BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI
|
|
- Marian Dobrowolski
- 8 lat temu
- Przeglądów:
Transkrypt
1 BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI Zagadnienia: - Pojęcie zjawiska piezoelektrycznego - Opis tensorowy zjawiska piezoelektrycznego - Metoda dynamiczna i statyczna badania własności piezoelektrycznych - Zastosowanie materiałów piezoelektrycznych 1. Proste zjawisko piezoelektryczne. Pomiar napręŝeń I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. OdwaŜnik 3. Miernik uniwersalny Metex M 3850 Oś obrotu Trzpień naciskający Ramię wagi Próbkę V CięŜarek Rys. 1. Schemat układu do badania prostego zjawiska piezoelektrycznego metodą statyczną 1
2 II. Cel ćwiczenia: Zastosowanie prostego zjawiska piezoelektrycznego (podłuŝnego) do wyznaczania modułu piezoelektrycznego. III. Wykonanie pomiarów 1. Pomiar zaleŝności napięcia generowanego na pojemności elektrycznej układu pomiarowego od napręŝenia przykładanego do próbki piezoelektrycznej: a) podłączyć miernik METEX do gniazd znajdujących się z przodu układu pomiarowego; b) ustawić miernik na pomiar napięć w zakresie mv; c) włączyć miernik i przyciskiem FUNCTION wybrać funkcję MAX (na wyświetlaczu miernika pojawi się napis MAX); d) zawiesić odwaŝnik w odległości 4 cm od trzpienia przekazującego nacisk na próbkę; e) opuścić ramię dźwigni; f) przyciskiem (koloru zielonego) znajdującym się na obudowie układu pomiarowego (zwierającym okładki kondensatora) rozładować kondensator; g) przyciskiem SET uaktywnić wybraną funkcję na wyświetlaczu miernika pojawi się napis R-H oznaczający gotowość miernika do pomiaru; h) podnieść ramię dźwigni; i) odczytać maksymalną wartość napięcia; j) przyciskiem RESET wyzerować miernik (przycisk ten spełnia równieŝ funkcję SET); k) dla zadanej odległości r zawieszenia odwaŝnika od osi obrotu wykonać co najmniej 6 pomiarów powtarzając czynności opisane w punktach c j; l) zmieniając odległość r odwaŝnika od osi obrotu co 2 cm wykonać analogiczne pomiary napięcia dla co najmniej 6 odległości; IV. Opracowanie wyników. 1. Narysować wykres zaleŝności napięcia generowanego w układzie pomiarowym od odległości odwaŝnika od osi obrotu U = f ( r ). 2. Korzystając z metody regresji liniowej wyznaczyć moduł piezoelektryczny badanej próbki na podstawie wzoru: U = d M g C R r gdzie: U napięcie odczytane z miernika d moduł piezoelektryczny M masa odwaŝnika g przyspieszenie ziemskie C pojemność kondensatora znajdującego się w układzie pomiarowym R odległość osi obrotu od trzpienia r odległość odwaŝnika od osi obrotu. 3. Obliczyć siłę nacisku odwaŝnika na próbkę dla kilku wybranych odległości r: 2
3 F = M g r R 4. Obliczyć niepewność bezwzględną i względną modułu d oraz siły nacisku F. Dane potrzebne do obliczeń: C = (0,605 ± 0,001) µf R = (110 ± 1) mm M 1 = (504,1 ± 0,5) g r = (110 + n 20 ± 2) mm. Podziałkę na dźwigni wykonano co 2 cm; 3
4 2. Odwrotne zjawisko piezoelektryczne. Pomiar małych deformacji I. Zestaw przyrządów: 1. Dylatometr pojemnościowy z próbką piezoelektryczną 2. Miernik pojemności elektrycznej 3. Zasilacz II. Cel ćwiczenia: 1. Wyznaczenie modułu piezoelektrycznego na podstawie badania odwrotnego zjawiska piezoelektrycznego 2. Pomiar małych deformacji 3. Wyznaczenie zaleŝności pojemności elektrycznej kondensatora płaskiego od odległości między elektrodami Śruba mikrometryczna Wyjście do pomiaru zmian pojemności h Kondensator powietrzny Próbka L Napięcie podawane na próbkę Rys.2. Schemat układu pomiarowego do badania odwrotnego zjawiska piezoelektrycznego i do pomiaru małych deformacji 4
