POMIAR WSPÓŁCZYNNIKA LEPKOŚCI WODY I WYZNACZENIE KRYTYCZNEJ LICZBY REYNOLDSA METODĄ BADANIA SZYBKOŚCI WYPŁYWU WODY RURKĄ KAPILARNĄ

Wielkość: px
Rozpocząć pokaz od strony:

Download "POMIAR WSPÓŁCZYNNIKA LEPKOŚCI WODY I WYZNACZENIE KRYTYCZNEJ LICZBY REYNOLDSA METODĄ BADANIA SZYBKOŚCI WYPŁYWU WODY RURKĄ KAPILARNĄ"

Transkrypt

1 POMIA WSPÓŁCZYNNIKA LEPKOŚCI WODY I WYZNACZENIE KYTYCZNEJ LICZBY EYNOLDSA METODĄ BADANIA SZYBKOŚCI WYPŁYWU WODY UKĄ KAPILANĄ I. Cel ćwiczenia: zapoznanie z cechami turbulentnego i laminarnego wypływu wody z naczynia, zaobserwowanie zmiany charakteru przepływu cieczy rzeczywiste przez kapilarę wraz ze zmianą prędkości (przeście z przepływu turbulentnego w laminarny). Wyznaczenie dynamicznego współczynnika lepkości wody η w oparciu o wykres zaleŝności natęŝenia przepływu od wysokości słupa wody w naczyniu dla te części zaleŝności, która odpowiada wyłącznie wypływowi laminarnemu. II. Przyrządy: cylinder ze skalą, kapilary, stoper, suwmiarka III. Literatura: 1. Encyklopedia fizyki, PWN Warszawa, 1973 r., str Sz. Szczeniowski, Fizyka doświadczalna, cz.1, PWN Warszawa, J. A. Zakrzewski, A.K. Wróblewski, Wstęp do fizyki, PWN Warszawa, t.1, 1984 r., str. 300 i t.2, cz.1, 1989, str M. Grotowski, Wykłady fizyki, t.1, Czytelnik, 1949, str H. Szydłowski, Pracownia fizyczna, PWN Warszawa, IV. Charakterystyka laminarnego i turbulentnego przepływu cieczy. Oddziaływania między cząsteczkami cieczy (których natura est w zasadzie elektryczna) powoduą, Ŝe w kaŝde cieczy rzeczywiste, w odróŝnieniu od e modelowego odpowiednika - cieczy idealne - występue tarcie wewnętrzne, zwane teŝ lepkością. Lepkość charakteryzue opór cieczy przeciw płynięciu pod działaniem sił zewnętrznych. Wpływ lepkości w cieczach uawnia się w całe ich obętości. ozwaŝmy warstwę cieczy o grubości h, zawartą między dwiema płaskimi i równoległymi płytkami np. P i P' (o powierzchni S kaŝda), z których P spoczywa, a P' przemieszcza się z prędkością v o pod wpływem styczne siły zewnętrzne F r o ( rys.1 ). Tarcie wewnętrzne powodue powstanie między dwiema sąsiednimi warstwami cieczy, poruszaącymi się z nieednakową prędkością, sił stycznych do powierzchni tych warstw i skierowanych odwrotnie do ich prędkości względne. Prędkość płytki P' - vo, est stała, o ile siła tarcia wewnętrznego cieczy T (tzw. opór lepki), występuąca między drobinami cieczy, a w szczególności w warstwie przylegaące do płytki P', równowaŝy siłę zewnętrzną: F T. Cząsteczki cieczy przy- r r legaące do płaszczyzny P' przesuwaą się wraz z nią z prędkością v o, natomiast cząsteczki cieczy przylegaące do płytki P (spoczywaące) maą prędkość zerową. W te sytuaci, i pod warunkiem, Ŝe odkształcenie postaciowe cieczy est ednorodne, w kierunku prostopadłym do powierzchni płytek (np. w kierunku osi z), w polu przekrou poprzecznego strugi ustala się prze- 1/8

