Symulacje komputerowe w fizyce. Ćwiczenia X S.O.C.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Symulacje komputerowe w fizyce. Ćwiczenia X S.O.C."

Transkrypt

1 Symulacje komputerowe w fizyce Ćwiczenia X S.O.C.

2 Wiele zjawisk w przyrodzie (i nie tylko w przyrodzie) charakteryzuje się rozkładem potęgowym:

3 Liczba trzęsień rocznie Trzęsienia ziemi: prawo Gutenberga- Richtera N ~ E -a Korzystając z danych o dużych trzęsieniach ziemi na całym świecie, można przedłużyć tę prostą do obszaru trzęsień o sile 7, 8 i 9 w skali Richtera. To skala logarytmiczna: trzęsienie o sile 7 wyzwala miliard razy większą energię niż to o skali 1 (które odpowiada wstrząsowi wywołanemu przez przejeżdżającego nieopodal TIRa) a jednak leżą one na jednej linii! Siła trzęsienia (proporcjonalna do log. energii) trzęsienia w obszarze New Madrid (USA) podobne zależności dla powodzi, wybuchów wulkanów, etc.

4 Miasta prawo Zipfa Miasta kanadyjskie N ~ r -a populacja (w tys.)

5 Słowa prawo Zipfa N ~ r -a

6 Dygresja prawa potęgowe są bezskalowe Bezskalowość (niezmienniczość ze względu na zmianę skali) k k f ( cx) = a( cx) = a x ~ f ( x)

7 i wiele innych przykładów rozkładów potęgowych/ układów bezskalowych......częstości występowania nazwisk, wielkości kraterów na księżycu i rozbłysków słonecznych, wielkości wojen, rozkład zamożności społeczeństwa, długości dopływów rzecznych... Prawa potęgowe są powszechne w przyrodzie! DLACZEGO?

8 Punkt krytyczny W fizyce prawa potęgowe zwykle związane są z zachowaniem układu w punkcie krytycznym (np. na progu perkolacji, w punkcie końcowym krzywej ciecz-para, w temperaturze przejścia dla modelu Isinga). ξ ~( p ) c p ν We wszystkich tych układach (równowagowych!) punkt krytyczny może być osiągnięty jedynie poprzez precyzyjne dostrojenie parametru kontrolnego (temperatura, prawdopodobienstwo...) Jednakże w niektórych układach nierównowagowych punkt krytyczny staje się atraktorem dynamiki, stabilnym względem małych zmian parametrów układu zjawisko takie nazywamy samo-organizującą się krytycznością

9 Samo-organizująca się krytyczność Złożone zachowanie układów w przyrodzie odzwierciedla skłonność struktur o dużej liczbie stopni swobody do ewolucji w kierunku pewnego stanu krytycznego", dalekiego od równowagi, w którym drobne zaburzenia mogą prowadzić do zdarzeń zwanych lawinami o różnorakiej wielkości. Osiąganie przez układ owego stanu następuje bez żadnej ingerencji z zewnątrz, jedynie na skutek dynamicznych oddziaływań pomiędzy elementami układu: stan krytyczny jest tworzony w sposób spontaniczny, przez samoorganizację. Samoorganizująca się krytyczność to jak dotąd jedyny znany mechanizm tworzenia złożoności Per Bak,

10 Model pryzmy piasku Baka Każdemu węzłowi siatki przypisana jest pewna liczba, która odpowiada nachyleniu pryzmy. To nachylenie wzrasta, w miarę jak ziarnka piasku są kładzione na pryzmie, aż wreszcie gdy nachylenie w punkcie X przekracza pewien ustalony próg następuje lawina, która przesypuje piasek z punktu X do punktów sąsiednich Dodajemy jedno ziarnko w przypadkowym miejscu: z i, j= zi, j+ 1 Redystrybucja piasku po przekroczeniu progu: if z > z then z = z 4 c i, j i, j z z = z + 1 i± 1, j i± 1, j = z + 1 i, j± 1 i, j± 1 + absorbujące warunki brzegowe (z=0) na bokach siatki

11 Lawiny rozmiar lawiny rozkład potęgowy

12 Model neurotycznych urzędników Grassbergera Wyobraźmy sobie wielki pokój, wypełniony urzędnikami siedzącymi przy ustawionych rzędami biurkach. Okna w pokoju są otwarte i usytuowane w jednej linii z biurkami. Co jakiś czas na losowo wybrane biurko jest dostarczany dokument (sprawa do rozpatrzenia). Kiedy urzędnik spostrzega, że na jego biurku są aż 4 dokumenty, przekazuje po jednym swoim kolegom z prawej, lewej, z przodu i tyłu. To może spowodować, że jeden z jego sąsiadów będzie miał cztery dokumenty do rozpatrzenia, więc przekaże je dalej. Urzędnicy z krańcowych rzędów będą zaś odpowiednie kartki wyrzucać przez okno.

13 Zadanie (I) wykonaj symulację modelu pryzmy piasku Baka zacznij od małego układu (np. 31x31), dodając ziarenka w przypadkowych miejscach początkowo pustej sitaki wykreśl liczbę ziarenek w układzie w funkcji czasu i sprawdź, kiedy jest osiągany stan stacjonarny po jego osiągnięciu rozpocznij zbieranie danych n/t wielkości lawin i narysuj N(S) liczbę lawin o wielkości S na wykresie log-log i znajdź wykładnik a w prawie potęgowym: N ~ S -a

14 Zadanie (II) Następnie, zbadaj inne warunki początkowe: zacznij od pustej siatki, zrzucaj ziarenka tylko w środku, zrób film pokazujący ewolucję układu (1 klatka 1 krok czasowy) zacznij od superkrytycznej siatki (wszędzie =7), doprowadź układ do stanu stacjonarnego, zrób film pokazujący ewolucję układu (1 klatka 1 iteracja lawin) Niektóre wzory otrzymane w ten sposób, szczególnie dla większyck układów (50x50, 100x100 czy 200x200), mogą być miłe dla oka

15 Przykład: typowy stan stacjonarny kodowanie wysokości za pomocą kolorów stan stacjonarny pryzmy o 200x200 kolumnach dla niestabilnych warunków początkowych odpowiadających z=7 wszędzie

16 Kilka wskazówek Jako że cała sieć z powinna być aktualizowana jednocześnie (nie sekwencyjnie!), to rozsądne jest zrobienie wcześniej jej kopii, aby mieć dostęp do poprzednich wartości podczas aktualizacji z2=z.copy() Rysowanie siatki i skali (tak jak w poprzednim ćwiczeniu): import matplotlib.pyplot as plt import matplotlib fig=plt.figure() ax=fig.add_subplot(111) ax.set_title('height of the Sandpile') cax = ax.imshow(z, interpolation='nearest') cax.set_clim(vmin=0, vmax=8) cbar = fig.colorbar(cax, ticks=[0,3, 5, 8], orientation='vertical') filename = str('%03d' % t) + '.png' plt.savefig(filename, dpi=100) plt.clf()

17

Grafy Alberta-Barabasiego

Grafy Alberta-Barabasiego Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest

Bardziej szczegółowo

Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych

Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych Tomasz Gradowski Seminarium Dynamiki Układów Złożonych 5. 11. 2007 Motywacja Wybory są fundamentalnym procesem społecznym

Bardziej szczegółowo

Prawa potęgowe i samoorganizująca się krytyczność. Katarzyna Sznajd-Weron

Prawa potęgowe i samoorganizująca się krytyczność. Katarzyna Sznajd-Weron Prawa potęgowe i samoorganizująca się krytyczność Katarzyna Sznajd-Weron Przystawka: Masa krytyczna (2004) Wybuch jądrowy: masa krytyczna materiału rozszczepialnego Rowerzyści: nieformalny ruch społeczny,

Bardziej szczegółowo

Układy dynamiczne Chaos deterministyczny

Układy dynamiczne Chaos deterministyczny Układy dynamiczne Chaos deterministyczny Proste iteracje odwzorowań: Funkcja liniowa Funkcja logistyczna chaos deterministyczny automaty komórkowe Ewolucja układu dynamicznego Rozwój w czasie układu dynamicznego

Bardziej szczegółowo

TEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska

TEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska TEORIA CHAOSU Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska Wydział MiNI Politechnika Warszawska Rok akademicki 2015/2016 Semestr letni Krótki kurs historii matematyki DEFINICJA

Bardziej szczegółowo

Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych

Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 10 listopada 2016 Proseminarium licencjackie

Bardziej szczegółowo

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14

Bardziej szczegółowo

Kultywator rolniczy - dobór parametrów sprężyny do zadanych warunków pracy

Kultywator rolniczy - dobór parametrów sprężyny do zadanych warunków pracy Metody modelowania i symulacji kinematyki i dynamiki z wykorzystaniem CAD/CAE Laboratorium 6 Kultywator rolniczy - dobór parametrów sprężyny do zadanych warunków pracy Opis obiektu symulacji Przedmiotem

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 02 Jarosław Miszczak IITiS PAN Gliwice 06/10/2016 1 / 31 Czego dowiedzieliśmy się na poprzednim wykładzie? 1... 2... 3... 2 / 31 1 2 3 3 / 31 to jeden z pierwszych

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania

Bardziej szczegółowo

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań

Bardziej szczegółowo

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0

Bardziej szczegółowo

ALHE. prof. Jarosław Arabas semestr 15Z

ALHE. prof. Jarosław Arabas semestr 15Z ALHE prof. Jarosław Arabas semestr 15Z Wykład 5 Błądzenie przypadkowe, Algorytm wspinaczkowy, Przeszukiwanie ze zmiennym sąsiedztwem, Tabu, Symulowane wyżarzanie 1. Błądzenie przypadkowe: Pierwszym krokiem

Bardziej szczegółowo

W dowolnym kwadracie 3x3 ustawiamy komórki na palące się (stan 3). Program powinien pokazywać ewolucję pożaru lasu.

W dowolnym kwadracie 3x3 ustawiamy komórki na palące się (stan 3). Program powinien pokazywać ewolucję pożaru lasu. 1. Symulacja pożaru lasu ver. 1 Las reprezentowany jest przez macierz 100x100. W lesie występują dwa rodzaje drzew: liściaste i iglaste. Przyjmijmy, że prostokąt A(1:50,1:100) wypełniony jest drzewami

Bardziej szczegółowo

Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej

Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej Fraktale deterministyczne i stochastyczne Katarzyna Weron Katedra Fizyki Teoretycznej Szare i Zielone Scena z Fausta Goethego (1749-1832), Mefistofeles do doktora (2038-2039): Wszelka, mój bracie, teoria

Bardziej szczegółowo

Równoległe symulacje Monte Carlo na współdzielonej sieci

Równoległe symulacje Monte Carlo na współdzielonej sieci Równoległe symulacje Monte Carlo na współdzielonej sieci Szymon Murawski, Grzegorz Musiał, Grzegorz Pawłowski Wydział Fizyki, Uniwersytet im. Adama Mickiewicza 12 maja 2015 S. Murawski, G. Musiał, G. Pawłowski

Bardziej szczegółowo

Zmienność wiatru w okresie wieloletnim

Zmienność wiatru w okresie wieloletnim Warsztaty: Prognozowanie produktywności farm wiatrowych PSEW, Warszawa 5.02.2015 Zmienność wiatru w okresie wieloletnim Dr Marcin Zientara DCAD / Stermedia Sp. z o.o. Zmienność wiatru w różnych skalach

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Badanie internetu. NeWWWton Fizyka w sieci. Piotr Pohorecki, Anna Poręba Gemius SA

Badanie internetu. NeWWWton Fizyka w sieci. Piotr Pohorecki, Anna Poręba Gemius SA Badanie internetu NeWWWton Fizyka w sieci Piotr Pohorecki, Anna Poręba Gemius SA Krótko o nas: niezależna firma badawcza - lider badań internetu, usługi badawcze, analityczne i doradcze w zakresie internetu,

Bardziej szczegółowo

Efekt motyla i dziwne atraktory

Efekt motyla i dziwne atraktory O układzie Lorenza Wydział Matematyki i Informatyki Uniwersytet Mikołaja kopernika Toruń, 3 grudnia 2009 Spis treści 1 Wprowadzenie Wyjaśnienie pojęć 2 O dziwnych atraktorach 3 Wyjaśnienie pojęć Dowolny

Bardziej szczegółowo

Ćwiczenia z przetwarzania tablic 2D

Ćwiczenia z przetwarzania tablic 2D Ćwiczenia z przetwarzania tablic 2D Wyświetlanie tablic 2D Jako wstęp do przetwarzania obrazów w pythonie przećwiczmy podstawowe operacje na dwuwymiarowych tablicach numpy w postaci których będziemy takie

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.

Bardziej szczegółowo

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji

Bardziej szczegółowo

narzędzie Linia. 2. W polu koloru kliknij kolor, którego chcesz użyć. 3. Aby coś narysować, przeciągnij wskaźnikiem w obszarze rysowania.

narzędzie Linia. 2. W polu koloru kliknij kolor, którego chcesz użyć. 3. Aby coś narysować, przeciągnij wskaźnikiem w obszarze rysowania. Elementy programu Paint Aby otworzyć program Paint, należy kliknąć przycisk Start i Paint., Wszystkie programy, Akcesoria Po uruchomieniu programu Paint jest wyświetlane okno, które jest w większej części

Bardziej szczegółowo

Kompresja danych Streszczenie Studia Dzienne Wykład 10,

Kompresja danych Streszczenie Studia Dzienne Wykład 10, 1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny

Bardziej szczegółowo

Przykład rozwiązania tarczy w zakresie sprężysto-plastycznym

Przykład rozwiązania tarczy w zakresie sprężysto-plastycznym Przykład rozwiązania tarczy w zakresie sprężysto-plastycznym Piotr Mika Kwiecień, 2012 2012-04-18 1. Przykład rozwiązanie tarczy programem ABAQUS Celem zadania jest przeprowadzenie analizy sprężysto-plastycznej

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Metoda Elementów Skończonych-Projekt Prowadzący: Dr hab. Tomasz Stręk prof. nadzw. Wykonali : Grzegorz Paprzycki Grzegorz Krawiec Wydział: BMiZ Kierunek: MiBM Specjalność: KMiU Spis

Bardziej szczegółowo

Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa

Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa INSTYTUT SYSTEMÓW INŻYNIERII ELEKTRYCZNEJ TEORIA OBWODÓW ELEKTRYCZNYCH LABORATORIUM Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa Grupa nr:. Zespół nr:. Skład

Bardziej szczegółowo

Rysunek 1: Okno timeline wykorzystywane do tworzenia animacji.

Rysunek 1: Okno timeline wykorzystywane do tworzenia animacji. Ćwiczenie 5 - Tworzenie animacji Podczas tworzenia prostej animacji wykorzystywać będziemy okno Timeline domyślnie ustawione na dole okna Blendera (Rys. 1). Proces tworzenia animacji polega na stworzeniu

Bardziej szczegółowo

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.

Bardziej szczegółowo

e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii

e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii Metoda Metropolisa Z = e E P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = P E =Z 1 E e E Wartość średnia energii Średnia wartość A = d r N A r N exp[ U r N ] d r N exp[

Bardziej szczegółowo

Obrazy rekurencyjne. Zastosowanie rekurencji w algorytmice. AUTOR: Martin Śniegoń

Obrazy rekurencyjne. Zastosowanie rekurencji w algorytmice. AUTOR: Martin Śniegoń Obrazy rekurencyjne Zastosowanie rekurencji w algorytmice AUTOR: Martin Śniegoń Zdolność procedury/funkcji do wywoływania samej siebie Podstawowa i jedna z najważniejszych technik programistycznych Umożliwia

Bardziej szczegółowo

Modelowanie sieci złożonych

Modelowanie sieci złożonych Wykład z Sieci: 5 października 2017 Dr hab. Agata Fronczak, prof. PW Zakład Fizyki Układów Złożonych Modelowanie sieci złożonych Modelowanie sieci złożonych Dwa przykłady 1 Modelowanie sieci złożonych

Bardziej szczegółowo

Automaty komórkowe. Katarzyna Sznajd-Weron

Automaty komórkowe. Katarzyna Sznajd-Weron Automaty komórkowe Katarzyna Sznajd-Weron Trochę historii CA (Cellular Automata) Koniec lat 40-tych John von Neuman maszyna z mechanizmem samopowielania Sugestia Ulama 1952 dyskretny układ komórek dyskretne

Bardziej szczegółowo

FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA

FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 2

INSTRUKCJA DO ĆWICZENIA NR 2 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o jednym stopniu

Bardziej szczegółowo

LABORATORIUM PODSTAW TELEKOMUNIKACJI

LABORATORIUM PODSTAW TELEKOMUNIKACJI WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:

Bardziej szczegółowo

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 5 BADANIE STABILNOŚCI UKŁADÓW ZE SPRZĘŻENIEM ZWROTNYM 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

Sieci bezskalowe. Filip Piękniewski

Sieci bezskalowe. Filip Piękniewski Wydział Matematyki i Informatyki UMK Prezentacja na Seminarium Doktoranckie dostępna na http://www.mat.uni.torun.pl/ philip/sem-2008-2.pdf 24 listopada 2008 1 Model Erdős a-rényi Przejścia fazowe w modelu

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

Tematy prac magisterskich i doktorskich

Tematy prac magisterskich i doktorskich Tematy prac magisterskich i doktorskich Stochastyczna dynamika z opóźnieniami czasowymi w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 9. Dobór nastaw

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych. Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach

Bardziej szczegółowo

Sieci złożone. Modelarnia 2014/2015 Katarzyna Sznajd-Weron

Sieci złożone. Modelarnia 2014/2015 Katarzyna Sznajd-Weron Sieci złożone Modelarnia 2014/2015 Katarzyna Sznajd-Weron Sieć = network Węzły Węzły jednego typu lub wielu Połączenia Połączenia kierunkowe lub nie Czy fizycy zawsze muszą mieć inne zdanie? Fizycy sieć

Bardziej szczegółowo

CorelDRAW. wprowadzenie

CorelDRAW. wprowadzenie CorelDRAW wprowadzenie Źródło: Podręcznik uŝytkownika pakietu CorelDRAW Graphics Suite 12 Rysowanie linii 1. Otwórz program CorelDRAW. 2. Utwórz nowy rysunek i zapisz go w swoich dokumentach jako [nazwisko]_1.cdr

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Ciągi liczbowe. Zbigniew Koza. Wydział Fizyki i Astronomii

Ciągi liczbowe. Zbigniew Koza. Wydział Fizyki i Astronomii Ciągi liczbowe Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są ciągi? Ciąg skończony o wartościach w zbiorze A to dowolna funkcja f: 1,2,, n A Ciąg nieskończony o wartościach w zbiorze

Bardziej szczegółowo

Hierarchical Cont-Bouchaud model

Hierarchical Cont-Bouchaud model Hierarchical Cont-Bouchaud model inż. Robert Paluch dr inż. Krzysztof Suchecki prof. dr hab. inż. Janusz Hołyst Pracownia Fizyki w Ekonomii i Naukach Społecznych Wydział Fizyki Politechniki Warszawskiej

Bardziej szczegółowo

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe

Bardziej szczegółowo

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.

Bardziej szczegółowo

Ekonomia oczami fizyka

Ekonomia oczami fizyka Ekonomia oczami fizyka Fluktuacje na giełdzie Gauss, Levy, grube ogony, skalowanie, log-periodyczność, Rozkład bogactwa w społeczeństwie (Pareto,Gibrat) - układy krytyczne Optymalizacja portfela symulowane

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

Ćwiczenie 1 Galeria zdjęć

Ćwiczenie 1 Galeria zdjęć Galeria zdjęć Pobierz przykład (http://jsekulska.kis.p.lodz.pl/studia.htm). Krok 1 Ustawienie stołu montażowego Otwieramy nowy plik i nazywamy go (np. gallery.fla). Ustawiamy wielkość pola roboczego na

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

2. Korzystając z ikony Warstwy stwórz nowe warstwy według podanego schematu:

2. Korzystając z ikony Warstwy stwórz nowe warstwy według podanego schematu: Modyfikacja obiektów kreskowanie 8 Polecenie: Korzystając z warstw narysuj przedstawiony poniżej na rysunku (a) obiekt (dwa współśrodkowe okręgi o promieniach R 1 = 15 i R 2 = 35, pięciokąt o boku 25 jednostek

Bardziej szczegółowo

Konkurs dla gimnazjalistów Etap szkolny 12 grudnia 2013 roku

Konkurs dla gimnazjalistów Etap szkolny 12 grudnia 2013 roku Konkurs dla gimnazjalistów Etap szkolny 1 grudnia 01 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 1. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.

Bardziej szczegółowo

Instrukcja wprowadzania graficznych harmonogramów pracy w SZOI Wg stanu na 21.06.2010 r.

Instrukcja wprowadzania graficznych harmonogramów pracy w SZOI Wg stanu na 21.06.2010 r. Instrukcja wprowadzania graficznych harmonogramów pracy w SZOI Wg stanu na 21.06.2010 r. W systemie SZOI została wprowadzona nowa funkcjonalność umożliwiająca tworzenie graficznych harmonogramów pracy.

Bardziej szczegółowo

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji. Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji

Bardziej szczegółowo

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę

Bardziej szczegółowo

Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron

Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Co to jest fizyka statystyczna? Termodynamika poziom makroskopowy Fizyka statystyczna poziom mikroskopowy Marcin Weron

Bardziej szczegółowo

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( ) Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału

Bardziej szczegółowo

Wykład 12: Tablice wielodzielcze

Wykład 12: Tablice wielodzielcze Wykład 12: Tablice wielodzielcze Drosophila melanogaster Krzyżówka wsteczna (CcNn i ccnn) Kolor oczu czerwone fioletowe Rozmiar skrzydła normalne 39 11 mniejsze 18 32 Zródło:http://pl.wikipedia.org/wiki/Plik:Drosophila_melanogaster1.jpg

Bardziej szczegółowo

Stateczność ramy. Wersja komputerowa

Stateczność ramy. Wersja komputerowa Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel

Bardziej szczegółowo

Statystyka opisowa- cd.

Statystyka opisowa- cd. 12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa- cd. Wykład 4 Dr inż. Adam Deptuła HISTOGRAM UNORMOWANY Pole słupka = wysokość słupka x długość przedziału Pole słupka = n i n h h,

Bardziej szczegółowo

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl

Bardziej szczegółowo

Załącznik 3. Kwestionariusz Ergonomiczne stanowisko komputerowe

Załącznik 3. Kwestionariusz Ergonomiczne stanowisko komputerowe Załącznik 3. Kwestionariusz Ergonomiczne stanowisko komputerowe (Zmodyfikowany kwestionariusz występowania subiektywnych objawów zespołów przeciążeniowych oraz Zmodyfikowana lista kontrolna: Bezpieczeństwo

Bardziej szczegółowo

24 proste kroki. aby pokonac. Obrazki. logiczne. ro05155

24 proste kroki. aby pokonac. Obrazki. logiczne. ro05155 proste kroki / aby pokonac Obrazki logiczne Copyright Logi Urszula Marciniak 0 ro0 Część Zadanie. Tutaj są kółka. Ile widzisz kółek na tym rysunku? Wpisz liczbę w żółtą kratkę. Zadanie. Narysuj w białych

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) 173902

(12) OPIS PATENTOWY (19) PL (11) 173902 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 173902 (13) B1 Urząd Patentowy Rzeczypospolite] Polskiej (21) Numer zgłoszenia: 2 9 7 7 1 2 (22) Data zgłoszenia: 12.02.1993 (51) IntCl6: A41H3/00

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny

Bardziej szczegółowo

TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA. T4. Tablica kwantyli rozkładu chi-kwadrat (I część - poziomy kwantyli 0,5)

TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA. T4. Tablica kwantyli rozkładu chi-kwadrat (I część - poziomy kwantyli 0,5) TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA T1. Tablica dystrybuanty standardowego normalnego rozkładu N(0,1) T2. Tablica kwantyli standardowego normalnego rozkładu N(0,1) T3. Tablica kwantyli rozkładu

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Podstawy Informatyki. Metody dostępu do danych

Podstawy Informatyki. Metody dostępu do danych Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie

Bardziej szczegółowo

Podstawy biblioteki Matplotlib

Podstawy biblioteki Matplotlib Podstawy biblioteki Matplotlib Krzysztof Gdawiec Instytut Informatyki Uniwersytet Śląski Matplotlib jest biblioteką Pythona służącą do tworzenia różnego rodzaju wykresów. Biblioteka ta od samego początku

Bardziej szczegółowo

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa

Bardziej szczegółowo

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n

Bardziej szczegółowo

SEGMENT TCP CZ. II. Suma kontrolna (ang. Checksum) liczona dla danych jak i nagłówka, weryfikowana po stronie odbiorczej

SEGMENT TCP CZ. II. Suma kontrolna (ang. Checksum) liczona dla danych jak i nagłówka, weryfikowana po stronie odbiorczej SEGMENT TCP CZ. I Numer portu źródłowego (ang. Source port), przeznaczenia (ang. Destination port) identyfikują aplikacje wysyłającą odbierającą dane, te dwie wielkości wraz adresami IP źródła i przeznaczenia

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

Qtiplot. dr Magdalena Posiadała-Zezula

Qtiplot. dr Magdalena Posiadała-Zezula Qtiplot dr Magdalena Posiadała-Zezula Magdalena.Posiadala@fuw.edu.pl www.fuw.edu.pl/~mposiada Start! qtiplot poza rysowaniem wykresów pozwala też na zaawansowaną obróbkę danych.! qtiplot jest silnie wzorowany

Bardziej szczegółowo

Sieci Kohonena Grupowanie

Sieci Kohonena Grupowanie Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie

Bardziej szczegółowo

Rozkłady dwuwymiarowe. Tablice dwudzielcze. Przykład (wstępny):

Rozkłady dwuwymiarowe. Tablice dwudzielcze. Przykład (wstępny): Rozkłady dwuwymiarowe Rozkłady brzegowe Rozkłady warunkowe Niezależność Kowariancja Współczynnik korelacji (Przykłady na tablicy) Tablice dwudzielcze Najprostsze tablice 2x2 : dwa rzędy i dwie kolumny

Bardziej szczegółowo

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza

Bardziej szczegółowo

Symulacja Monte Carlo izotermy adsorpcji w układzie. ciało stałe-gaz

Symulacja Monte Carlo izotermy adsorpcji w układzie. ciało stałe-gaz Ćwiczenie nr 2 Symulacja Monte Carlo izotermy adsorpcji w układzie ciało stałe-gaz I. Cel ćwiczenia Celem ćwiczenia jest określenie wpływu parametrów takich jak temperatura, energia oddziaływania cząsteczka-powierzchnia

Bardziej szczegółowo

Rozdział 7 ZARZĄDZANIE PROJEKTAMI

Rozdział 7 ZARZĄDZANIE PROJEKTAMI Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 7 ZARZĄDZANIE PROJEKTAMI 7.2. Ćwiczenia komputerowe Ćwiczenie 7.1 Wykorzystując

Bardziej szczegółowo

Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn

Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn Instytut Informatyki Technicznej PWr MOTYWY SIECIOWE -NETWORK MOTIFS 1. Co to jest? 2. Jak mierzyć? 3. Gdzie

Bardziej szczegółowo

CMAES. Zapis algorytmu. Generacja populacji oraz selekcja Populacja q i (t) w kroku t generowana jest w następujący sposób:

CMAES. Zapis algorytmu. Generacja populacji oraz selekcja Populacja q i (t) w kroku t generowana jest w następujący sposób: CMAES Covariance Matrix Adaptation Evolution Strategy Opracowanie: Lidia Wojciechowska W algorytmie CMAES, podobnie jak w algorytmie EDA, adaptowany jest rozkład prawdopodobieństwa generacji punktów, opisany

Bardziej szczegółowo