5 III. Przebieg pomiarów. 1. Wyznaczenie pojemności doprowadzeń oraz pojemności rozproszonych C d : a) ustawić miernik pojemności na zakres 200 pf i wyzerować go bez przewodów doprowadzających (odłączyć przewody doprowadzające); b) podłączyć miernik pojemności do gniazd dylatometru oznaczonych symbolem C biegunowość jest nieistotna; c) za pomocą śruby mikrometrycznej ustawić pojemność kondensatora na C o 180 pf (wskazanie śruby mikrometrycznej wynosi x o 6 mm); d) wyznaczyć zaleŝność pojemności elektrycznej C kondensatora od odległości między jego okładkami, zmieniając odległość x względem połoŝenia początkowego x o następująco: - w przedziale od 0 do 2 mm co x = 0,25 mm - w przedziale od 2 do 5 mm co x = 0,5 mm - w przedziale od 5 do 14 mm co x = 1 mm UWAGA: odczyt ze śruby mikrometrycznej x nie jest odległością między okładkami kondensatora. 2. Wyznaczenie zaleŝności deformacji próbki od napięcia przykładanego do próbki piezoelektryka: a) podłączyć zasilacz do gniazd U układu; b) za pomocą śruby mikrometrycznej ustawić pojemność C kondensatora powietrznego na około 250 pf ( zakres miernika ustawić na 2 nf); c) włączyć zasilacz do sieci, nastawić polaryzację na dodatnią (+), ustawić maksymalną wartość napięcia U max = V; d) wykonać pomiary zaleŝności pojemności C kondensatora od napięcia przykładanego do próbki w przedziale od V do 200 V zmieniając napięcie co 20 V; naleŝy pamiętać o zmianie polaryzacji z dodatniej na ujemną. IV. Opracowanie wyników 1. Wyznaczenie pojemności doprowadzeń i pojemności rozproszonych C d : a) obliczyć rzeczywiste odległości h między okładkami kondensatora powietrznego: h = h o + h gdzie: ε S h o o = Co - początkowa rzeczywista odległość między okładkami kondensatora odpowiadająca połoŝeniu x o na śrubie mikrometrycznej. h = x - x o - zmiana odległości między okładkami kondensatora liczona względem połoŝenia początkowego x o x - odczyt ze śruby mikrometrycznej odpowiadający danej pojemności C. ε o = 8, F/m - przenikalność elektryczna próŝni S = πr 2 - powierzchnia okładki kondensatora 2R = 59 mm - średnica okładek kondensatora C o - początkowa pojemność kondensatora odpowiadająca połoŝeniu x o śruby mikrometrycznej; 5
6 b) sporządzić wykres zaleŝności pojemności kondensatora od odwrotności odległości między okładkami C = f 1 ; h c) odczytać z wykresu wartość sumy pojemności doprowadzeń i rozproszonych C d. aproksymując wykres do 1 0 h =. 2. Wyznaczenie zaleŝności deformacji l próbki od napięcia U przyłoŝonego do próbki: a) sporządzić wykres przedstawiający zaleŝność pojemności C pu kondensatora powietrznego od napięcia U; zmierzona pojemność C jest sumą pojemności kondensatora powietrznego C p oraz pojemności C d : C pu = C C d ; b) obliczyć deformację l próbki piezoelektryka wywołaną przyłoŝonym napięciem : gdzie: ε S l h h h o = = u o = h C h u - odległość między okładkami kondensatora powietrznego odpowiadająca przyłoŝonemu napięciu U. C pu - pojemność kondensatora dla danego napięcia; c) sporządzić wykres przedstawiający zaleŝność deformacji próbki od napięcia l = f (U); d) za pomocą metody regresji liniowej wyznaczyć w pobliŝu U = 0 moduł piezoelektryczny uwzględniając zaleŝność l = d U gdzie: d moduł piezoelektryczny; pu o UWAGA: w zjawisku piezoelektrycznym podłuŝnym odległość między elektrodami l jest równa grubości próbki l. Z równania opisującego zjawisko piezoelektryczne wynika, Ŝe: l = d E, gdzie natęŝenie pola elektrycznego E = U l l ' l E U Podstawiając wyraŝenie na E do równania opisującego podłuŝne zjawisko piezoelektryczne otrzymujemy l l = d U l' 6
7 poniewaŝ l = l, więc l = U d e) obliczyć niepewność bezwzględną i względną modułu piezoelektrycznego d. Grubość próbki l = 0,26 mm. 7
BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ
ĆWICZENIE NR 14A BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. Odważnik 3. Miernik uniwersalny
ZJAWISKO PIEZOELEKTRYCZNE.