2 pływ cieczy o róŝnych lokalnych prędkościach, zmieniaących się liniowo w przedziale od 0 (dla z 0) do v r o v o ( dla z h ). z v r o F r o P ' v r o h ys.1 ozkład wektora prędkości cieczy rzeczywiste (lepkie) zawarte między dwiema płytkami równoległymi P i P', z których płytka P spoczywa. Stan taki opisue się gradientem prędkości o edne nie znikaące wartości w kierunku osi z : dv/dz v o /h. W przypadku gdy odkształcenie postaciowe cieczy, pod wpływem styczne siły zewnętrzne F o est ednorodne, współczynnik lepkości cieczy η, będący miarą oporu lepkiego cieczy, wylicza się ze wzoru Newtona [1]: F η o ( 1 ) dv S dt W układzie SI ednostką lepkości est 1 Pa s (paskalosekunda). We wzorze (1) wyraŝenie t F o /S oznacza działaące na płytę napręŝenie styczne. Takie napręŝenie działa teŝ na kaŝdą równoległą do płytki warstwę cieczy, która porusza się z prędkością róŝną od prędkości warstwy sąsiednie. Wobec tego, Ŝe cząsteczki płynące cieczy rzeczywiste (lepkie), w sąsiednich warstwach, poruszaą się z róŝnymi prędkościami, przepływ e wygodnie est scharakteryzować podaąc średnią prędkość ruchu. Przy małych średnich prędkościach, tory cząsteczek cieczy są liniami gładkimi, linie prądu są równoległe i nie mieszaą się. Taki przepływ nazywa się regularnym, warstwowym lub laminarnym. Ze wzrostem średnie prędkości przepływu tory cząsteczek cieczy nabieraą charakteru nieuporządkowanego, burzliwego. W cieczy tworzą się zawirowania i występuą nieregularności przepływu strug cieczy. Taki ruch cieczy nazywany est turbulentnym. W przypadku gdy przepływ cieczy est laminarny, współczynnik lepkości η ma charakter stałe fizyczne cieczy. Nie zaleŝy on od grubości warstwy ośrodka lepkiego ani od rozmiarów płytek. Nie zaleŝy teŝ od napręŝenia stycznego. Ze wzrostem średnie prędkości przepływu i w warunkach ego złoŝone geometrii, moŝe nastąpić zmiana charakteru przepływu z laminarnego w turbulentny. W takie sytuaci poęcie oporu lepkiego naleŝy zastąpić poęciem oporu turbulentnego. V. Prawa przepływu cieczy V.1 Ciecz idealna. Podstawową zasadą fizyczną, rządzącą przepływem cieczy idealne (nielepkie, nieściśliwe, niewaŝkie) przez przewody o róŝnych przekroach poprzecznych est "zasada ciągłości strugi". Jeśli w miescu gdzie przekró strugi est A, prędkość płynące cieczy est v, a w innym miescu P 2/8

3 strugi odpowiednio przekró poprzeczny wynosi A' i prędkość przepływu wynosi v', to zasada ta pozwala zapisać równanie: v A v A ( 2 ) Prawo to, akkolwiek sformułowane dla cieczy idealne, moŝna stosować do przepływu cieczy rzeczywiste, eśli przez v i v' rozumieć będziemy średnie prędkości przepływu w obszarach strugi cieczy o przekroach odpowiednio A i A ' oraz o ile moŝna uznać, Ŝe prędkość cieczy est stała. Drugim podstawowym prawem przepływu cieczy idealne est "zasada Bernoulliego", którą dla określone strugi, wyodrębnione w płynącym płynie, umue równanie: 1 p + ρv 2 + ρgh const. 2 gdzie ρ est gęstością cieczy, h - wysokością wybranego przekrou poprzecznego strugi cieczy ponad poziom odniesienia, v - lokalną prędkością przepływu, p - ciśnieniem w danym przekrou poprzecznym strugi cieczy, g - wartością przyspieszenia ziemskiego. V.2 Ciecz rzeczywista przepływaąca przez kapilarę. Podczas laminarnego wypływu cieczy rzeczywiste przez kapilarę (o długości l, które promień wewnętrzny przekrou kołowego est ), spowodowanego róŝnicą ciśnień na e końcach (p 1 - p ), tory cząsteczek cieczy są prostoliniowe i równoległe do osi rurki. JednakŜe prędkości 2 ich, w punktach wzdłuŝ średnicy kapilary ( pokrywaące się np. z osią r ), są zróŝnicowane co do wartości. Nawiększą prędkość maą cząsteczki na osi kapilary ( r 0 ), natomiast drobiny przylegaące do ścianek wewnętrznych rurki ( r ) maą prędkość równą zeru. Symetria zagadnienia pozwala wyodrębnić w płynie współśrodkowe cylindry o promieniu r ( dla 0 < r < ) i grubości dr na tyle małe, Ŝe prędkość drobin cieczy w zakresie wybranego cylindra est stała i wynosi v(r) (rysunek 2). ( 3 ) r r + dr r v( r) l p 1 p 2 ys.2 ozkład prędkości przepływu cieczy lepkie w rurce o promieniu pod wpływem róŝnicy ciśnień p 1 - p 2. JeŜeli przepływ est laminarny, to edynie ruch cieplny cząsteczek powodue wymianę pędu zachodzącą poprzez ścianki tak pomyślanych walców. Ten ruch cieplny ma tendencę do wyrównywania prędkości cząsteczek z sąsiednich obszarów. Ilościowo proces ten opisue się siłą tarcia wewnętrznego T, proporconalną do powierzchni boczne walców oraz do gradientu prędkości: dv( r ) T η S ( 4 ) dr 3/8

