIA FRAGMENTU PLIKU: SKRYPT (R).001. STRNA
40. Międzynarodowa Olimpiada Fizyczna Meksyk, 12-19 lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA
ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA Celem tego zadania jest podanie prostej teorii, która tłumaczy tak zwane chłodzenie laserowe i zjawisko melasy optycznej. Chodzi tu o chłodzenia
Chillout w pracy. Nowatorska koncepcja
Chillout w pracy Wypoczęty pracownik to dobry pracownik. Ciężko z tym stwierdzeniem się nie zgodzić, ale czy możliwy jest relaks w pracy? Jak dzięki aranżacji biura sprawić frajdę pracownikom? W każdej
Paweł Selera, Prawo do odliczenia i zwrotu podatku naliczonego w VAT, Wolters Kluwer S.A., Warszawa 2014, ss. 372
Paweł Selera, Prawo do odliczenia i zwrotu podatku naliczonego w VAT, Wolters Kluwer S.A., Warszawa 2014, ss. 372 I Odliczenie i zwrot podatku naliczonego to podstawowe mechanizmy funkcjonowania podatku
18 TERMODYNAMIKA. PODSUMOWANIE
Włodzimierz Wolczyński 18 TERMODYNAMIKA. PODSUMOWANIE Zadanie 1 Oto cykl pracy pewnego silnika termodynamicznego w układzie p(v). p [ 10 5 Pa] 5 A 4 3 2 1 0 C B 5 10 15 20 25 30 35 40 V [ dm 3 ] Sprawność
Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23
Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy
Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu
Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na
NUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
Surowiec Zużycie surowca Zapas A B C D S 1 0,5 0,4 0,4 0,2 2000 S 2 0,4 0,2 0 0,5 2800 Ceny 10 14 8 11 x
Przykład: Przedsiębiorstwo może produkować cztery wyroby A, B, C, i D. Ograniczeniami są zasoby dwóch surowców S 1 oraz S 2. Zużycie surowca na jednostkę produkcji każdego z wyrobów (w kg), zapas surowca
Klasyfikacja i oznakowanie substancji chemicznych i ich mieszanin. Dominika Sowa
Klasyfikacja i oznakowanie substancji chemicznych i ich mieszanin Dominika Sowa Szczecin, 8 maj 2014 Program prezentacji: 1. Definicja substancji i mieszanin chemicznych wg Ustawy o substancjach chemicznych
KONKURSY MATEMATYCZNE. Treść zadań
KONKURSY MATEMATYCZNE Treść zadań Wskazówka: w każdym zadaniu należy wskazać JEDNĄ dobrą odpowiedź. Zadanie 1 Wlewamy 1000 litrów wody do rurki w najwyższym punkcie systemu rurek jak na rysunku. Zakładamy,
PROE wykład 7 kontenery tablicowe, listy. dr inż. Jacek Naruniec
PROE wykład 7 kontenery tablicowe, listy dr inż. Jacek Naruniec Prosty kontener oparty na tablicach Funkcja dodawanie pojedynczego słonia do kontenera: 1 2 3 4 5 6 7 11 12 13 14 15 16 17 21 22 23 24 25
art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny (Dz. U. Nr 16, poz. 93 ze zm.),
Istota umów wzajemnych Podstawa prawna: Księga trzecia. Zobowiązania. Dział III Wykonanie i skutki niewykonania zobowiązań z umów wzajemnych. art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW BADANIE RÓWNOWAGI ADSORPCYJNEJ W ROZTWORZE BARWNIKA Opiekun ćwiczenia: Miejsce ćwiczenia: Krzysztof Kozieł Zakład Chemii
Projekt MES. Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe
Projekt MES Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe 1. Ugięcie wieszaka pod wpływem przyłożonego obciążenia 1.1. Wstęp Analizie poddane zostało ugięcie wieszaka na ubrania
Handel zagraniczny towarami rolno-spoŝywczymi Polski z Norwegią w latach 2009 2013 i w okresie I VII 2014 r.