ZJAWISKO PIEZOELEKTRYCZNE. A. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO I. Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną. 2. Odważnik. 3. Miernik uniwersalny
BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA
BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA I. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO a). Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego
CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE
CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE A POMIAR ZALEŻNOŚCI POJENOŚCI ELEKTRYCZNEJ OD WYMIARÓW KONDENSATOR PŁASKIEGO I Zestaw przyrządów: Kondensator płaski 2 Miernik pojemności II Przebieg pomiarów: Zmierzyć
CZUJNIKI POJEMNOŚCIOWE
ĆWICZENIE NR CZUJNIKI POJEMNOŚCIOWE A POMIAR PRZEMIESZCZEŃ ODŁAMÓW KOSTNYCH METODĄ POJEMNOŚCIOWĄ I Zestaw przyrządów: Układ do pomiaru przemieszczeń kości zbudowany ze stabilizatora oraz czujnika pojemnościowego
Instrukcja do ćwiczenia laboratoryjnego nr 2
Instrukcja do ćwiczenia laboratoryjnego nr 2 Temat: Wpływ temperatury na charakterystyki i parametry statyczne diod Cel ćwiczenia. Celem ćwiczenia jest poznanie wpływu temperatury na charakterystyki i
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Ćwiczenie nr 74. Pomiary mostkami RLC. Celem ćwiczenia jest pomiar rezystancji, indukcyjności i pojemności automatycznym mostkiem RLC.
Ćwiczenie nr 74 Pomiary mostkami RLC Cel ćwiczenia Celem ćwiczenia jest pomiar rezystancji, indukcyjności i pojemności automatycznym mostkiem RLC. Dane znamionowe Przed przystąpieniem do wykonywania ćwiczenia
Wyznaczanie krzywej ładowania kondensatora
Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.
LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół
BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza
ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego
Laboratorium Półprzewodniki, Dielektryki i Magnetyki
Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie 5 Badanie odwrotnego efektu piezoelektrycznego Zagadnienia do przygotowania 1. Elektrostrykcja i odwrotny efekt piezoelektryczny 2. Podstawowe
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
BADANIE EFEKTU HALLA. Instrukcja wykonawcza
ĆWICZENIE 57 BADANIE EFEKTU HALLA Instrukcja wykonawcza I. Wykaz przyrządów 1. Zasilacz elektromagnesu ZT-980-4 2. Zasilacz hallotronu 3. Woltomierz do pomiaru napięcia Halla U H 4. Miliamperomierz o maksymalnym
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO. Instrukcja wykonawcza
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Instrukcja wykonawcza 1 Wykaz przyrządów a. Generator AG 1022F. b. Woltomierz napięcia przemiennego. c. Miliamperomierz prądu przemiennego. d. Zestaw składający
EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE
ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Instrukcja wykonawcza 1. Wykaz przyrządów 1. Panel z ogniwami 5. Zasilacz stabilizowany oświetlacza 2. Oświetlacz 3. Woltomierz napięcia stałego 4. Miliamperomierz
Instrukcja do ćwiczenia laboratoryjnego nr 5
Instrukcja do ćwiczenia laboratoryjnego nr 5 Temat: Charakterystyki statyczne tranzystorów bipolarnych Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk prądowonapięciowych i wybranych parametrów
Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna
Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4
Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza
NIEZBĘDNY SPRZĘT LABORATORYJNY
Ćwiczenie 5 Temat: Pomiar napięcia i prądu stałego. Cel ćwiczenia Poznanie zasady pomiaru napięcia stałego. Zapoznanie się z działaniem modułu KL-22001. Obsługa przyrządów pomiarowych. Przestrzeganie przepisów
KIESZONKOWY MULTIMETR CYFROWY AX-MS811. Instrukcja obsługi
KIESZONKOWY MULTIMETR CYFROWY AX-MS811 Instrukcja obsługi Bezpieczeństwo Międzynarodowe symbole bezpieczeństwa Ten symbol użyty w odniesieniu do innego symbolu lub gniazda oznacza, że należy przeczytać
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie E8 Wyznaczanie przenikalności magnetycznej i krzywej histerezy E8.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności B(I) dla cewki z rdzeniem stalowym lub żelaznym, wykreślenie krzywej