4 gdzie η est współczynnikiem lepkości. W warunkach przepływu laminarnego, siła tarcia T i siła zewnętrzna F wynikaąca (w tym przypadku) z róŝnicy ciśnień na końcach kapilary ( F πr 2 (p 1 - p 2 ) ), równowaŝą się: r r T + F 0 ( 5 ) Odpowiednie przekształcenia równania (5), przeprowadzone dla warunków brzegowych: v(r 0) v o i v(r ) 0, pozwalaą wyprowadzić funkcę opisuącą zaleŝność prędkości drobin cieczy od promienia cylindra: ( p1 p2 ) 2 2 v ( r ) ( r ) ( 6 ) 4ηl ysunek 2 ilustrue tę zaleŝność (kwadratową) dla omawianego przypadku. Wzór (6) umoŝliwia obliczenie średnie prędkości laminarnego wypływu cieczy przez rurkę. Jeśli przez V oznaczymy obętość cieczy wypływaące w czasie t, to natęŝenie prądu cieczy opisue wzór zwany teŝ równaniem Hagena-Poiseuille'a: Natomiast średnia prędkość wypływu wody przez kapilarę wynosi: V t 4 ( p1 p2 ) ð ( 7 ) 8ηl 1 v ð 2 V t NaleŜy podkreślić, Ŝe równanie (7) ma zastosowanie wyłącznie do przepływu laminarnego. W przepływie cieczy lepkie energia kinetyczna E k cieczy est mniesza od pracy W siły zewnętrzne F poruszaące płyn ( E k < W ). Obliczenia energii kinetyczne cieczy prowadzą do wyniku [2]: We wzorze (9) wyraŝenie: E k ( 8 ) ρv ð 2 ( p1 p2 ) ( 9 ) η 12 ρv e ( 10 ) η nazywa się liczbą eynoldsa. Jest to wielkość bezwymiarowa. Wprowadził ą w 1883 r. O. eynolds. Znaczenie te liczby nie ogranicza się tylko do analizowanego w tym opracowaniu przypadku. Je stałość dla róŝnych przepływów równowaŝna est tzw. podobieństwu przepływu. Na podstawie doświadczeń nad ruchem płynów, eynolds stwierdził, Ŝe eśli mamy róŝne ciecze płynące z róŝnymi prędkościami w róŝnych przewodach, to charakter ruchu tych cieczy będzie ednakowy przy ednakowych wartościach liczby e dla tych przepływów. Koryguąc nieco wyraŝenie dla e podane np. w [2], moŝna zapisać: praca zuŝyta na przyspieszenie zadane obętości cieczy do prędkości v e (11) praca zuŝyta na pokonaniesil oporu lepkości przy przemieszczeniu te ob. cieczy 4/8

5 Z powyŝszego wyraŝenia wynika, Ŝe wzrost liczby e oznacza zwiększenie roli pracy zuŝyte na przyspieszenie cieczy, natomiast spadek e wartości oznacza zwiększenie roli pracy zuŝyte na pokonanie oporu lepkości. Laminarnym przepływom cieczy rzeczywistych przez przewody odpowiada wartość liczby e mniesza od pewne wartości krytyczne e. Przy wzroście prędkości przepływu cieczy następue przekroczenie krytyczne wartości liczby eynoldsa. Odpowiada to zmianie charakteru wypływu cieczy, z laminarnego w turbulentny. O ile ruch laminarny odpowiada stanowi pewne równowagi dynamiczne, i przy wartościach e mnieszych od minimalne wartości krytyczne równowaga ta est trwała, to przy e większych od nie powstae stan równowagi chwiene. Przy minimalnym zaburzeniu zostae on zniszczony, co powodue przeście ruchu laminarnego w turbulentny. JeŜeli natomiast nie ma zaburzenia, to stan równowagi chwiene moŝe się utrzymywać. Doświadczalnie stwierdzono, Ŝe wartość e zaleŝy od sposobu przeprowadzenia doświadczenia, między innymi od nierówności powierzchni rury, sposobu wpływania cieczy do rury. JeŜeli ciecz wpływaąca do rury est słabo zaburzona, to ruch przedzie z laminarnego w turbulentny przy duŝe wartości ek sięgaące kilkudziesięciu tysięcy i odwrotnie, zaburzenia ruchu pociągaą za sobą małe wartości ek [3]. VI. Zestaw doświadczalny do badania turbulentnego i laminarnego wypływu cieczy i metoda pomiaru. 1 Zestaw składa się z pionowego cylindra kończącego się przewęŝeniem, połączonego węŝami gumowymi z dwoma kapilarami umieszczonymi poziomo. óŝnica ciśnień na końcach kapilary równa est ciśnieniu hydrostatycznemu słupa cieczy w pionowym cylindrze o polu przekrou poprzecznego A ( A π 2 A, gdzie A est wewnętrznym promieniem przekrou kołowego cylindra). ys. 3 Schemat układu pomiarowego. W chwili t 0 poziom lustra cieczy sięga wysokości h o (odpowiednio obętość cieczy est V h A). Wysokość h o podzielona est na szereg odcinków równe długości d h o o 1 ozdziały VI i VII zostały w pewnym zakresie zmienione w stosunku do pierwotne wersi z 1995 r. przez mgr Jerzego Wiśniewskiego. 5/8

