Fizyka sieci złożonych
|
|
- Agata Świątek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wykład z Sieci: 6 października 2015 Dr hab. Agata Fronczak Zakład Fizyki Układów Złożonych Fizyka sieci złożonych
2 Co oznacza termin układ złożony (complex system, complexity) A popular paradigm: Simple systems display complex behavior (proste układy mają często bardzo złożone/skomplikowane zachowanie) nonlinear systems chaos fractals 3 Body Problem Earth( ) Jupiter ( ) Sun ( ) Main Entry: 1 complex Function: noun Etymology: Late Latin complexus totality, from Latin, embrace, from complecti Date: : a whole made up of complicated or interrelated parts
3 Układy złożone i fizyka Trzy przykłady
4 Układy złożone i fizyka Przykład pierwszy: Skalowanie allometryczne
5 Skalowanie allometryczne
6 Układy złożone i fizyka Przykład drugi: Potęgowe skalowanie się fluktuacji
7 Taylor s Law skalowanie fluktuacji 1 / 35
8 Ecology: ensamble fluctuation scaling 6 / 35
9 Test no. 1: Ensamble fluctuation scaling 23 / 35 European corn borer
10 Test no. 1: Temporal fluctuation scaling 24 / 35 Blue Jay (Cyanocitta cristata) in North America in
11 Układy złożone i fizyka Przykład trzeci: Sieć handlu światowego
12 Sieć handlu światowego Sieci handlu światowego Zbadano sieci handlu w latach Struktura bardzo wolno zmienia się w czasie kompletne dane na temat międzynarodowego importu i eksportu; konstrukcja statyczna; Własności strukturalne zbliżone do własności modelu konfiguracyjnego model konfiguracyjny równ. modelowi sieci o zmiennych ukrytych;
13 Sieć handlu światowego: konstrukcja sieci i j Sieć nieskierowana N = 179 węzłów i eksportuje do j <k> = 43 j importuje z i Sieć skierowana Sieć WTW może być traktowana jako nieskierowana bez utraty istotnych info. Białoruś Korea Białoruś Korea PL Chiny PL Chiny Rosja Niemcy Rosja Niemcy
14 Model sieci handlu: zmienne ukryte
15 Porównanie modelu z prawdziwą siecią handlu
16 Porównanie modelu z prawdziwą siecią handlu Rozkład stopni wierzchołków
17 Układy złożone i fizyka Fizyka sieci złożonych
18 Przykłady i własności rzeczywistych sieci złożonych Sieci rzeczywiste: sieci regularne, przypadkowe czy może coś innego? Kryształy są przykładami sieci regularnych Społeczność fizyków polskich Czy sieci społeczne są regularne? Zdecydowanie NIE! Węzły: ludzie Połączenia: relacje przyjaźni, pokrewieństwa, znajomości w pracy, w szkole etc.
19 Przykłady i własności rzeczywistych sieci złożonych Przykłady sieci rzeczywistych: World-Wide-Web (WWW) Mapa Internetu Struktura sieci WWW w domenie
20 Przykłady sieci rzeczywistych sieć WWW
21 Przykłady i własności rzeczywistych sieci złożonych Węzły: gatunki Połączenia: relacje pokarmowe Sieć zależności pokarmowych Sieci genetyczne: zależności między genami Węzły: geny Połączenia: relacje regulacyjne aktywacji / dezaktywacji Sieć transakcji między bankami Węzły: banki Połączenia: pożyczki, kredyty
22 liczba węzłów o k połączeniach liczba węzłów o k połączeniach Przykłady i własności rzeczywistych sieci złożonych Własności sieci rzeczywistych: w większości sieci rzeczywistych rozkład stopni węzłów (tzn. prawdopodobieństwo, że węzeł ma określoną liczbę najbliższych sąsiadów) jest dany prawem potęgowym P ( k) Ak Krzywa dzwonowata Rozkład potęgowy Większość węzłów ma tę samą liczbę połączeń. Brak silnie usieciowionych węzłów Ogromna liczba węzłów słabo usieciowionych. W sieci są obecne tzw. huby. liczba połączeń k liczba połączeń k Sieć autostrad w USA Sieć połączeń lotniczych w USA
23 Przykłady i własności rzeczywistych sieci złożonych Własności sieci rzeczywistych Staś Fronczak Mój synek Świat jest mały! sieci rzeczywiste są bezskalowe P ( k) sieci rzeczywiste są rzadkie k N sieci rzeczywiste są silnie zgronowane C 1 Ak sieci rzeczywiste są małymi światami l N Prof. Janusz Hołyst Wydział Fizyki PW Prof. Michał Kleiber Obecnie: Prezes PAN : Minister Nauki i Informatyzacji