BIURO ANALIZ I PROGRAMOWANIA Warszawa, 2014-09-26 Handel zagraniczny towarami rolno-spoŝywczymi Polski z Norwegią w latach 2009 2013 i w okresie I VII 2014 r. Norwegia jest państwem zbliŝonym pod względem
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzmin mturlny mj 009 INFORMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Informtyk poziom podstwowy CZ I Nr zdni Nr podpunktu Mks. punktj z z zdni Mks. punktj z zdnie 1. Z poprwne uzupe nienie
Wyznaczenie sprawności grzejnika elektrycznego i ciepła właściwego cieczy za pomocą kalorymetru z grzejnikiem elektrycznym
Nr. Ćwiczenia: 215 Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 20 IV 2009 Temat Ćwiczenia: Wyznaczenie sprawności grzejnika elektrycznego i ciepła właściwego
3. BADA IE WYDAJ OŚCI SPRĘŻARKI TŁOKOWEJ
1.Wprowadzenie 3. BADA IE WYDAJ OŚCI SPRĘŻARKI TŁOKOWEJ Sprężarka jest podstawowym przykładem otwartego układu termodynamicznego. Jej zadaniem jest między innymi podwyższenie ciśnienia gazu w celu: uzyskanie
spektroskopia UV Vis (cz. 2)
spektroskopia UV Vis (cz. 2) spektroskopia UV-Vis dlaczego? wiele związków organicznych posiada chromofory, które absorbują w zakresie UV duża czułość: zastosowanie w badaniach kinetyki reakcji spektroskop
Nie racjonalnych powodów dla dopuszczenia GMO w Polsce
JANUSZ WOJCIECHOWSKI POSEŁ DO PARLAMENTU EUROPEJSKIEGO WICEPRZEWODNICZĄCY KOMISJI ROLNICTWA I ROZWOJU WSI Tekst wystąpienia na Konferencji: "TRADYCYJNE NASIONA - NASZE DZIEDZICTWO I SKARB NARODOWY. Tradycyjne
Warszawska Giełda Towarowa S.A.
KONTRAKT FUTURES Poprzez kontrakt futures rozumiemy umowę zawartą pomiędzy dwoma stronami transakcji. Jedna z nich zobowiązuje się do kupna, a przeciwna do sprzedaży, w ściśle określonym terminie w przyszłości
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: POMIAR CIŚNIENIA SPRĘŻANIA SILNIKA SPALINOWEGO.
WOJEWÓDZKI URZĄD PRACY W SZCZECINIE
WOJEWÓDZKI URZĄD PRACY W SZCZECINIE Powierzenie pracy cudzoziemcom na podstawie oświadczenia pracodawcy bez konieczności uzyskania zezwolenia na pracę w województwie zachodniopomorskim w 2013 roku Opracowanie:
Info rmatyzacja Przedsiębiorstw
Info rmatyzacja Przedsiębiorstw Laboratorium 3 Moduł finansowo - księ gowy Plan zaję ć 1 Sporzą dzanie Bilansu... 2 1.1 Zatwierdzanie bilansu otwarcia... 2 1.2 Sporzą dzanie bilansu... 2 2 Sporzą dzanie
Lekcja 15. Temat: Prąd elektryczny w róŝnych środowiskach.
Lekcja 15 Temat: Prąd elektryczny w róŝnych środowiskach. Pod wpływem pola elektrycznego (przyłoŝonego napięcia) w materiałach, w których istnieją ruchliwe nośniki ładunku dochodzi do zjawiska przewodzenia
Matematyka ubezpieczeń majątkowych 12.10.2002 r.
Matematya ubezpieczeń majątowych.0.00 r. Zadanie. W pewnym portfelu ryzy ubezpieczycielowi udaje się reompensować sobie jedną trzecią wartości pierwotnie wypłaconych odszodowań w formie regresów. Oczywiście
4.1. Transport ISK SKIERNIEWICE, PL
TRANSPORT 18 4.1. Transport Transport, w szczególności towarów niebezpiecznych, do których należą środki ochrony roślin, jest zagadnieniem o charakterze przygotowawczym nie związanym ściśle z produkcją
TURYSTYKA W WOJEWÓDZTWIE ŚWIĘTOKRZYSKIM W 2007 ROKU
TURYSTYKA W WOJEWÓDZTWIE ŚWIĘTOKRZYSKIM W 2007 ROKU Źródłem danych o stanie i wykorzystaniu turystycznych obiektów zbiorowego zakwaterowania jest stałe badanie statystyczne Głównego Urzędu Statystycznego,
Podstawowe działania w rachunku macierzowym
Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:
Co do zasady, obliczenie wykazywanej
Korekta deklaracji podatkowej: można uniknąć sankcji i odzyskać ulgi Piotr Podolski Do 30 kwietnia podatnicy podatku dochodowego od osób fizycznych byli zobowiązani złożyć zeznanie określające wysokość
Ksztaªt orbity planety: I prawo Keplera
V 0 V 0 Ksztaªt orbity planety: I prawo Keplera oka»emy,»e orbit planety poruszaj cej si pod dziaªaniem siªy ci»ko±ci ze strony Sªo«ca jest krzywa sto»kowa, w szczególno±ci elipsa. Wektor pr dko±ci planety
Liczby zespolone C := R 2.