6 ( piszemy moduł, poniewaŝ poziom w rurze obniŝa się, a h zdefiniowane est ako h h i - h i-1 est mniesze od zera; traktuąc równe odcinki d ako dodatnie piszemy d h lub moŝemy napisać d - h ). Podczas wypływu cieczy z kapilary, e obętość równa est obętości cieczy wypływaące z pionowego cylindra. Wobec tego, Ŝe długość kaŝdego odcinka h est ednakowa, poddawana obserwaci obętość cieczy est stała i wynosi V A h - A h, a odpowiadaący e czas wypływu t i +1 - t i (wskaźnik i + 1), gdzie t i est czasem mierzonym od chwili t 0 (gdy h h o ) do chwili prześcia lustra cieczy przez i -tą kreskę na cylindrze. W doświadczeniu tym na skutek wypływu cieczy z całego układu obniŝa się róŝnica ciśnień na końcach kapilary wraz ze zmnieszaniem się ciśnienia hydrostatycznego. Dla tego przypadku, z równania (7) otrzymuemy (uwzględniamy, Ŝe p 1 - p 2 ρ g h(t) oraz Ŝe obętość V wypływaące cieczy z kapilary w czasie est równa obętości cieczy V wypływaące z pionowego cylindra w tym samym czasie): V A h g 4 π ρ h( t i ) (12) 8 l η lub ( ) h g 4 π ρ 8 l η A h t i. (12a) 4 π ρ g Oznaczaąc przez λ const, (13) 8 l η A przy h 0 (co odpowiada 0) otrzymamy równanie opisuące charakter zmian wysokości słupa w cylindrze a ednocześnie prędkość obniŝania się lustra cieczy, poniewaŝ mamy: dh v λ h( t). (14) dt Stąd otrzymue się funkcę wykładniczą h( t) ho exp( λ t) (15) opisuącą czasową zmienność h(t). Dla warunków naszego doświadczenia równanie (12) zapiszemy w postaci V λ A H α H, (16) gdzie α λ A, H - wysokość słupa wody odpowiadaąca środkowi przedziału (h i, h i +1 ). Idea ninieszego doświadczenia opiera się na wykorzystaniu zapisu równania Hagena- Poiseuille a w postaci wzoru (16). Wynika z niego, Ŝe pomiędzy natęŝeniem przepływu y V, a wysokością poziomu wody w cylindrze x H, istniee zaleŝność wprost proporconalna i α est współczynnikiem nachylenia linii proste przedstawiaące tę zaleŝność. Lewa strona równania (16), ak wynika ze wzoru (8), określa wielkość proporconalną do szybkości v wypływu wody z cylindra przez rurkę kapilarną. Współczynnik α est związany ze współczynnikiem lepkości wody η wzorem: 4 π ρ g η (17) 8 l α (wynika to ze związku współczynnika α z równania (16) z wielkością λ daną równaniem (13) ). Liczbę eynoldsa znadziemy z wyraŝenia (10), po uwzględnieniu wzoru (8): 6/8