WYZANCZANIE STAŁEJ DIELEKTRYCZNEJ RÓŻNYCH MATERIAŁÓW. Instrukcja wykonawcza
ĆWIZENIE 108 WYZANZANIE STAŁEJ DIELEKTRYZNEJ RÓŻNYH MATERIAŁÓW Zaganienia Prawo Gaussa, pole elektrostatyczne, pojemność konensatora, polaryzacja ielektryczna, łączenie konensatorów Instrukcja wykonawcza
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 33: Kondensatory
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 33: Kondensatory Cel ćwiczenia: Pomiar pojemności kondensatorów powietrznych i z warstwą dielektryka w celu wyznaczenia stałej elektrycznej ε 0 (przenikalności
Pomiar podstawowych parametrów liniowych układów scalonych
Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,
BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO
ĆWICZENIE 14 R. POPRAWSKI BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO Cel ćwiczenia: zapoznanie studentów z opisem, metodami badania oraz przykładami zastosowań prostego i odwrotnego zjawiska
Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i
EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY
ĆWICZENIE 91 EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY Instrukcja wykonawcza 1. Wykaz przyrządów 1. Monochromator 5. Zasilacz stabilizowany oświetlacza. Oświetlacz 6. Zasilacz fotokomórki 3. Woltomierz napięcia
Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu
Ćwiczenie E5 Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu E5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar siły elektrodynamicznej (przy pomocy wagi) działającej na odcinek przewodnika
Bierne układy różniczkujące i całkujące typu RC
Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:
Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia:
Ćwiczenie 14 Sprawdzanie przyrządów analogowych i cyfrowych Program ćwiczenia: 1. Sprawdzenie błędów podstawowych woltomierza analogowego 2. Sprawdzenie błędów podstawowych amperomierza analogowego 3.
Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek
Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek el ćwiczenia elem ćwiczenia jest zapoznanie się z metodą mostkową pomiaru pojemności kondensatora
UKŁADY KONDENSATOROWE
UKŁADY KONDENSATOROWE 3.1. Wyprowadzić wzory na: a) pojemność kondensatora sferycznego z izolacją jednorodną (ε), b) pojemność kondensatora sferycznego z izolacją warstwową (ε 1, ε 2 ) c) pojemność odosobnionej
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej
Doświadczalne wyznaczanie (sprężystości) sprężyn i zastępczej Statyczna metoda wyznaczania. Wprowadzenie Wartość użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić
POMIAR ZALEśNOŚCI PRZENIKALNOŚCI ELEKTRYCZNEJ FERROELEKTRYKA OD TEMPERATURY SPRAWDZANIE PRAWA CURIE - WEISSA
POMIAR ZALEśNOŚCI PRZENIKALNOŚCI ELEKTRYCZNEJ FERROELEKTRYKA OD TEMPERATURY SPRAWDZANIE PRAWA CURIE - WEISSA Zestaw przyrządów: - mostek pojemności (AUTOMATIC C BRIDGE TYPE E315A) - woltomierz cyfrowy
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
Rys. 1Stanowisko pomiarowe
ĆWICZENIE WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Wykaz przyrządów: Stojak z metalową pryzmą do zawieszania badanych ciał Tarcza
Instrukcja do ćwiczenia laboratoryjnego nr 10
Instrukcja do ćwiczenia laboratoryjnego nr 10 Temat: Charakterystyki i parametry tranzystorów MIS Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk statycznych i parametrów tranzystorów MOS oraz
CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY
INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY! 1. WSTĘP Instrukcja obsługi dostarcza informacji dotyczących bezpieczeństwa i sposobu użytkowania, parametrów technicznych oraz konserwacji
PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie względnej przenikalności elektrycznej kilku związków organicznych
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie względnej przenikalności elektrycznej kilku związków organicznych opracował dr P. Góralski ćwiczenie nr 2 Zakres zagadnień obowiązujących do
Instrukcja do ćwiczenia laboratoryjnego nr 9
Instrukcja do ćwiczenia laboratoryjnego nr 9 Temat: Charakterystyki i parametry tranzystorów PNFET Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk statycznych oraz parametrów tranzystorów PNFET.