C := R 2. R 2 (a, b) = (a, 0) + (0, b) = a (1, 0) + b (0, 1). R C, R x (x, 0) C. i := (0, 1), 1 = (1, 0) (a, b) = a(1, 0) + b(0, 1) = a + bi. R 2 (a, b) = z = a + bi C. a- część rzeczywista liczby zespolonej
Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika
Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram
Wiedza niepewna i wnioskowanie (c.d.)
Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu
Podejmowanie decyzji. Piotr Wachowiak
Podejmowanie decyzji Co to jest sytuacja decyzyjna? Jest to sytuacja, kiedy następuje odchylenie stanu istniejącego od stanu pożądanego. Rozwiązanie problemu decyzyjnego polega na odpowiedzeniu na pytanie:
Monopolistyczna konkurencja
Monopolistyczna konkurencja Monopolistyczna konkurencja Wiele firm Brak barier wejścia / wyjścia rodukt zróżnicowany Siła rynkowa pojedynczej firmy zależy od stopnia zróżnicowania produktu Dobra bliskimi,
Oferty portalu. Statystyki wejść w oferty wózków widłowych na tle ofert portalu w latach 2011-2014 oraz I kw.2015 r. 2011 2012 2013 2014 I kw.
1 kwartał 215 rok Oferty portalu Dane na przedstawionym wykresie pokazują kolejne etapy wzrostu zainteresowania ofertami, które publikowane są na portalu. W 214 roku, w stosunku do pierwszego roku działalności
4.3. Warunki życia Katarzyna Gorczyca
4.3. Warunki życia Katarzyna Gorczyca [w] Małe i średnie w policentrycznym rozwoju Polski, G.Korzeniak (red), Instytut Rozwoju Miast, Kraków 2014, str. 88-96 W publikacji zostały zaprezentowane wyniki
Podstawa prawna: Ustawa z dnia 15 lutego 1992 r. o podatku dochodowym od osób prawnych (t. j. Dz. U. z 2000r. Nr 54, poz. 654 ze zm.
Rozliczenie podatników podatku dochodowego od osób prawnych uzyskujących przychody ze źródeł, z których dochód jest wolny od podatku oraz z innych źródeł Podstawa prawna: Ustawa z dnia 15 lutego 1992 r.
W tym elemencie większość zdających nie zapisywała za pomocą równania reakcji procesu zobojętniania tlenku sodu mianowanym roztworem kwasu solnego.
W tym elemencie większość zdających nie zapisywała za pomocą równania reakcji procesu zobojętniania tlenku sodu mianowanym roztworem kwasu solnego. Ad. IV. Wykaz prac według kolejności ich wykonania. Ten
PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc
PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych
Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW
Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest
DOPALACZE- Legalne nie znaczy bezpieczne
DOPALACZE- Legalne nie znaczy bezpieczne 29.10. Katowice CO TO SĄ DOPLACZE? Dopalacz, czy Dopalacz, dopalacze czy to dopalacze termin to termin nieposiadający nieposiadającycharakteru naukowego. UŜywa
Transport Mechaniczny i Pneumatyczny Materiałów Rozdrobnionych. Ćwiczenie 2 Podstawy obliczeń przenośników taśmowych
Transport Mechaniczny i Pneumatyczny Materiałów Rozdrobnionych Ćwiczenie 2 Podstawy obliczeń przenośników taśmowych Wydajność przenośnika Wydajnością przenośnika określa się objętość lub masę nosiwa przemieszczanego
Sposób demontażu starych,i montażu nowych zawiasów..