7 ρ e v η 1 π 2 V ρ η ρ V π η (18) VII. Pomiary i opracowanie wyników 1 a) Pomiary. W ćwiczeniu naleŝy wykonać pomiary wysokości słupa wody h w funkci czasu t czyli h h(t), przymuąc np. stałą zmianę h 5 cm wysokości słupa wody w cylindrze. Do tych pomiarów naleŝy wykorzystać właściwą kapilarę (w zestawie - tę o większe średnicy wewnętrzne). Wobec stałości przekrou poprzecznego A, wykonane pomiary ( h i, t i ) moŝna zastosować do zbadania zaleŝności (16), dla stałe wartości V A h i obliczonych na podstawie pomiarów wielkości przedziałów czasowych t i +1 - t i (wskaźnik i + 1 ). Wyniki pomiarów moŝna zebrać w tabelach I i II. Tabela I l [m] wew [m] 2 A [m] d h [m] V A h [m 3 ] Tabela II i h i [m] ln h i t i [s] t i +1 - t i H ( h i + hi+1 ) / 2 V 3 i 0, 1 i 0, 1, [ m s] i 0, 1 i 0, 1, 2 i 0, 1, ; i + i h o ln h o t o 0 1 h 1 ln h 1 t 1 1 H 1 V/ 1 gdzie: l - długość kapilary, - promień kapilary, 2 A - średnica cylindra, d h - długość wybranego odcinka na rurze, V A h - odpowiadaąca odcinkowi h obętość cieczy, i - nr kreski na cylindrze, h i - wysokość słupa wody, H (h i + h i + 1 )/2 - środek przedziału (h i, h i + 1 ), b) Opracowanie wyników. 1. Sporządzić dwa wykresy: wykres 1 zaleŝności y ln h i w funkci x t i (tabela II, kolumny 3 i 4); wykres 2 zaleŝności y V w funkci x H (tabela II, kolumny 6 i 7). 1 ozdziały VI i VII zostały w pewnym zakresie zmienione w stosunku do pierwotne wersi z 1995 r. przez mgr Jerzego Wiśniewskiego. 7/8

8 2. Na obu wykresach zaznaczyć połoŝenie punktu, w którym przebieg odchyla się od linii proste. Dla wykresu 2 podać współrzędne tego punktu ( H, V/ ). W punkcie tym następue zmiana charakteru wypływu wody: wypływ turbulentny przechodzi w laminarny (w miarę zmnieszania h). 3. Dla te części wykresu 2, która odpowiada laminarnemu wypływowi wody (wykres est liniowy) znaleźć współczynnik nachylenia proste α metodą namnieszych kwadratów (lub graficznie). Następnie ze wzoru (17) wyznaczyć współczynnik lepkości η. 4. Znaleźć krytyczną wartość liczby eynoldsa ek ze wzoru (18) wykorzystuąc wartość V/ odczytaną z wykresu 2, w punkcie odchylenia się przebiegu od linii proste (patrz punkt 2 ). 5. Ocenić błędy zmierzonych wielkości η i ek. UWAGA Opracowanie wyników pomiarów zamieszczone w te instrukci dotyczy tylko kapilary o większe średnicy (kapilary są dwie). Dla drugie kapilary o mniesze średnicy pomiary wykonuemy podobnie (mierzymy wysokość h w funkci czasu t ). Następnie wykonuemy wykres y ln h w funkci x t, znaduemy współczynnik nachylenia te proste a tym samym współczynnik λ (dla te kapilary ta zaleŝność powinna być liniowa w całym zakresie wartości t). Obliczamy współczynnik lepkości wody η i przeprowadzamy rachunek błędów. Dokładny opis wykonania ćwiczenia dla drugie kapilary daące tylko przepływ laminarny zamieszczony est w I pracowni fizyczne J.L. Kacperski Pomiar współczynnika lepkości wody. Badanie funkci wykładnicze. 8/8

Pomiar współczynnika lepkości wody. Badanie funkcji wykładniczej.

Pomiar współczynnika lepkości wody. Badanie funkcji wykładniczej. Ćwiczenie C- Pomiar współczynnika lepkości wody. Badanie funkcji wykładniczej. I. Cel ćwiczenia: wyznaczenie współczynnika lepkości wody η w oparciu o wykres zależności wysokości słupa wody w cylindrze

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY ĆWICZENIE 10 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY Wprowadzenie W strudze przepływającej cieczy każdemu jej punktowi można przypisać prędkość będącą funkcją położenia r i r czasu V = V ( x y z t ).

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda.

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Zagadnienia: Oddziaływania międzycząsteczkowe. Ciecze idealne i rzeczywiste. Zjawisko lepkości. Równanie

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA ĆWICZENIE 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Ćwiczenie 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa,

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,

Bardziej szczegółowo

Równanie Bernoulliego. 2 v1

Równanie Bernoulliego. 2 v1 Wykład z fizyki, Piotr Posmykiewicz 4 Równanie Bernoulliego. RozwaŜmy płyn przepływający przez rurkę, której przekrój poprzeczny i połoŝenie zmienia się jak pokazano na rysunku -0. Zastosujmy twierdzenie

Bardziej szczegółowo

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki. Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie

Bardziej szczegółowo

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI POWIETRZA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI POWIETRZA Uniwersytet Wrocławski, Instytut Fizyki Doświadczalnej, I Pracownia Ćwiczenie nr 37 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI POWIETRZA I.WSTĘP Tarcie wewnętrzne Zjawisko tarcia wewnętrznego (lepkości) można