c) d) Strona: 1 1. Cel ćwiczenia
Strona: 1 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie wiadomości dotyczących pomiarów wielkości geometrycznych z wykorzystaniem prostych przyrządów pomiarowych - suwmiarek i mikrometrów. 2. Podstawowe
Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej
Wydział Imię i nazwisko 1. 2. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 71: Dyfrakcja
INSTRUKCJA OBSŁUGI DT-3216
INSTRUKCJA OBSŁUGI DŁugopisowy wskaźnik napięcia DT-3216 Wydanie LS 13/01 OPIS DT-3216 to długopisowy wskaźnik napięcia z wyświetlaczem. Wskazuje napięcie AC/DC, rezystancję oraz wykonuje pomiary testu
Badanie diody półprzewodnikowej
Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 2 Pracownia Elektroniki Badanie diody półprzewodnikowej Zakres materiału obowiązujący do ćwiczenia: (Oprac dr Radosław Gąsowski) półprzewodniki samoistne
BADANIE EFEKTU HALLA. Instrukcja wykonawcza
ĆWICZENIE 57C BADANIE EFEKTU HALLA Instrukcja wykonawcza I. Wykaz przyrządów. Hallotron umieszczony w polu magnetycznym wytworzonym przez magnesy trwałe Magnesy zamocowane są tak, by możliwy był pomiar
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Cel ćwiczenia: Wyznaczenie modułu Younga i porównanie otrzymanych wartości dla różnych materiałów. Literatura [1] Wolny J., Podstawy fizyki,
R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1.
OAH 07 Badanie układu L Program: oach 6 Projekt: MA oach Projects\ PTSN oach 6\ Elektronika\L.cma Przykłady: L.cmr, L1.cmr, V L Model L, Model L, Model L3 A el ćwiczenia: I. Obserwacja zmian napięcia na
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ
WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ I. Cel ćwiczenia: wyznaczanie metodą kompensacji siły elektromotorycznej i oporu wewnętrznego kilku źródeł napięcia stałego. II. Przyrządy: zasilacz
Ć W I C Z E N I E N R J-1
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA DETEKCJI PROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-1 BADANIE CHARAKTERYSTYKI LICZNIKA SCYNTYLACYJNEGO
Zjawisko piezoelektryczne 1. Wstęp
Zjawisko piezoelektryczne. Wstęp W roku 880 Piotr i Jakub Curie stwierdzili, że na powierzchni niektórych kryształów poddanych działaniu zewnętrznych naprężeń mechanicznych indukują się ładunki elektryczne,
Uwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika.