Sposób demontażu starych,i montażu nowych zawiasów.. Na przestrzeni ostatniego ćwierćwiecza,w meblach produkowanych w Polsce,z dużym prawdopodobieństwem możemy spotkać się z którymś z przedstawionych na
Soczewkowanie grawitacyjne 3
Soczewkowanie grawitacyjne 3 Przypomnienie Mikrosoczewkowania a natura ciemnej materii Źródła rozciągłe Efekt paralaksy Linie krytyczne i kaustyki Przykłady Punktowa soczewka Punktowa soczewka Punktowe
ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C
Bazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15
Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15 Przechowywanie danych Wykorzystanie systemu plików, dostępu do plików za pośrednictwem systemu operacyjnego
Udoskonalona wentylacja komory suszenia
Udoskonalona wentylacja komory suszenia Komora suszenia Kratka wentylacyjna Zalety: Szybkie usuwanie wilgoci z przestrzeni nad próbką Ograniczenie emisji ciepła z komory suszenia do modułu wagowego W znacznym
Termodynamika poziom podstawowy
ermodynamika oziom odstawowy Zadanie 1. (1 kt) Źródło: CKE 2005 (PP), zad. 8. Zadanie 2. (2 kt) Źródło: CKE 2005 (PP), zad. 17. 1 Zadanie 3. (3 kt) Źródło: CKE 2005 (PP), zad. 19. 2 Zadanie 4. (2 kt) Źródło:
III. GOSPODARSTWA DOMOWE, RODZINY I GOSPODARSTWA ZBIOROWE
III. GOSPODARSTWA DOMOWE, RODZINY I GOSPODARSTWA ZBIOROWE 1. GOSPODARSTWA DOMOWE I RODZINY W województwie łódzkim w maju 2002 r. w skład gospodarstw domowych wchodziło 2587,9 tys. osób. Stanowiły one 99,0%
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź
Harmonogramowanie projektów Zarządzanie czasem
Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..
Phytophthora cactorum (Leb. & Cohn) Schröeter
PAŃSTWOWA INSPEKCJA OCHRONY ROŚLIN I NASIENNICTWA GŁÓWNY INSPEKTORAT PIORIN ul. Wspólna 30, 00-930 Warszawa tel: (22) 623 23 02, fax: (22) 623 23 04 www.piorin.gov.pl; e-mail gi@piorin.gov.pl Phytophthora
- PROJEKT - U M O W A
Załącznik Nr 8 do SIWZ - PROJEKT - U M O W A zawarta w dniu.. w Dąbrowie pomiędzy Domem Pomocy Społecznej w Dąbrowie 95-047 Jeżów, Dąbrowa 1 zwanym dalej Zamawiającym reprezentowanym przez: Dyrektor Krzysztof
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik ochrony fizycznej osób i mienia 515[01]
Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik ochrony fizycznej osób i mienia 515[01] 1 2 3 4 5 6 Efektem rozwiązania zadania egzaminacyjnego przez zdającego była praca 7 egzaminacyjna,
Projekt. Projekt opracował Inż. Roman Polski
Projekt stałej organizacji ruchu na drogach powiatowych i gminnych miasta Puławy związany z projektem przebudowy niebieskiego szlaku rowerowego do rezerwatu Piskory. Projekt opracował Inż. Roman Polski
Projektowanie konstrukcji z blach i profili
Projektownie konstrukji z lh i profili KAtlog 1.1 01/2011 zmówienie fksowe: +48 (0) 61 29 70 123 legend towr w opkowniu s Do prezentji n regłh z hkmi. W opkowniu typu skin i lister. opkownie hurtowe Pojedyńze
INSTRUKCJA BHP PRZY RECZNYCH PRACACH TRANSPORTOWYCH DLA PRACOWNIKÓW KUCHENKI ODDZIAŁOWEJ.
INSTRUKCJA BHP PRZY RECZNYCH PRACACH TRANSPORTOWYCH DLA PRACOWNIKÓW KUCHENKI ODDZIAŁOWEJ. I. UWAGI OGÓLNE. 1. Dostarczanie posiłków, ich przechowywanie i dystrybucja musza odbywać się w warunkach zapewniających