Bardziej szczegółowo

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ I. Cel ćwiczenia: wyznaczanie metodą kompensacji siły elektromotorycznej i oporu wewnętrznego kilku źródeł napięcia stałego. II. Przyrządy: zasilacz

Bardziej szczegółowo

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK

Bardziej szczegółowo

Straty energii podczas przepływu wody przez rurociąg

Straty energii podczas przepływu wody przez rurociąg 1. Wprowadzenie Ć w i c z e n i e 11 Straty energii podczas przepływu wody przez rurociąg Celem ćwiczenia jest praktyczne wyznaczenie współczynników strat liniowych i miejscowych podczas przepływu wody

Bardziej szczegółowo

Przepływy laminarne - zadania

Przepływy laminarne - zadania Zadanie 1 Warstwa cieczy o wysokości = 3mm i lepkości v = 1,5 10 m /s płynie równomiernie pod działaniem siły ciężkości po płaszczyźnie nachylonej do poziomu pod kątem α = 15. Wyznaczyć: a) Rozkład prędkości.

Bardziej szczegółowo

1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15)

1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15) 66 Mechanika 1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15) Celem ćwiczenia jest wyznaczenie współczynnika lepkości wody. Współczynnik ten wyznaczany jest z prawa Poiseuille a na podstawie

Bardziej szczegółowo

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ] Mechanika płynów Płyn każda substancja, która może płynąć, tj. dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje oraz może swobodnie się przemieszczać (przepływać), np. przepompowywana

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury

Bardziej szczegółowo

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO

WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO 1. Cel ćwiczenia Doświadczalne wyznaczenie zaleŝności współczynnika oporu linioweo przepływu

Bardziej szczegółowo

WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH

WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH WYKŁA 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH PRZEPŁYW HAGENA-POISEUILLE A (LAMINARNY RUCH W PROSTOLINIOWEJ RURZE O PRZEKROJU KOŁOWYM) Prędkość w rurze wyraża się wzorem: G p w R r, Gp const 4 dp dz

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS Człowiek najlepsza inwestycja ENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Cel ćwiczenia: Wyznaczenie współczynnika lepkości gliceryny metodą Stokesa, zapoznanie się z własnościami cieczy lepkiej. Literatura

Bardziej szczegółowo

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY) STTYK I DYNMIK PŁYNÓW (CIECZE I GZY) Ciecz idealna: brak sprężystości postaci (czyli brak naprężeń ścinających) Ciecz rzeczywista małe naprężenia ścinające - lepkość F s F n Nawet najmniejsza siła F s

Bardziej szczegółowo

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczeń

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi

Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi Ć w i c z e n i e 5a Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi 1. Wprowadzenie Celem ćwiczenia jest zapoznanie się z przyrządami stosowanymi do pomiarów prędkości w przepływie

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczęń

Bardziej szczegółowo

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC

Bardziej szczegółowo

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = + Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

12 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I

12 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I 12 K A TEDRA FIZYKI TOOWANEJ P R A C O W N I A F I Z Y K I Ćw. 12. Wyznaczanie współczynnika lepkości dynamicznej metodą tokesa Wprowadzenie Podczas ruchu płynów rzeczywistych (cieczy i gazów) istotne

Bardziej szczegółowo

Wyznaczanie współczynnika lepkości cieczy za pomocą wiskozymetru Höpplera (M8)

Wyznaczanie współczynnika lepkości cieczy za pomocą wiskozymetru Höpplera (M8) Wyznaczanie współczynnika lepkości cieczy za pomocą wiskozymetru Höpplera (M8) W P R O W A D Z E N I E Jakikolwiek przepływ cieczy rzeczywistej cechuje zawsze poślizg warstewek. PoniewaŜ w cieczach istnieją

Bardziej szczegółowo

Hydrostatyczne Układy Napędowe Laboratorium

Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Laboratorium Temat: Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracował: Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak CEL

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

PRACOWNIA FIZYKI MORZA

PRACOWNIA FIZYKI MORZA PRACOWNIA FIZYKI MORZA INSTRUKCJA DO ĆWICZENIA NR 8 TEMAT: BADANIE PRZEWODNICTWA ELEKTRYCZNEGO WODY MORSKIEJ O RÓŻNYCH ZASOLENIACH Teoria Przewodnictwo elektryczne wody morskiej jest miarą stężenia i rodzaju

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o

Bardziej szczegółowo

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Wyznaczanie gęstości i lepkości cieczy

Wyznaczanie gęstości i lepkości cieczy Wyznaczanie gęstości i lepkości cieczy A. Wyznaczanie gęstości cieczy Obowiązkowa znajomość zagadnień Definicje gęstości bezwzględnej (od czego zależy), względnej, objętości właściwej, ciężaru objętościowego.

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ OZNACZANIE ŚREDNIEJ MASY CZĄSTECZKOWEJ POLIMERU WSTĘP Lepkość roztworu polimeru jest z reguły większa od lepkości rozpuszczalnika. Dla polimeru lepkość graniczna [η ] określa zmianę lepkości roztworu przypadającą

Bardziej szczegółowo

Aerodynamika I Efekty lepkie w przepływach ściśliwych.

Aerodynamika I Efekty lepkie w przepływach ściśliwych. Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 2 Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Pomiar natęŝeń przepływu gazów metodą zwęŝkową

Pomiar natęŝeń przepływu gazów metodą zwęŝkową Temat ćwiczenia: Pomiar natęŝeń przepływu gazów metodą zwęŝkową Cel ćwiczenia: Poznanie zasady pomiarów natęŝenia przepływu metodą zwęŝkową. Poznanie istoty przedmiotu normalizacji metod zwęŝkowych. Program

Bardziej szczegółowo

Ćwiczenie I: WPŁYW STĘŻENIA I TEMPERATURY NA LEPKOŚĆ ROZTWORÓW

Ćwiczenie I: WPŁYW STĘŻENIA I TEMPERATURY NA LEPKOŚĆ ROZTWORÓW Ćwiczenie I: WPŁYW STĘŻENIA I TEMPERATURY NA LEPKOŚĆ ROZTWORÓW opracowanie: Bogusław Mazurkiewicz Wprowadzenie Podczas przemieszczania się cząsteczek gazu i cieczy względem siebie przepływu występuje opór

Bardziej szczegółowo

Sprawozdanie. z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie. Temat ćwiczenia

Sprawozdanie. z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie. Temat ćwiczenia Sprawozdanie z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie Temat ćwiczenia Badanie właściwości reologicznych cieczy magnetycznych Prowadzący: mgr inż. Marcin Szczęch Wykonawcy

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych

Bardziej szczegółowo

Płyny newtonowskie (1.1.1) RYS. 1.1

Płyny newtonowskie (1.1.1) RYS. 1.1 Miniskrypt: Płyny newtonowskie Analizujemy cienką warstwę płynu zawartą pomiędzy dwoma równoległymi płaszczyznami, które są odległe o siebie o Y (rys. 1.1). W warunkach ustalonych następuje ścinanie w

Bardziej szczegółowo

(równanie Bernoulliego) (15.29)

(równanie Bernoulliego) (15.29) Lekcja 5 Temat: Równanie ernoulliego. Równanie ernoulliego. Statyczne konsekwencje równania ernoulliego a) nieruchomy płyn w zbiorniku b) manometr c) pomiar ciśnienia krwi za pomocą kaniuli Zagadnienia

Bardziej szczegółowo

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II J. Szantyr Wykład nr 6 Przepływy w przewodach zamkniętych II W praktyce mamy do czynienia z mniej lub bardziej złożonymi rurociągami. Jeżeli strumień płynu nie ulega rozgałęzieniu, mówimy o rurociągu prostym.

Bardziej szczegółowo

ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego

ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego 34 3.Przepływ spalin przez kocioł oraz odprowadzenie spalin do atmosfery ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego T0

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Wyznaczanie współczynnika lepkości cieczy oraz zależności lepkości od temperatury

Wyznaczanie współczynnika lepkości cieczy oraz zależności lepkości od temperatury Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 IV 2009 Nr. ćwiczenia: 132 Temat ćwiczenia: Wyznaczanie współczynnika lepkości cieczy oraz zależności lepkości

Bardziej szczegółowo

Ćwiczenie nr 41: Busola stycznych

Ćwiczenie nr 41: Busola stycznych Wydział PRACOWNA FZYCZNA WFiS AGH mię i nazwisko 1.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 41: usola stycznych

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

Równania kwadratowe. Zad. 4: (profil matematyczno-fizyczny) Dla jakich wartości parametru m równanie mx 2 + 2x + m 2 = 0 ma dwa pierwiastki mniejsze

Równania kwadratowe. Zad. 4: (profil matematyczno-fizyczny) Dla jakich wartości parametru m równanie mx 2 + 2x + m 2 = 0 ma dwa pierwiastki mniejsze Równania kwadratowe Zad : Dany jest wielomian W(x) = x mx + m m + a) Dla jakich wartości parametru m wielomian ten ma dwa pierwiastki, których suma jest o jeden większa od ich iloczynu? *b) Przyjmij, Ŝe

Bardziej szczegółowo

POMIAR LEPKOŚCI WYZNACZANIE ŚREDNIEJ MASY CZĄSTECZKOWEJ

POMIAR LEPKOŚCI WYZNACZANIE ŚREDNIEJ MASY CZĄSTECZKOWEJ Ćwiczenie nr 11 POMIAR LEPKOŚCI WYZNACZANIE ŚREDNIEJ MASY CZĄSTECZKOWEJ I. Cel ćwiczenia Celem ćwiczenia jest nabycie podstawowych wiadomości i umiejętności związanych z pomiarami lepkości cieczy przy

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

W zaleŝności od charakteru i ilości cząstek wyróŝniamy: a. opadanie cząstek ziarnistych, b. opadanie cząstek kłaczkowatych.

W zaleŝności od charakteru i ilości cząstek wyróŝniamy: a. opadanie cząstek ziarnistych, b. opadanie cząstek kłaczkowatych. BADANIE PROCESU SEDYMENTACJI Wstęp teoretyczny. Sedymentacja, to proces opadania cząstek ciała stałego w cieczy, w wyniku działania siły grawitacji lub sił bezwładności. Zaistnienie róŝnicy gęstości ciała

Bardziej szczegółowo

Wyznaczanie modułu sztywności metodą Gaussa

Wyznaczanie modułu sztywności metodą Gaussa Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/2018 I. Wymagania przekrojowe. Uczeń: 1) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych lub blokowych informacje kluczowe dla

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów ANALIZA PRZEKAZYWANIA CIEPŁA I FORMOWANIA SIĘ PROFILU TEMPERATURY DLA NIEŚCIŚLIWEGO, LEPKIEGO PRZEPŁYWU LAMINARNEGO W PRZEWODZIE ZAMKNIĘTYM Cel ćwiczenia Celem ćwiczenia będzie obserwacja procesu formowania

Bardziej szczegółowo

Rys.1. Zwężki znormalizowane: a) kryza, b) dysza, c) dysza Venturiego [2].

Rys.1. Zwężki znormalizowane: a) kryza, b) dysza, c) dysza Venturiego [2]. WYZNACZANIE WSPÓŁCZYNNIKA PRZEPŁYWU W ZWĘŻKACH POMIAROWYCH DLA GAZÓW 1. Wprowadzenie Najbardziej rozpowszechnioną metodą pomiaru natężenia przepływu jest użycie elementów dławiących płyn. Stanowią one

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

Analiza zderzeń dwóch ciał sprężystych

Analiza zderzeń dwóch ciał sprężystych Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.

Bardziej szczegółowo

[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne

[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,

Bardziej szczegółowo

Zastosowania Równania Bernoullego - zadania

Zastosowania Równania Bernoullego - zadania Zadanie 1 Przez zwężkę o średnicy D = 0,2 m, d = 0,05 m przepływa woda o temperaturze t = 50 C. Obliczyć jakie ciśnienie musi panować w przekroju 1-1, aby w przekroju 2-2 nie wystąpiło zjawisko kawitacji,

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

DOŚWIADCZENIE MILLIKANA

DOŚWIADCZENIE MILLIKANA DOŚWIADCZENIE MILLIKANA Wyznaczenie wartości ładunku elementarnego metodą Millikana Cel ćwiczenia: Celem ćwiczenia jest wyznaczenie ładunku elementarnego ( ładunku elektronu) metodą zastosowaną przez R.A

Bardziej szczegółowo

Pomiar ciśnienia krwi metodą osłuchową Korotkowa

Pomiar ciśnienia krwi metodą osłuchową Korotkowa Ćw. M 11 Pomiar ciśnienia krwi metodą osłuchową Korotkowa Zagadnienia: Oddziaływania międzycząsteczkowe. Siły Van der Waalsa. Zjawisko lepkości. Równanie Newtona dla płynięcia cieczy. Współczynniki lepkości;

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Ćw. 4. BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM

Ćw. 4. BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM Ćw. 4 BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM WYBRANA METODA BADAŃ. Badania hydrodynamicznego łoŝyska ślizgowego, realizowane na stanowisku

Bardziej szczegółowo

E wektor natęŝenia pola, a dr element obwodu, którego zwrot określa przyjęty kierunek obchodzenia danego oczka.

E wektor natęŝenia pola, a dr element obwodu, którego zwrot określa przyjęty kierunek obchodzenia danego oczka. Lista 9. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. InŜ. Środ.; kierunek InŜ. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI Zagadnienia: - Pojęcie zjawiska piezoelektrycznego

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą strzałki ugięcia

Wyznaczanie modułu Younga metodą strzałki ugięcia Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17-2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Mechanika płynów Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21

POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 Ćwiczenie nr 5. POMIARY NATĘŻENIA PRZEPŁYWU GAZÓW METODĄ ZWĘŻOWĄ 1. Cel ćwiczenia

Bardziej szczegółowo