PLANOWANIE I TECHNIKA EKSPERYMENTU Program ćwiczenia Temat: Badanie właściwości statycznych przetworników pomiarowych, badanie właściwości dynamicznych czujników temperatury Ćwiczenie 5 Spis przyrządów
Instrukcja do ćwiczenia laboratoryjnego nr 13
Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady
MY-61 #02926 MY-62 #02927 MY-63 #02928 MY-64 #02929
MULTIMETRY CYFROWE MY-61 #02926 MY-62 #02927 MY-63 #02928 MY-64 #02929 INSTRUKCJA OBSŁUGI! OSTRZEśENIE PRZED URUCHOMIENIEM PRZYRZĄDU ZAPOZNAJ SIĘ DOKŁADNIE Z INSTRUKCJĄ OBSŁUGI Nie zastosowanie się do
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1
DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 2. Badanie własności ferroelektrycznych soli Seignette a
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 2 Badanie własności ferroelektrycznych soli Seignette a Celem ćwiczenia jest wyznaczenie zależności temperaturowej
Instrukcja obsługi miernika uniwersalnego MU-07L
1. Informacje ogólne Miernik MU-07L umożliwia pomiary napięć stałych (do 600V) i przemiennych (do 600V), natężenia prądu stałego (do 10A), oporności (do 2MΩ) oraz sprawdzanie diod półprzewodnikowych, ciągłości
MULTIMETR CYFROWY AX-100
MULTIMETR CYFROWY AX-100 INSTRUKCJA OBSŁUGI 1. Informacje dotyczące bezpieczeństwa 1. Nie podawaj na wejście wartości przekraczającej wartość graniczną podczas pomiarów. 2. Podczas pomiarów napięcia wyŝszego
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami
Instrukcja do ćwiczenia laboratoryjnego nr 3 A
Instrkcja do ćwiczenia laboratoryjnego nr 3 A Temat: Pomiar rezystancji dynamicznej wybranych diod Cel ćwiczenia. Celem ćwiczenia jest poznanie metod wyznaczania oraz pomiar rezystancji dynamicznej (róŝniczkowej)
ZŁĄCZOWE TRANZYSTORY POLOWE
L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE ZŁĄCZOWE TRANZYSTORY POLOWE RE. 0.4 1. CEL ĆWICZENIA Wyznaczenie podstawowych parametrów tranzystora unipolarnego takich jak: o napięcie progowe, o transkonduktancja,
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
AX-850 Instrukcja obsługi
AX-850 Instrukcja obsługi Informacje dotyczące bezpieczeństwa Aby uniknąć porażenia prądem elektrycznym lub obrażeń: Nigdy nie podłączaj do dwóch gniazd wejściowych lub do dowolnego gniazda wejściowego
MY 65 #02930 MULTIMETR CYFROWY INSTRUKCJA OBSŁUGI. OSTRZEśENIE
MULTIMETR CYFROWY MY 65 #02930 INSTRUKCJA OBSŁUGI! OSTRZEśENIE PRZED URUCHOMIENIEM PRZYRZĄDU ZAPOZNAJ SIĘ DOKŁADNIE Z INSTRUKCJĄ OBSŁUGI Nie zastosowanie się do tego polecenia jak i do innych uwag zawartych
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo
Badanie wzmacniacza niskiej częstotliwości
Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje
Ćwiczenie 33. Kondensatory
Ćwiczenie 33. Kondensatory Andrzej Zięba Cel ćwiczenia Pomiar pojemności kondensatorów powietrznych i z warstwą dielektryka w celu wyznaczenia stałej elektrycznej ε 0 i przenikalności względnych ε r różnych
Wyznaczanie współczynnika sztywności sprężyny. Ćwiczenie nr 3
Wyznaczanie. Ćwiczenie nr 3 Metoda teoretyczna Znając średnicę D, średnicę drutu d, moduł sprężystości poprzecznej materiału G oraz liczbę czynnych zwojów N, współczynnik można obliczyć ze wzoru: Wzór
Badanie właściwości tłumienia zakłóceń woltomierza z przetwornikiem A/C z dwukrotnym całkowaniem
Ćwiczenie 7 Badanie właściwości tłumienia zakłóceń woltomierza z przetwornikiem A/C z dwukrotnym całkowaniem PODSAWY EOREYCZNE PRZEWORNIK ANALOGOWO CYFROWEGO Z DWKRONYM CAŁKOWANIEM. SCHEMA BLOKOWY I ZASADA
INSTRUKCJA OBSŁUGI. MINI MULTIMETR CYFROWY M M
INSTRUKCJA OBSŁUGI MINI MULTIMETR CYFROWY M - 838 M - 838+ www.atel.com.pl/produkt.php?hash=02915! 1 2 I. WPROWADZENIE Przed przystąpieniem do normalnej eksploatacji miernika, prosimy zapoznać się z możliwościami
LABORATORIUM TERMODYNAMIKI ĆWICZENIE NR 3 L3-1
L3-1 L3-2 L3-3 L3-4 L3-5 L3-6 L3-7 L3-8 L3-9 L3-10 L3-11 L3-12 L3-13 L3-14 L3-15 L3-16 L3-17 L3-18 L3-19 OPIS WYKONYWANIA ZADAŃ Celem pomiarów jest sporządzenie przebiegu charakterystyk temperaturowych
MULTIMETR CYFROWY TES 2360 #02970 INSTRUKCJA OBSŁUGI
MULTIMETR CYFROWY TES 2360 #02970 INSTRUKCJA OBSŁUGI 1. SPECYFIKACJE 1.1. Specyfikacje ogólne. Zasada pomiaru: przetwornik z podwójnym całkowaniem; Wyświetlacz: LCD, 3 3 / 4 cyfry; Maksymalny odczyt: 3999;
Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej
Ćwiczenie 2. Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej 1. Przygotowanie do wykonania ćwiczenia. 1.1. Włączyć zasilacz potencjostatu i nastawić go na
DOKŁADNOŚĆ POMIARU DŁUGOŚCI
1a DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1. ZAGADNIENIA TEORETYCZNE: sposoby wyznaczania niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa;
Instrukcja do ćwiczenia laboratoryjnego nr 4
Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych
WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH
Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 4 60-96 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl
Źródła i 1detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH.