24 Społeczeństwo Węzły: ludzie Połączenia: relacje przyjaźni, pokrewieństwa, znajomości w pracy (na uczelni) etc. Milgram (1967): paradygmat sześciu stopni separacji
25 Sieci małych światów Small-world networks Pierwszy eksperyment socjometryczny badający strukturę sieci społecznej wykonany w latach sześćdziesiątych w USA (Milgram & Travers). Adresat - makler giełdowy pracujący w Bostonie; Nadawcy - ok. 100 osób z Bostonu + ok. 100 maklerów giełdowych z Omaha (Nebraska) + ok. 100 osób z Omaha (Nebraska); Wyniki badań - ok. 20% listów dotarło do celu; średnia droga jaką pokonał każdy z listów l ~ 6.5
26 Sieci małych światów Small-world networks [1] Travers & Milgram An experimental study of the small world problem (Sociometry, 1969) [2] Kirby & Sahre Six degrees of Monica (New York Times, February 21, 1998) [3] Watts & Strogatz, Collective dynamics of small-world networks (Nature vol.393, page 440, 1998) [4] Newman et al. Mean-field solution for the small-world network model (Phys. Rev. Lett. 84, 2000, p.3201 )
27 Sieć WWW: World Wide Web metodyka badań 800 million documents (S. Lawrence, 1999) ROBOT: collects all URL s found in a document and follows them recursively
28 Własności sieci rzeczywistych Bezskalowy rozkład stopni wierzchołków
29 Internet Węzły: komputery / rutery/ systemy autonomiczne Połączenia: fizyczne połączenia (Faloutsos, Faloutsos and Faloutsos, 1999)
30 Sieć aktorów filmowych Węzły: aktorzy Połączenia: jeśli aktorzy byli w obsadzie tego samego filmu Days of Thunder (1990) Far and Away (1992) Eyes Wide Shut (1999) N = k = P(k) ~k - =2.3
31 Science Citation Index Węzły: artykuły Połączenia: cytowania 1736 PRL papers (1988) 25 Witten-Sander PRL P(k) ~k - ( = 3) (S. Redner, 1998)
32 Mapa Współpracy Naukowej: naukowcy zajmujący się sieciami złożonymi
33 Sieci zależności pokarmowych (food webs) Węzły: gatunki Połączenia: relacje drapieżnik - ofiara R. Sole (cond-mat/ ) R.J. Williams, N.D. Martinez Nature (2000)
34 Rys. Rozkład liczby partnerów seksualnych dla kobiet i mężczyzn w Szwecji (18-74) a) w ciągu ostatnich 12 miesięcy α(k)=2.54, α(m)=2.31 b) w ciągu całego życia α(k)=2.1, α(m)=1.6.
35 Rynek transakcji międzybankowych w Austrii Rozkład wielkości kredytów międzybankowych Rozkład stopni wierzchołków P(k)
36 Co to wszystko ma wspólnego z fizyką? Co to jest fizyka? Fizyka... filozofia natury, opis i przewidywanie zjawisk
37 Dlaczego potęgowe rozkłady stopni wierzchołków są ważne? Dlaczego o takich rozkładach mówi się, że są bezskalowe, samopodobne? Sieć autostrad Sieć połączeń lotniczych
38 Zjawiska krytyczne - hipoteza skalowania, metoda grupy renormalizacji W pobliżu punktu krytycznego układy stają się samopodobne: w przestrzeni rzeczywistej tzn. są fraktalami w funkcji odległości od punktu krytycznego są opisane prawami potęgowymi
39 Metoda grupy renormalizacyjnej w zastosowaniu do modelu Isinga na sieci kwadratowej Rysunek przedstawia metodę renormalizacji przestrzeni wykorzystaną na następnych rysunkach: 1) sieć kwadratową obrazującą pierwotną konfigurację spinów a dzieli się na komórki renormalizacyjne zawierające x 2 =9 spinów s i a 2) konfigurację b otrzymuje się w ten sposób, że każdą komórkę renormalizacyjną zastępuje się jednym zrenormalizowanym spinem. 3) postępując według powyższych wskazówek można wykonywać kolejne renormalizacje.
40 Samopodobieństwo układu spinów Isinga na sieci kwadratowej W punkcie krytycznym układ jest SAMOPODOBNY we wszystkich skalach obserwacji. Nie zmienia swoich własności podczas renormalizacji
41 Większość sieci rzeczywistych jest samopodobna (rozkład stopni wierzchołków jest niezmienniczy z uwagi na procedurę renormalizacyjną) Sieci posiadają dobrze określony wymiar fraktalny!
42 Wymiar pudełkowy sieci rzeczywistych
43
44 PERKOLACJA Aplikacyjne aspekty nauki o sieciach złożonych Dlaczego ważna jest struktura sieci złożonych? 1. Zagadnienie odporności sieci Czy Internet jest odporny na przypadkowe błędy węzłów / połączeń i celowe ataki hakerów? (sieci metaboliczne, sieci zależności pokarmowych itd.) 2. Netwars Jak walczyć z grupami przestępczymi? (gangi młodzieżowe, dealerzy narkotyków, organizacje terrorystyczne) 3. Epidemiologia Czy struktura sieci społecznych ma wpływ na rozprzestrzenianie się chorób zakaźnych? Czy struktura Internetu i sieci owych ułatwia rozprzestrzenianie się wirusów komputerowych? (worms, SASSER)
45 Perkolacja w klasycznych grafach przypadkowych
46 ODPORNOŚĆ SIECI R.Albert, H. Yeong, A-L.Barabasi Error and attack tolerance of complex networks NATURE vol. 406, p378 Atak na sieć usunięcie (zablokowanie) najważniejszych (najlepiej usieciowionych węzłów) Przypadkowy błąd węzła / krawędzi losowy węzeł / krawędź ulega zablokowaniu (awarii itp.) W Internecie stale jest zablokowanych ok. 5% routerów. Duży komponent (S<<N) Sieć niespójna. Duży komponent (S~N) Sieć prawie spójna.
47
48 NETWARS Sieci rzeczywiste Struktura gangu młodzieżowego
49 NETWARS Sieci rzeczywiste Sieć dealerów narkotykowych
50 V.E. Krebs Mapping Networks of Terrorist Cells Connections 24(3): Analiza sieci 19 terrorystów, którzy wzięli udział w zamach na World Trade Center we wrześniu 2001 r.
51 Trusted Prior Contacts Network połączenia między terrorystami zostały ustanowione na podstawie tzw. podstawowych kontaktów np. znajomości szkolne, wspólnie odbyty kurs pilotażu. Przemówienie Osamy bin Ladena... Those who were trained to fly didn t know the others. One group of people did not know the other group... Charakterystyki sieci: 1) Sieć wyjątkowo rzadka; 2) Rozmiar N=19 3) Średnia droga l=4.75 4) Współczynnik gronowania C=0.4
52 Meeting ties - połączenia koordynacji projektem spotkanie w Las Vegas na tydzień przed zamachem. W spotkaniu wzięli udział przedstawiciele wszystkich czterech komórek terrorystycznych
53 Najbliższe Otoczenie Terrorystów zaopatrzenie / pieniądze / informacja W tej strukturze Mahomed Atta ujawnia się jako rzeczywisty lider terrorystów. Widoczne jest także silnie sklastrowana terrorystyczna komórka pracująca w Hamburgu (Niemcy), z której wywodził się M.Atta Wnioski 1) Ukryte / przestępcze sieci nie zachowują się jak zwykłe sieci społeczne. 2) Dążenie do minimalizacja kontaktów utrudnia identyfikację prawdziwych połączeń. 3) W sieci takiej istnieją silne powiązania, które przez długi czas mogą pozostawać w spoczynku (np. przeszłe zobowiązania, znajomości szkolne itd).
54 Spinowe metody detekcji modułów (gron, grup) w sieciach
55 EPIDEMIOLOGIA Sieci rzeczywiste Internet wirus Code Red Worm
56 Samoorganizująca się krytyczność SOC Aplikacyjne aspekty nauki o sieciach złożonych Dlaczego ważna jest struktura sieci złożonych? Przykłady: 1. Szum 1/f 2. Lawiny śniegu, trzęsienia ziemi 3. Pożary lasów 4. Plamy na słońcu 5. Masowe wymieranie gatunków 6. Gra life Dynamika układu spontanicznie prowadzi układ do stanu krytycznego.
57 Sandpile model: model sterty piachu P( s) ~ P( t) ~ t s a b Dynamika układu spontanicznie prowadzi układ do stanu krytycznego.
58 Rynek transakcji międzybankowych Ryzyko systemowe, system rezerw - systemic risk Zakażenie systemu finansowego contagion Kryzysy finansowe financial crises Utrata płynności ( bankructwo) jednego (kilku ) banków Efekt domino Kryzys systemu finansowego Wielka Depresja ; Kryzys Azjatycki 1999;
59 Sieci zależności pokarmowych ryzyko systemowe wielkie wymierania? Meteoryt? Wielkie zlodowacenie? Katastrofa ekologiczna (metan)? SOC?
60
61 Podstawowe modele sieci złożonych Klasyczne grafy przypadkowe: przykład sieci statycznej (równowagowej) Procedura konstrukcyjna Liczba wierzchołków jest stała N, Każda para węzłów jest połączona krawędzią z prawdopodobieństwem p Paul Erdös ( ) Model demokratyczny - zupełnie losowy Rozkład stopni wierzchołków P( k) N 1 p k k 1 p N 1 k k k e k! k p=0 p=0.1 p=0.5 p=1
62 Podstawowe modele sieci złożonych Sieci ewoluujące BA: przykład sieci rosnącej (nierównowagowej) Procedura konstrukcyjna Liczba wierzchołków nie jest stała, ale zmienia się w czasie sieć rośnie Nowe węzły nie są przyłączane do istniejącej już sieci losowo. Prawdopodobieństwo, że nowy węzeł dołączy się do starego węzła zależy liniowo od stopnia tego węzła - reguła preferencyjnego dołączania. Bogaty staje się jeszcze bardziej bogatszy A.-L. Barabasi (1967) Rozkład stopni wierzchołków P( k) 2m 3 k 2
63 Preferencyjne dołączenie, a idea kopiowania węzłów
64 Podstawowe modele sieci złożonych Sieci o zadanym Hamiltonianie statystyczna zbiorowość sieci (ansamble sieci) Procedura konstrukcyjna jest losowa, tzn. można utworzyć różne sieci. Są różne prawdopodobieństwa realizacji poszczególnych sieci.
65 To jeszcze nie koniec
Modelowanie sieci złożonych
Wykład z Sieci: 5 października 2017 Dr hab. Agata Fronczak, prof. PW Zakład Fizyki Układów Złożonych Modelowanie sieci złożonych Modelowanie sieci złożonych Dwa przykłady 1 Modelowanie sieci złożonych
Sieci ewoluujące: od fizyki do Internetu
Wykład z Sieci: 21 lutego 2007 Agata Fronczak i Janusz A. Hołyst Pracownia Dynamiki Nieliniowej Układów ZłoŜonych Sieci ewoluujące: od fizyki do Internetu Co oznacza termin układ złoŝony (complex system,
Fizyka sieci złożonych
Wykład z Sieci: 5 października 2017 Dr hab. Agata Fronczak, prof. PW Zakład Fizyki Układów Złożonych Fizyka sieci złożonych Co oznacza termin układ złożony (complex system, complexity) A popular paradigm:
Sieci złożone. Modelarnia 2014/2015 Katarzyna Sznajd-Weron
Sieci złożone Modelarnia 2014/2015 Katarzyna Sznajd-Weron Sieć = network Węzły Węzły jednego typu lub wielu Połączenia Połączenia kierunkowe lub nie Czy fizycy zawsze muszą mieć inne zdanie? Fizycy sieć
W sieci małego świata od DNA po facebooka. Dr hab. Katarzyna Sznajd-Weron, prof. PWr.
W sieci małego świata od DNA po facebooka Dr hab. Katarzyna Sznajd-Weron, prof. PWr. Plan Co to jest sieć? Przykłady sieci złożonych Cechy rzeczywistych sieci Modele sieci Sieci złożone i układy złożone
Modelowanie sieci złożonych
Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone
Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych
Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań
Warsztaty metod fizyki teoretycznej
Warsztaty metod fizyki teoretycznej Zestaw 6 Układy złożone- sieci w otaczającym nas świecie Marcin Zagórski, Jan Kaczmarczyk 17.04.2012 1 Wprowadzenie W otaczającym nas świecie odnajdujemy wiele struktur,
Badanie internetu. NeWWWton Fizyka w sieci. Piotr Pohorecki, Anna Poręba Gemius SA
Badanie internetu NeWWWton Fizyka w sieci Piotr Pohorecki, Anna Poręba Gemius SA Krótko o nas: niezależna firma badawcza - lider badań internetu, usługi badawcze, analityczne i doradcze w zakresie internetu,
Grafy Alberta-Barabasiego
Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest
Symulacje komputerowe w fizyce. Ćwiczenia X S.O.C.
Symulacje komputerowe w fizyce Ćwiczenia X S.O.C. Wiele zjawisk w przyrodzie (i nie tylko w przyrodzie) charakteryzuje się rozkładem potęgowym: Liczba trzęsień rocznie Trzęsienia ziemi: prawo Gutenberga-
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Krzysztof Suchecki Janusz A. Hołyst Wydział Fizyki Politechniki Warszawskiej Plan Model głosujący : definicja i własności
Sieci: grafy i macierze. Sieci afiliacji. Analiza sieci społecznych. Najważniejsze pytania. Komunikatory internetowe
Sieci społeczne Charakterystyka, uwarunkowania i konsekwencje struktur relacji społecznych na przykładzie komunikacji internetowej E Sieci: grafy i macierze A B A B A - C D E dr Dominik Batorski B - Instytut
Obszary strukturalne i funkcyjne mózgu
Spis treści 2010-03-16 Spis treści 1 Spis treści 2 Jak charakteryzować grafy? 3 4 Wielkości charakterystyczne Jak charakteryzować grafy? Średni stopień wierzchołków Rozkład stopni wierzchołków Graf jest
Hierarchical Cont-Bouchaud model
Hierarchical Cont-Bouchaud model inż. Robert Paluch dr inż. Krzysztof Suchecki prof. dr hab. inż. Janusz Hołyst Pracownia Fizyki w Ekonomii i Naukach Społecznych Wydział Fizyki Politechniki Warszawskiej
Sieci bezskalowe. Filip Piękniewski
Wydział Matematyki i Informatyki UMK Prezentacja na Seminarium Doktoranckie dostępna na http://www.mat.uni.torun.pl/ philip/sem-2008-2.pdf 24 listopada 2008 1 Model Erdős a-rényi Przejścia fazowe w modelu
Przejście fazowe w sieciach złożonych w modelu Axelroda
Przejście fazowe w sieciach złożonych w modelu Axelroda Korzeń W., Maćkowski M., Rozwadowski P., Szczeblewska P., Sznajder W. 1 Opiekun: Tomasz Raducha 1 Uniwersytet Warszawski, Wydział Fizyki 3 Streszczenie
Grafy stochastyczne i sieci złożone
Witold Bołt Grafy stochastyczne i sieci złożone 9 stycznia 007 Wstęp i ostrzeżenie Opracowanie to powstało w oparciu o notatki do wykładu Układy Złożone prowadzonego przez prof. dr hab. Danutę Makowiec
Praca dyplomowa inżynierska
Wydział Matematyki kierunek studiów: matematyka stosowana specjalność Praca dyplomowa inżynierska Dynamika opinii w sieciach bezskalowych Dominik Miażdżyk słowa kluczowe: dynamika opinii model q-wyborcy
Podręcznik. Przykład 1: Wyborcy
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn
Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn Instytut Informatyki Technicznej PWr MOTYWY SIECIOWE -NETWORK MOTIFS 1. Co to jest? 2. Jak mierzyć? 3. Gdzie
Układy dynamiczne Chaos deterministyczny
Układy dynamiczne Chaos deterministyczny Proste iteracje odwzorowań: Funkcja liniowa Funkcja logistyczna chaos deterministyczny automaty komórkowe Ewolucja układu dynamicznego Rozwój w czasie układu dynamicznego
Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych
Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych Tomasz Gradowski Seminarium Dynamiki Układów Złożonych 5. 11. 2007 Motywacja Wybory są fundamentalnym procesem społecznym
Ocena osiągnięć naukowych, dydaktycznych i organizacyjnych w związku z postępowaniem habilitacyjnym dr Agaty Fronczak
dr hab. Piotr Szymczak Instytut Fizyki Teoretycznej, Wydział Fizyki UW ul. Hoża 69, 00-681 Warszawa Ocena osiągnięć naukowych, dydaktycznych i organizacyjnych w związku z postępowaniem habilitacyjnym dr
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Dystrybutor w Polsce: VigilancePro. All Rights Reserved, Copyright 2005 Hitachi Europe Ltd.
Dystrybutor w Polsce: VigilancePro All Rights Reserved, Copyright 2005 Hitachi Europe Ltd. Wstęp Vigilance Pro Analiza sieciowa w czasie rzeczywistym Oprogramowanie Vigilance Pro jest unikalnym rozwiązaniem
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Korelacje krzyżowe kryzysów finansowych w ujęciu korelacji potęgowych. Analiza ewolucji sieci na progu liniowości.
Korelacje krzyżowe kryzysów finansowych w ujęciu korelacji potęgowych. Analiza ewolucji sieci na progu liniowości. Cross-correlations of financial crisis analysed by power law classification scheme. Evolving
Statystyki teoriografowe grafów funkcjonalnych w sieciach neuronowych
Statystyki teoriografowe grafów funkcjonalnych w sieciach neuronowych Wydział Matematyki i Informatyki, UMK 2011-12-21 1 Wstęp Motywacja 2 Model 3 4 Dalsze plany Referencje Motywacja 1 Wstęp Motywacja
Skoki o zerowej długości w formalizmie błądzenia losowego w czasie ciągłym
TEMATY PRAC MAGISTERSKICH Z EKONOFIZYKI Rok akademicki 2013/14 Skoki o zerowej długości w formalizmie błądzenia losowego w czasie ciągłym Opiekun: dr Tomasz Gubiec Email: Tomasz.Gubiec@fuw.edu.pl Błądzenie
Modelowanie układów złożonych. oferta dydaktyczna kierunki badawcze realizowane na Wydziale Fizyki PW
Modelowanie układów złożonych oferta dydaktyczna kierunki badawcze realizowane na Wydziale Fizyki PW Dlaczego MUZ? Dlaczego MUZ? Podsumowując Sieci dystrybucyjne / skalowanie allometryczne / samopodobieństwo
Socjofizyka... czyli wkład fizyki w analizę społeczeństw
Socjofizyka... czyli wkład fizyki w analizę społeczeństw Kongres Młodej Socjologii, Kraków, 01.06.2012 Andrzej Jarynowski 1, Fredrik Liljeros 2.3 Krzysztof Kułakowski.4 1 Zakład Teorii Układów Złożonych,
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,
Prawa potęgowe i samoorganizująca się krytyczność. Katarzyna Sznajd-Weron
Prawa potęgowe i samoorganizująca się krytyczność Katarzyna Sznajd-Weron Przystawka: Masa krytyczna (2004) Wybuch jądrowy: masa krytyczna materiału rozszczepialnego Rowerzyści: nieformalny ruch społeczny,
Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego
IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,
Ekonomia oczami fizyka
Ekonomia oczami fizyka Fluktuacje na giełdzie Gauss, Levy, grube ogony, skalowanie, log-periodyczność, Rozkład bogactwa w społeczeństwie (Pareto,Gibrat) - układy krytyczne Optymalizacja portfela symulowane
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii (2018) Autor prezentacji :dr hab. Paweł Korecki dr Szymon Godlewski e-mail: szymon.godlewski@uj.edu.pl
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii 2007 Paweł Korecki 2013 Andrzej Kapanowski Po co jest Pracownia Fizyczna? 1. Obserwacja zjawisk i
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów Ochrony Środowiska Teresa Jaworska-Gołąb 2017/18 Co czytać [1] H. Szydłowski, Pracownia fizyczna, PWN, Warszawa 1999. [2] A. Zięba, Analiza
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Znaczenie wymiany handlowej produktami rolno-spożywczymi w handlu zagranicznym Polski ogółem
Znaczenie wymiany handlowej produktami rolno-spożywczymi w handlu zagranicznym Polski ogółem dr Iwona Szczepaniak Konferencja Przemysł spożywczy otoczenie rynkowe, inwestycje, ekspansja zagraniczna IERiGŻ-PIB,
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
Mikro- i makro-ewolucja sieci społecznych
Mikro- i makro-ewolucja sieci społecznych Mikołaj Morzy Agnieszka Ławrynowicz Instytut Informatyki Poznań, rok akademicki 2010/2011 (c) Mikołaj Morzy, Agnieszka Ławrynowicz, Instytut Informatyki Politechniki
4. Jak połączyć profil autora w bazie Scopus z identyfikatorem ORCID. 5. Jak połączyć ResearcherID (Web of Science) z identyfikatorem ORCID
Identyfikator Plan wystąpienia: 1. Dlaczego ORCID 2. Co to jest ORCID 3. ORCID jak założyć profil 4. Jak połączyć profil autora w bazie Scopus z identyfikatorem ORCID 5. Jak połączyć ResearcherID (Web
Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym
Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym Piotr Nyczka Institute of Theoretical Physics University of Wrocław Artykuły Opinion dynamics as a movement in a bistable potential
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Wykładnicze grafy przypadkowe: teoria, przykłady, symulacje numeryczne
Artykuł Wykładnicze grafy przypadkowe: teoria, przykłady, symulacje numeryczne Agata Fronczak Streszczenie Omówione w tej pracy, podejście do modelowania sieci złożonych wykorzystujące wykładnicze grafy
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Badania operacyjne. Michał Kulej. semestr letni, Michał Kulej () Badania operacyjne semestr letni, / 13
Badania operacyjne Michał Kulej semestr letni, 2012 Michał Kulej () Badania operacyjne semestr letni, 2012 1/ 13 Literatura podstawowa Wykłady na stronie: www.ioz.pwr.wroc.pl/pracownicy/kulej Trzaskalik
Sterowanie wielkością zamówienia w Excelu - cz. 3
Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji
Szczegółowy wgląd w proces chłodzenia jedno-wymiarowego gazu bozonów
Szczegółowy wgląd w proces chłodzenia jedno-wymiarowego gazu bozonów Piotr Deuar (IF PAN) Emilia Witkowska, Mariusz Gajda (IF PAN) Kazimierz Rzążewski (CFT PAN) Cover of Phys. Rev. Lett., 1 Apr 2011 E.
Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy)
Wykład 4 Próbkowanie i rozkłady próbkowe µ = średnia w populacji, µ=ey, wartość oczekiwana zmiennej Y σ= odchylenie standardowe w populacji, σ =(Var Y) 1/2, pierwiastek kwadratowy wariancji zmiennej Y,
Weryfikacja hipotez statystycznych testy t Studenta
Weryfikacja hipotez statystycznych testy t Studenta JERZY STEFANOWSKI Marek Kubiak Instytut Informatyki Politechnika Poznańska Standardowy schemat postępowania (znane σ) Założenia: X ma rozkład normalny
GreenEvo Akcelerator Zielonych Technologii - rezultaty konkursu (2010-2011)
GreenEvo Akcelerator Zielonych Technologii - rezultaty konkursu (2010-2011) Agnieszka Kozłowska Korbicz koordynator projektu GreenEvo Forum Energia - Efekt Środowisko 25.05.2012 GreenEvo Akceleratora Zielonych
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej
Fraktale deterministyczne i stochastyczne Katarzyna Weron Katedra Fizyki Teoretycznej Szare i Zielone Scena z Fausta Goethego (1749-1832), Mefistofeles do doktora (2038-2039): Wszelka, mój bracie, teoria
Nowy generator grafów dwudzielnych
Nowy generator grafów dwudzielnych w analizie systemów rekomendujących Szymon Chojnacki Instytut Podstaw Informatyki Polskiej Akademii Nauk 08 marca 2011 roku Plan prezentacji 1 Wprowadzenie 2 Dane rzeczywiste
Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej
Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania
Rozmyte systemy doradcze
Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna
Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)
Seminarium magisterskie Ubóstwo, bogactwo, nierówność
Seminarium magisterskie Ubóstwo, bogactwo, nierówność dr Michał Brzeziński wtorki, 18:30-20, sala 209 oraz spotkania w terminach indywidualnych w 304 Parę słów o moich zainteresowaniach badawczych Zajmuję
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska
Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia
FRAKTALE I SAMOPODOBIEŃSTWO
FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)
POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH
POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL
Kamila Muraszkowska Znaczenie wąskich gardeł w sieciach białkowych. źródło: (3)
Kamila Muraszkowska Znaczenie wąskich gardeł w sieciach białkowych źródło: (3) Interakcje białko-białko Ze względu na zadanie: strukturalne lub funkcjonalne. Ze względu na właściwości fizyczne: stałe lub
Związki bezpośrednich inwestycji zagranicznych ze zmianami struktury eksportu i importu w Polsce
Dr Wojciech Zysk Katedra Handlu Zagranicznego Akademii Ekonomicznej w Krakowie Związki bezpośrednich zagranicznych ze zmianami struktury eksportu i importu w Polsce W opracowaniu podjęta zostanie próba
Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,
Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (punktowa, przedziałowa) Weryfikacja
Warszawa, 17 maja 2008
Warszawa, 17 maja 2008 Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński Centrum Fizyki Teoretycznej, PAN (1/4 etatu) Forum Integracyjne Nauki Polskiej zainteresowania badawcze: - dynamika nieliniowa,
WYKAZ OPUBLIKOWANYCH PRAC NAUKOWYCH ORAZ WSPÓŁPRACY NAUKOWEJ I POPULARYZACJI NAUKI 26
W S P Ó Ł O D D Z I A ŁY WA N I E W Ł A S N O Ś C I S T R U K T U R A L N Y C H I P R O C E S Ó W D Y N A M I C Z N Y C H W S I E C I A C H Z Ł O Ż O N Y C H dr S P I S T R E Ś C I i AUTOREFERAT 2 ii a
Synteza i eksploracja danych sekwencyjnych
Synteza i eksploracja danych sekwencyjnych Definicja problemu i wstępne wyniki eksperymentalne Projekt finansowany z grantu nr DEC-2011/03/D/ST6/01621 otrzymanego z Narodowego Centrum Nauki Plan prezentacji
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą
Nowoczesne koncepcje zarządzania globalnymi sieciami dostaw, a transport intermodalny
PRZEWOZÓW ŚWIATOWYCH 21-22 marca 2018 r. w PTAK WARSAW EXPO Nowoczesne koncepcje zarządzania globalnymi sieciami dostaw, a transport intermodalny SESJA I: TRANSPORT INTERMODALNY TRENDY ŚWIATOWE I EUROPEJSKIE
Wykład I. Administrowanie szkolną siecią komputerową. dr Artur Bartoszewski www.bartoszewski.pr.radom.pl
Administrowanie szkolną siecią komputerową dr Artur Bartoszewski www.bartoszewski.pr.radom.pl Wykład I 1 Tematyka wykładu: Co to jest sieć komputerowa? Usługi w sieciach komputerowych Zasięg sieci Topologie
NAT (Network Address Translation)
NAT usługa translacji adresów realizowana w celu: - umożliwienia dostępu do sieci większej ilości hostów niz ilość dostępnych adresów IP - podniesienia poziomu bezpieczeństwa sieci prywatnej - uproszczenia
Wykład 2: Tworzenie danych
Wykład 2: Tworzenie danych Plan: Statystyka opisowa a wnioskowanie statystyczne Badania obserwacyjne a eksperyment Planowanie eksperymentu, randomizacja Próbkowanie z populacji Rozkłady próbkowe Wstępna/opisowa
Jan M. Zając (UW / SmartNet) Zespół: Dominik Batorski, Paweł Kucharski
www.snrs.pl Tak naprawdę jest zupełnie inaczej, czyli 5 najczęściej powtarzanych bzdur o społecznościach internetowych Jan M. Zając (UW / SmartNet) Zespół: Dominik Batorski, Paweł Kucharski Nie wierzcie
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Równowaga Heidera symulacje mitozy społecznej
Równowaga Heidera symulacje mitozy społecznej Przemysław Gawroński Katedra Informatyki Stosowanej we współpracy z Krzysztofem Kułakowskim, Piotrem Gronkiem Plan Klasyczny model równowagi Heidera. Skala
Analiza sieci przedsiębiorstw z wykorzystaniem metody SNA
Analiza sieci przedsiębiorstw z wykorzystaniem metody SNA Arkadiusz Kawa, Uniwersytet Ekonomiczny w Poznaniu Słowa kluczowe: sieć przedsiębiorstw, analiza sieci społecznych, SNA, system złożony Streszczenie.
Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych
w grafach przepływu informacji dla geometrycznych sieci neuronowych www.mat.uni.torun.pl/~piersaj 2009-06-10 1 2 3 symulacji Graf przepływu ładunku Wspóczynnik klasteryzacji X (p) p α Rozkłady prawdopodobieństwa
Zgodność, fraudy i inne wyzwania oraz zagrożenia w Bankach Spółdzielczych. Aleksander Czarnowski AVET Information and Network Security Sp. z o.o.
Zgodność, fraudy i inne wyzwania oraz zagrożenia w Bankach Spółdzielczych Aleksander Czarnowski AVET Information and Network Security Sp. z o.o. Kilka słów o AVET INS 1997 rozpoczęcie działalności Od początku
Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
Instytut Informatyki Uniwersytet Wrocławski. Dane w sieciach. (i inne historie) Marcin Bieńkowski
Dane w sieciach (i inne historie) Marcin Bieńkowski Jak przechowywać dane w sieciach (strony WWW, bazy danych, ) tak, żeby dowolne ciągi odwołań do (części) tych obiektów mogły być obsłużone małym kosztem?
Kilka refleksji o zarządzaniu ryzykiem
Kilka refleksji o zarządzaniu ryzykiem Dr inż. Andrzej Kulik Konferencja IIA Iława, 2016 Zawartość Człowiek vs przyroda Kryzysy w ekonomii Regulacje Najistotniejsze ryzyka Trzy linie obrony Zarządzanie
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Biologii A i B dr hab. Paweł Korecki e-mail: pawel.korecki@uj.edu.pl http://www.if.uj.edu.pl/pl/edukacja/pracownia_i/
Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna
Biologia medyczna, materiały dla studentów
Jaka tam ewolucja. Zanim trafię na jednego myślącego, muszę stoczyć bitwę zdziewięcioma orangutanami Carlos Ruis Zafon Wierzbownica drobnokwiatowa Fitosterole, garbniki, flawonoidy Właściwości przeciwzapalne,
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne Czyli jak bardzo jesteśmy pewni że parametr oceniony na podstawie próbki jest
Wariacyjna teoria grupy renormalizacji w opisie uczenia głębokiego czyli Deep
Wariacyjna teoria grupy renormalizacji w opisie uczenia głębokiego czyli Deep Learning oczami fizyka statystycznego Zakład Algebry i Kombinatoryki Wydział Matematyki i Nauk Informacyjnych 18 kwietnia 2018