Źródła i 1detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWONIKACH. Cel ćwiczenia: Wyznaczenie podstawowych parametrów spektralnych fotoprzewodzącego detektora podczerwieni. Opis stanowiska:
Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...
Pomiar wysokich napięć
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja
Badanie oleju izolacyjnego
POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 7 Badanie oleju izolacyjnego Grupa dziekańska... Data wykonania
Miernik Cęgowy Extech EX730, CAT III 600 V
Miernik Cęgowy Extech EX730, CAT III 600 V Instrukcja obsługi Nr produktu: 121642 Opis Opis miernika (model EX730) 1. Miernik cęgowy 2. Przycisk otwierający miernik 3. Przyciski sterowania Zapamiętywanie
Ćw. III. Dioda Zenera
Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,
Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie
Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 4 Temat: PRZYRZĄDY PÓŁPRZEWODNIKOWE TRANZYSTOR BIPOLARNY Rok studiów Grupa Imię i nazwisko Data
Laboratorium Półprzewodniki, Dielektryki i Magnetyki
Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie 3 Pomiary i wyznaczanie parametrów ceramiki piezoelektrycznej Zagadnienia do przygotowania 1. Prosty i odwrotny efekt piezoelektryczny i układ
Instrukcja obsługi Multimetr SMD-100 #
Instrukcja obsługi Multimetr SMD-100 # 3472 4 Prawidłowe usuwanie produktu Oznaczenie umieszczone na produkcie lub w odnoszących się do niego tekstach wskazuje, że produktu po upływie okresu użytkowania
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium
Cel ćwiczenia: Celem ćwiczenia jest uzyskanie wykresów charakterystyk skokowych członów róŝniczkujących mechanicznych i hydraulicznych oraz wyznaczenie w sposób teoretyczny i graficzny ich stałych czasowych.
KT 33 MULTIMETRY CYFROWE INSTRUKCJA OBSŁUGI. Strona 1
MULTIMETRY CYFROWE KT 33 INSTRUKCJA OBSŁUGI Instrukcja obsługi dostarcza informacji dotyczących parametrów technicznych, sposobu uŝytkowania oraz bezpieczeństwa pracy. Strona 1 1. WPROWADZENIE: Mierniki
Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2
Łukasz Przywarty 171018 Data wykonania pomiarów: 0.10.009 r. Sala: 4.3 Prowadząca: dr inż. Ewa Oleszkiewicz Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników Temat: Wyznaczanie gęstości ciał
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego
1 II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej termicznego źródła promieniowania (lampa halogenowa)
MULTIMETR CYFROWY MY-74 INSTRUKCJA OBSŁUGI OSTRZEŻENIE
MULTIMETR CYFROWY MY-74 INSTRUKCJA OBSŁUGI! OSTRZEŻENIE PRZED URUCHOMIENIEM PRZYRZĄDU ZAPOZNAJ SIĘ DOKŁADNIE Z INSTRUKCJĄ OBSŁUGI Nie zastosowanie się do tego polecenia jak i do innych uwag zawartych w
Ćwiczenie nr 41: Busola stycznych
Wydział PRACOWNA FZYCZNA WFiS AGH mię i nazwisko 1.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 41: usola stycznych
MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM
Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy