W sieci małego świata od DNA po facebooka. Dr hab. Katarzyna Sznajd-Weron, prof. PWr.

Wielkość: px
Rozpocząć pokaz od strony:

Download "W sieci małego świata od DNA po facebooka. Dr hab. Katarzyna Sznajd-Weron, prof. PWr."

Transkrypt

1 W sieci małego świata od DNA po facebooka Dr hab. Katarzyna Sznajd-Weron, prof. PWr.

2 Plan Co to jest sieć? Przykłady sieci złożonych Cechy rzeczywistych sieci Modele sieci Sieci złożone i układy złożone

3 Sieć = network Węzły Węzły jednego typu lub wielu Połączenia Połączenia kierunkowe lub nie

4 Czy fizycy zawsze muszą mieć inne zdanie? Fizycy sieć (network) węzeł (node) połączenie (link) Matematycy graf (graph) wierzchołek (vertex) krawędź (edge)

5 Sieć (graf) i jej podstawowe charakterystyki Rozkład stopni wierzchołków (c) 2016, Arkadiusz Jędrzejewski

6 Sieć (graf) i jej podstawowe charakterystyki Najkrótsza droga Średnia najkrótsza droga: Współczynnik gronowania (c) 2016, Arkadiusz Jędrzejewski

7 Sieci społeczne Węzły: ludzie Połączenia: znajomości, przyjaźnie, współpraca

8 Austin Powers: The spy who shagged me Robert Wagner Let s make it legal Wild Things What Price Glory Barry Norton A Few Good Man Monsieur Verdoux

9 Randki w szkole średniej Węzły: uczniowie Połączenia: randki

10 Sieci współpracy Węzły: uczeni, aktorzy Połączenia: wspólne publikacje, role w tych samych filmach

11 Sieci komunikacji Węzły: komputery, satelity, strony WWW, centrale Połączenia: linie telefoniczne, linie światłowodowe, linki między stronami

12 Sieci pokarmowe ekologia Węzły: osobniki, populacje, gatunki Połączenia: relacja drapieżca-ofiara

13 Sieci metaboliczne Węzły: związki chemiczne Połączenia: reakcje chemiczne

14 Powiązania między firmami Węzły sieci firmy Połączenia między węzłami kierunkowe A B oznacza, że A posiada akcje B Węzły czerwone (przemysł), żółte (finanse)

15 Jakie to są sieci Czy są to sieci regularne? Czy są to grafy losowe? Czy może jeszcze coś innego?

16 Graf losowy (Erdös-Rényi 1960) (c) 2016, Arkadiusz Jędrzejewski

17 Sześć stopni separacji 1967, psycholog społeczny S. Milgram kilkuset losowo wybranych ludzi z Nebraski i Kansas otrzymało przesyłki z paszportem Cel osoba w Bostonie Podaj dalej do znajomego Jaki ten Świat mały!

18 Travers, Milgram (1969) 296 losowo wybranych ludzi w Bostonie i Nebrasce Cel w Massachusetts 64 łańcuchy osiągnęły cel Średnia długość łańcucha 5.2

19 The New York Times, Analizie połączeń 721 milionów użytkowników Facebooka Dowolne dwie osoby na świecie dzieli tylko 4.74 stopni separacji Znajomość Facebookowa!

20 Wolfram Alpha Personal Analytics for Facebook

21 Cechy sieci społecznej Świat jest mały Ludzie trzymają się w paczkach Kasi nie ma na rysunku jest połączona z wszystkimi Przykładowa sieć (Kasia córka Wolframa) Źródło: Wolfram Alpha Personal Analytics for Facebook

22 Co to znaczy, że świat jest mały? Odległość d ij między wierzchołkami i, j Długość najkrótszej drogi od i do j Najmniejsza liczba krawędzi od i do j Kurs Online Barabasi et al. Network Science

23 Co to znaczy, że ludzie trzymają się w paczkach? Współczynnik gronowania wierzchołka C i Miara tego jak wielu sąsiadów i jest wzajemnie ze sobą połączona Stosunek liczby L i istniejących krawędzi między sąsiadami i do wszystkich możliwych krawędzi między tymi sąsiadami: C i = 2L i k i k i 1

24 Model Wattsa-Strogatza Sieć Małego Świata (c) 2016, Arkadiusz Jędrzejewski

25 Coś tu jest nie tak 9 10 Ile jest stron z 500 połączeniami? Teoretycznie (Mały Świat): R. Albert, H. Jeong, A-L Barabasi, Nature, (1999) Rzeczywiście: 1000

26 Sieci złożone: bezskalowe

27 Jak wykryć prawo potęgowe? y a x b log y log a y' log a bx' blog x

28 SCIENCE CITATION INDEX Nodes: papers Links: citations 1736 PRL papers (1988) Witten-Sander PRL P(k) ~k - ( = 3) (S. Redner, 1998)

29 Sieci Metaboliczne Archeony (archeobakterie) Bakterie Eukarioty (jądrowce)

30 Human Genome Project co wiadomo W 2000 zsekwencjonowano cały ludzki genom Tylko genów (sekwencje DNA, które kodują białka) tyle co u myszy, robaków, roślin gorczycy! Geny kodujące białka stanowią jedynie około 2% naszego DNA! Jeśli tak mało genów to skąd pochodzi nasza złożoność? Jaka jest funkcja DNA śmieciowego Czego jeszcze się dowiedzieliśmy?

31 Human Genome Project co wiadomo Geny oddziałują nieliniowo tworząc skomplikowane sieci przetwarzania informacji To raczej sieci, a nie pojedyncze geny, kształtują organizm Śmieciowe DNA odgrywa kluczową rolę w formowaniu się tej sieci Śmieciowe DNA jest odpowiedzialne za złożoność ludzkiego organizmu!

32 Prawa potęgowe: uniwersalność w sieciach złożonych Kurs Online Barabasi et al. Network Science

33 Cechy sieci bezskalowych Liczba węzłów i nie jest stała: rosnąca sieć WWW, publikacji itd. Preferencyjne dołączanie: więcej połączeń większe prawdopodobieństwo dołączenia nowego węzła, nowe linki do znanych miejsc WWW, często cytowane prace

34 Sieć Barabasiego-Alberta Wzrost: w każdym kroku czasowym dołączam węzeł Preferencyjne dołączanie: prawdopodobieństwo, że nowy węzeł będzie połączony z i-tym: ( k ) i ki k j j P(k) ~k -3 A.-L.Barabási, R. Albert, Science 286, 509 (1999)

35 Budujemy Sieć Barabasiego-Alberta 1/2 2/4 3/6 1/4 1/6 1/2 1/4 3/8 1/6 1/6... 2/8 1/8 1/8 1/8

36 Rozkład stopni wierzchołków dla BA (c) 2016, Arkadiusz Jędrzejewski

37 W sieciach zdarzają się usterki komórki podlegają mutacji komputery się psują Czy sieć jest odporna na usterki? usterka

38 Usterki usuń losowo węzły

39 Ataki usuń najważniejsze (o najwyższym stopniu) węzły

40 Pięta Achillesa sieci bezskalowych Internet Sieć białek usterki ataki R. Albert, H. Jeong, A.L. Barabasi, Nature (2000)

41 Gdzie warto zajrzeć? Kurs Online Barabasi et al. Network Science Wolfram Demonstration Project

Sieci złożone. Modelarnia 2014/2015 Katarzyna Sznajd-Weron

Sieci złożone. Modelarnia 2014/2015 Katarzyna Sznajd-Weron Sieci złożone Modelarnia 2014/2015 Katarzyna Sznajd-Weron Sieć = network Węzły Węzły jednego typu lub wielu Połączenia Połączenia kierunkowe lub nie Czy fizycy zawsze muszą mieć inne zdanie? Fizycy sieć

Bardziej szczegółowo

Układy otwarte, zamknięte i izolowane (termodynamiczne) Fizyka systemów złożonych wykład 1: Wstęp

Układy otwarte, zamknięte i izolowane (termodynamiczne) Fizyka systemów złożonych wykład 1: Wstęp Układy otwarte, zamknięte i izolowane (termodynamiczne) Fizyka systemów złożonych wykład 1: Wstęp Co tu jest stałe? Co może się zmienić? energia materia energia Katarzyna Sznajd Weron Wykład dla Inżynierii

Bardziej szczegółowo

Modelowanie sieci złożonych

Modelowanie sieci złożonych Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone

Bardziej szczegółowo

Grafy Alberta-Barabasiego

Grafy Alberta-Barabasiego Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest

Bardziej szczegółowo

Sieci bezskalowe. Filip Piękniewski

Sieci bezskalowe. Filip Piękniewski Wydział Matematyki i Informatyki UMK Prezentacja na Seminarium Doktoranckie dostępna na http://www.mat.uni.torun.pl/ philip/sem-2008-2.pdf 24 listopada 2008 1 Model Erdős a-rényi Przejścia fazowe w modelu

Bardziej szczegółowo

Warsztaty metod fizyki teoretycznej

Warsztaty metod fizyki teoretycznej Warsztaty metod fizyki teoretycznej Zestaw 6 Układy złożone- sieci w otaczającym nas świecie Marcin Zagórski, Jan Kaczmarczyk 17.04.2012 1 Wprowadzenie W otaczającym nas świecie odnajdujemy wiele struktur,

Bardziej szczegółowo

Modelowanie sieci złożonych

Modelowanie sieci złożonych Wykład z Sieci: 5 października 2017 Dr hab. Agata Fronczak, prof. PW Zakład Fizyki Układów Złożonych Modelowanie sieci złożonych Modelowanie sieci złożonych Dwa przykłady 1 Modelowanie sieci złożonych

Bardziej szczegółowo

Przejście fazowe w sieciach złożonych w modelu Axelroda

Przejście fazowe w sieciach złożonych w modelu Axelroda Przejście fazowe w sieciach złożonych w modelu Axelroda Korzeń W., Maćkowski M., Rozwadowski P., Szczeblewska P., Sznajder W. 1 Opiekun: Tomasz Raducha 1 Uniwersytet Warszawski, Wydział Fizyki 3 Streszczenie

Bardziej szczegółowo

Obszary strukturalne i funkcyjne mózgu

Obszary strukturalne i funkcyjne mózgu Spis treści 2010-03-16 Spis treści 1 Spis treści 2 Jak charakteryzować grafy? 3 4 Wielkości charakterystyczne Jak charakteryzować grafy? Średni stopień wierzchołków Rozkład stopni wierzchołków Graf jest

Bardziej szczegółowo

Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn

Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn Instytut Informatyki Technicznej PWr MOTYWY SIECIOWE -NETWORK MOTIFS 1. Co to jest? 2. Jak mierzyć? 3. Gdzie

Bardziej szczegółowo

Praca dyplomowa inżynierska

Praca dyplomowa inżynierska Wydział Matematyki kierunek studiów: matematyka stosowana specjalność Praca dyplomowa inżynierska Dynamika opinii w sieciach bezskalowych Dominik Miażdżyk słowa kluczowe: dynamika opinii model q-wyborcy

Bardziej szczegółowo

Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp

Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp Katarzyna Sznajd Weron Wyodrębniony (realnie lub myślowo) fragment rzeczywistości Jednostka, którą będziemy się zajmować

Bardziej szczegółowo

Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych

Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych Tomasz Gradowski Seminarium Dynamiki Układów Złożonych 5. 11. 2007 Motywacja Wybory są fundamentalnym procesem społecznym

Bardziej szczegółowo

Badanie internetu. NeWWWton Fizyka w sieci. Piotr Pohorecki, Anna Poręba Gemius SA

Badanie internetu. NeWWWton Fizyka w sieci. Piotr Pohorecki, Anna Poręba Gemius SA Badanie internetu NeWWWton Fizyka w sieci Piotr Pohorecki, Anna Poręba Gemius SA Krótko o nas: niezależna firma badawcza - lider badań internetu, usługi badawcze, analityczne i doradcze w zakresie internetu,

Bardziej szczegółowo

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań

Bardziej szczegółowo

Sieci: grafy i macierze. Sieci afiliacji. Analiza sieci społecznych. Najważniejsze pytania. Komunikatory internetowe

Sieci: grafy i macierze. Sieci afiliacji. Analiza sieci społecznych. Najważniejsze pytania. Komunikatory internetowe Sieci społeczne Charakterystyka, uwarunkowania i konsekwencje struktur relacji społecznych na przykładzie komunikacji internetowej E Sieci: grafy i macierze A B A B A - C D E dr Dominik Batorski B - Instytut

Bardziej szczegółowo

Grafy stochastyczne i sieci złożone

Grafy stochastyczne i sieci złożone Witold Bołt Grafy stochastyczne i sieci złożone 9 stycznia 007 Wstęp i ostrzeżenie Opracowanie to powstało w oparciu o notatki do wykładu Układy Złożone prowadzonego przez prof. dr hab. Danutę Makowiec

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14

Bardziej szczegółowo

Symulacje konkurencyjnych procesów kontaktowych na sieciach

Symulacje konkurencyjnych procesów kontaktowych na sieciach Wydział Fizyki i Informatyki Stosowanej Praca doktorska Marcin Rybak Symulacje konkurencyjnych procesów kontaktowych na sieciach Promotor: prof. dr hab. Krzysztof Kułakowski dr hab. inż. Krzysztof Malarz

Bardziej szczegółowo

Statystyki teoriografowe grafów funkcjonalnych w sieciach neuronowych

Statystyki teoriografowe grafów funkcjonalnych w sieciach neuronowych Statystyki teoriografowe grafów funkcjonalnych w sieciach neuronowych Wydział Matematyki i Informatyki, UMK 2011-12-21 1 Wstęp Motywacja 2 Model 3 4 Dalsze plany Referencje Motywacja 1 Wstęp Motywacja

Bardziej szczegółowo

Fizyka sieci złożonych

Fizyka sieci złożonych Wykład z Sieci: 6 października 2015 Dr hab. Agata Fronczak Zakład Fizyki Układów Złożonych Fizyka sieci złożonych Co oznacza termin układ złożony (complex system, complexity) A popular paradigm: Simple

Bardziej szczegółowo

Nowy generator grafów dwudzielnych

Nowy generator grafów dwudzielnych Nowy generator grafów dwudzielnych w analizie systemów rekomendujących Szymon Chojnacki Instytut Podstaw Informatyki Polskiej Akademii Nauk 08 marca 2011 roku Plan prezentacji 1 Wprowadzenie 2 Dane rzeczywiste

Bardziej szczegółowo

Równowaga Heidera symulacje mitozy społecznej

Równowaga Heidera symulacje mitozy społecznej Równowaga Heidera symulacje mitozy społecznej Przemysław Gawroński Katedra Informatyki Stosowanej we współpracy z Krzysztofem Kułakowskim, Piotrem Gronkiem Plan Klasyczny model równowagi Heidera. Skala

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA

PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA ANALIZA FILOGENETYCZNA 1. Wstęp - filogenetyka 2. Struktura drzewa filogenetycznego 3. Metody konstrukcji drzewa 4. Etapy konstrukcji drzewa filogenetycznego

Bardziej szczegółowo

Sieci ewoluujące: od fizyki do Internetu

Sieci ewoluujące: od fizyki do Internetu Wykład z Sieci: 21 lutego 2007 Agata Fronczak i Janusz A. Hołyst Pracownia Dynamiki Nieliniowej Układów ZłoŜonych Sieci ewoluujące: od fizyki do Internetu Co oznacza termin układ złoŝony (complex system,

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

w ramach na rzecz rozwoju ICT studia podyplomowe

w ramach na rzecz rozwoju ICT studia podyplomowe Syllabus przedmiotu w ramach projektu @kademia na rzecz rozwoju ICT studia podyplomowe Rok akademicki 2010/2011 Nazwa przedmiotu Kod przedmiotu Sieci Społeczne SN 1. Opis Nazwa kierunku Metody informatyczne

Bardziej szczegółowo

Mikro- i makro-ewolucja sieci społecznych

Mikro- i makro-ewolucja sieci społecznych Mikro- i makro-ewolucja sieci społecznych Mikołaj Morzy Agnieszka Ławrynowicz Instytut Informatyki Poznań, rok akademicki 2010/2011 (c) Mikołaj Morzy, Agnieszka Ławrynowicz, Instytut Informatyki Politechniki

Bardziej szczegółowo

Fizyka sieci złożonych

Fizyka sieci złożonych Wykład z Sieci: 5 października 2017 Dr hab. Agata Fronczak, prof. PW Zakład Fizyki Układów Złożonych Fizyka sieci złożonych Co oznacza termin układ złożony (complex system, complexity) A popular paradigm:

Bardziej szczegółowo

Nowoczesne systemy ekspresji genów

Nowoczesne systemy ekspresji genów Nowoczesne systemy ekspresji genów Ekspresja genów w organizmach żywych GEN - pojęcia podstawowe promotor sekwencja kodująca RNA terminator gen Gen - odcinek DNA zawierający zakodowaną informację wystarczającą

Bardziej szczegółowo

Informacje dotyczące pracy kontrolnej

Informacje dotyczące pracy kontrolnej Informacje dotyczące pracy kontrolnej Słuchacze, którzy z przyczyn usprawiedliwionych nie przystąpili do pracy kontrolnej lub otrzymali z niej ocenę negatywną zobowiązani są do dnia 06 grudnia 2015 r.

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 6 BAZA DANYCH NCBI - II

PODSTAWY BIOINFORMATYKI 6 BAZA DANYCH NCBI - II PODSTAWY BIOINFORMATYKI 6 BAZA DANYCH NCBI - II BAZA DANYCH NCBI 1. NCBI 2. Dane gromadzone przez NCBI 3. Przegląd baz danych NCBI: Publikacje naukowe Projekty analizy genomów OMIM: fenotypy człowieka

Bardziej szczegółowo

Automaty komórkowe. Katarzyna Sznajd-Weron

Automaty komórkowe. Katarzyna Sznajd-Weron Automaty komórkowe Katarzyna Sznajd-Weron Trochę historii CA (Cellular Automata) Koniec lat 40-tych John von Neuman maszyna z mechanizmem samopowielania Sugestia Ulama 1952 dyskretny układ komórek dyskretne

Bardziej szczegółowo

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia

Bardziej szczegółowo

Teoria ewolucji. Podstawy wspólne pochodzenie.

Teoria ewolucji. Podstawy wspólne pochodzenie. Teoria ewolucji. Podstawy wspólne pochodzenie. Ewolucja biologiczna } Znaczenie ogólne: } proces zmian informacji genetycznej (częstości i rodzaju alleli), } które to zmiany są przekazywane z pokolenia

Bardziej szczegółowo

Składniki jądrowego genomu człowieka

Składniki jądrowego genomu człowieka Składniki jądrowego genomu człowieka Genom człowieka 3 000 Mpz (3x10 9, 100 cm) Geny i sekwencje związane z genami (900 Mpz, 30% g. jądrowego) DNA pozagenowy (2100 Mpz, 70%) DNA kodujący (90 Mpz ~ ok.

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne 9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom

Bardziej szczegółowo

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009 Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.

Bardziej szczegółowo

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0

Bardziej szczegółowo

TEORIA WĘZŁÓW. Natalia Grzechnik 10B2

TEORIA WĘZŁÓW. Natalia Grzechnik 10B2 TEORIA WĘZŁÓW Natalia Grzechnik 10B2 Słowem wstępu zastosowanie teorii węzłów Biologiczna rola węzłów w białkach Wyznaczanie topologii białek Kryptografia Biofizyka Opis struktur DNA, RNA, białek DNA a

Bardziej szczegółowo

Pamiętając o komplementarności zasad azotowych, dopisz sekwencję nukleotydów brakującej nici DNA. A C C G T G C C A A T C G A...

Pamiętając o komplementarności zasad azotowych, dopisz sekwencję nukleotydów brakującej nici DNA. A C C G T G C C A A T C G A... 1. Zadanie (0 2 p. ) Porównaj mitozę i mejozę, wpisując do tabeli podane określenia oraz cyfry. ta sama co w komórce macierzystej, o połowę mniejsza niż w komórce macierzystej, gamety, komórki budujące

Bardziej szczegółowo

Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa

Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Kampus Ochota 18 kwietnia 2015 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Andrey (Andrei)

Bardziej szczegółowo

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę

Bardziej szczegółowo

Gadu-Gadu i sieci społeczne

Gadu-Gadu i sieci społeczne Gadu-Gadu i sieci społeczne Z Dominikiem Batorskim rozmawia Tomasz Kukołowicz Czy da się wysłać list do osoby, której adresu nie znamy? Co łączy sieć komputerową i grupę przyjaciół? O zaskakujących rezultatach

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa

Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Po co nam matematyka? 7 kwietnia 2016 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Empik

Bardziej szczegółowo

Możliwości współczesnej inżynierii genetycznej w obszarze biotechnologii

Możliwości współczesnej inżynierii genetycznej w obszarze biotechnologii Możliwości współczesnej inżynierii genetycznej w obszarze biotechnologii 1. Technologia rekombinowanego DNA jest podstawą uzyskiwania genetycznie zmodyfikowanych organizmów 2. Medycyna i ochrona zdrowia

Bardziej szczegółowo

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU DOBRZE MIEĆ O(G)LEJ W GŁOWIE. O KOMÓRKACH UKŁADU NERWOWEGO.

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU DOBRZE MIEĆ O(G)LEJ W GŁOWIE. O KOMÓRKACH UKŁADU NERWOWEGO. SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU DOBRZE MIEĆ O(G)LEJ W GŁOWIE. O KOMÓRKACH UKŁADU NERWOWEGO. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3.

Bardziej szczegółowo

Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków

Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków Wykłady popularne z matematyki Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków Joanna Jaszuńska Politechnika Warszawska, 6 maja 2010 Grafy Wykłady popularne z matematyki,

Bardziej szczegółowo

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie.

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie. Teoria ewolucji Podstawowe pojęcia. Wspólne pochodzenie. Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego 5A pgolik@igib.uw.edu.pl Informacje, materiały: http://www.igib.uw.edu.pl/

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Sekwencjonowanie, przewidywanie genów

Sekwencjonowanie, przewidywanie genów Instytut Informatyki i Matematyki Komputerowej UJ, opracowanie: mgr Ewa Matczyńska, dr Jacek Śmietański Sekwencjonowanie, przewidywanie genów 1. Technologie sekwencjonowania Genomem nazywamy sekwencję

Bardziej szczegółowo

Informatyka w szkole - algorytm Dijkstry dla każdego. Krzysztof Diks Instytut Informatyki, Uniwersytet Warszawski

Informatyka w szkole - algorytm Dijkstry dla każdego. Krzysztof Diks Instytut Informatyki, Uniwersytet Warszawski Informatyka w szkole - algorytm Dijkstry dla każdego Krzysztof Diks Instytut Informatyki, Uniwersytet Warszawski Problem 1: Labirynt Źródło: www.dla-dzieci.ugu.pl Problem : Wilk, owca i kapusta Źródło:

Bardziej szczegółowo

Jaki koń jest nie każdy widzi - genomika populacji polskich ras koni

Jaki koń jest nie każdy widzi - genomika populacji polskich ras koni Jaki koń jest nie każdy widzi - genomika populacji polskich ras koni Gurgul A., Jasielczuk I., Semik-Gurgul E., Pawlina-Tyszko K., Szmatoła T., Bugno-Poniewierska M. Instytut Zootechniki PIB Zakład Biologii

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Kamila Muraszkowska Znaczenie wąskich gardeł w sieciach białkowych. źródło: (3)

Kamila Muraszkowska Znaczenie wąskich gardeł w sieciach białkowych. źródło: (3) Kamila Muraszkowska Znaczenie wąskich gardeł w sieciach białkowych źródło: (3) Interakcje białko-białko Ze względu na zadanie: strukturalne lub funkcjonalne. Ze względu na właściwości fizyczne: stałe lub

Bardziej szczegółowo

OBLICZENIA ZA POMOCĄ PROTEIN

OBLICZENIA ZA POMOCĄ PROTEIN OBLICZENIA ZA POMOCĄ PROTEIN KODOWANIE I PRZETWARZANIE INFORMACJI W ORGANIZMACH Informacja genetyczna jest przechowywana w DNA i RNA w postaci liniowych sekwencji nukleotydów W genach jest przemieniana

Bardziej szczegółowo

ZARZĄDZANIE POPULACJAMI ZWIERZĄT

ZARZĄDZANIE POPULACJAMI ZWIERZĄT ZARZĄDZANIE POPULACJAMI ZWIERZĄT Ćwiczenia 1 mgr Magda Kaczmarek-Okrój magda_kaczmarek_okroj@sggw.pl 1 ZAGADNIENIA struktura genetyczna populacji obliczanie frekwencji genotypów obliczanie frekwencji alleli

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe

Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Empik każdego inspiruje inaczej Aleksander Puszkin (1799 1837) Andrey (Andrei) Andreyevich Markov (1856 1922) Wśród 20 tysięcy początkowych

Bardziej szczegółowo

Rozkład materiału z biologii do klasy III.

Rozkład materiału z biologii do klasy III. Rozkład materiału z biologii do klasy III. L.p. Temat lekcji Treści programowe Uwagi 1. Nauka o funkcjonowaniu przyrody. 2. Genetyka nauka o dziedziczności i zmienności. -poziomy różnorodności biologicznej:

Bardziej szczegółowo

Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych

Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych w grafach przepływu informacji dla geometrycznych sieci neuronowych www.mat.uni.torun.pl/~piersaj 2009-06-10 1 2 3 symulacji Graf przepływu ładunku Wspóczynnik klasteryzacji X (p) p α Rozkłady prawdopodobieństwa

Bardziej szczegółowo

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Filogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami.

Filogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami. 181 Filogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami. 3. D T(D) poprzez algorytm łączenia sąsiadów 182 D D* : macierz łącząca sąsiadów n Niech TotDist i = k=1 D i,k Definiujemy

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych ukryte modele Markowa, zastosowania Anna Gambin Instytut Informatyki Uniwersytet Warszawski plan na dziś Ukryte modele Markowa w praktyce modelowania rodzin białek multiuliniowienia

Bardziej szczegółowo

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie

Bardziej szczegółowo

Sekwencjonowanie nowej generacji i rozwój programów selekcyjnych w akwakulturze ryb łososiowatych

Sekwencjonowanie nowej generacji i rozwój programów selekcyjnych w akwakulturze ryb łososiowatych Sekwencjonowanie nowej generacji i rozwój programów selekcyjnych w akwakulturze ryb łososiowatych Konrad Ocalewicz Zakład Biologii i Ekologii Morza, Instytut Oceanografii, Wydział Oceanografii i Geografii,

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

Zmienność. środa, 23 listopada 11

Zmienność.  środa, 23 listopada 11 Zmienność http://ggoralski.com Zmienność Zmienność - rodzaje Zmienność obserwuje się zarówno między poszczególnymi osobnikami jak i między populacjami. Różnice te mogą mieć jednak różne podłoże. Mogą one

Bardziej szczegółowo

sieci społecznych metodą analizy - future work...

sieci społecznych metodą analizy - future work... Badanie cech lokalnej topologii sieci społecznych metodą analizy motywów sieciowych - perspetktywy... - zastosowania... - future work... Krzysztof Juszczyszyn Krzysztof Juszczyszyn www.iit.pwr.wroc.pl/~krzysiek

Bardziej szczegółowo

GENETYKA POPULACJI. Ćwiczenia 1 Biologia I MGR /

GENETYKA POPULACJI. Ćwiczenia 1 Biologia I MGR / GENETYKA POPULACJI Ćwiczenia 1 Biologia I MGR 1 ZAGADNIENIA struktura genetyczna populacji obliczanie frekwencji genotypów obliczanie frekwencji alleli przewidywanie struktury następnego pokolenia przy

Bardziej szczegółowo

MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem

MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem MODELE SIECIOWE 1. Drzewo rozpinające (spanning tree) w grafie liczącym n wierzchołków to zbiór n-1 jego krawędzi takich, że dowolne dwa wierzchołki grafu można połączyć za pomocą krawędzi należących do

Bardziej szczegółowo

Spontaniczna struktura bezskalowa w grafach przepływu impulsów dla rekurencyjnych sieci neuronowych

Spontaniczna struktura bezskalowa w grafach przepływu impulsów dla rekurencyjnych sieci neuronowych Spontaniczna struktura bezskalowa w grafach przepływu impulsów dla rekurencyjnych sieci neuronowych Filip Piękniewski Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika w Toruniu Praca doktorska

Bardziej szczegółowo

Topologia Sieci. dr Magdalena Szpunar

Topologia Sieci. dr Magdalena Szpunar Topologia Sieci dr Magdalena Szpunar Sześć stopni oddalenia Stanley Milgram w 1967 roku poprosił swoich znajomych ze stanu Midwest i Massachusetts by przekazali list 100 losowo wybranym osobom w Nebrasce

Bardziej szczegółowo

Funkcja f jest ograniczona, jeśli jest ona ograniczona z

Funkcja f jest ograniczona, jeśli jest ona ograniczona z FUNKCJE JEDNEJ ZMIENNEJ. PODSTAWOWE POJĘCIA. PODSTAWOWE FUNKCJE ELEMENTARNE R - zbiór liczb rzeczywistych, D R, P R Definicja. Jeżeli każdemu elementowi ze zbioru D jest przyporządkowany dokładnie jeden

Bardziej szczegółowo

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ Program wykładu 1. Jakie

Bardziej szczegółowo

Bładzenie przypadkowe i lokalizacja

Bładzenie przypadkowe i lokalizacja Bładzenie przypadkowe i lokalizacja Zdzisław Burda Jarosław Duda, Jean-Marc Luck, Bartłomiej Wacław Seminarium Wydziałowe WFiIS AGH, 07/11/2014 Plan referatu Wprowadzenie Zwykłe bładzenie przypadkowe (GRW)

Bardziej szczegółowo

Ruch zwiększa recykling komórkowy Natura i wychowanie

Ruch zwiększa recykling komórkowy Natura i wychowanie Wiadomości naukowe o chorobie Huntingtona. Prostym językiem. Napisane przez naukowców. Dla globalnej społeczności HD. Ruch zwiększa recykling komórkowy Ćwiczenia potęgują recykling komórkowy u myszy. Czy

Bardziej szczegółowo

Układy dynamiczne Chaos deterministyczny

Układy dynamiczne Chaos deterministyczny Układy dynamiczne Chaos deterministyczny Proste iteracje odwzorowań: Funkcja liniowa Funkcja logistyczna chaos deterministyczny automaty komórkowe Ewolucja układu dynamicznego Rozwój w czasie układu dynamicznego

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 2

Kształcenie w zakresie podstawowym. Klasa 2 Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Sortowanie. Tomasz Żak zak. styczeń Instytut Matematyki i Informatyki, Politechnika Wrocławska

Sortowanie. Tomasz Żak  zak. styczeń Instytut Matematyki i Informatyki, Politechnika Wrocławska Tomasz Żak www.im.pwr.wroc.pl/ zak Instytut Matematyki i Informatyki, Politechnika Wrocławska styczeń 2014 Przypuśćmy, że po sprawdzeniu 30 klasówek układamy je w kolejności alfabetycznej autorów. Jak

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka Wstęp

Podstawy nauk przyrodniczych Matematyka Wstęp Podstawy nauk przyrodniczych Matematyka Wstęp Katarzyna Kluzek i Adrian Silesian Zakład Genetyki Molekularnej Człowieka tel. 61 829 58 33 adrian.silesian@amu.edu.pl katarzyna.kluzek@amu.edu.pl Pokój 1.117

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU CO TO JEST ŻYCIE. SPIS TREŚCI: I. Wprowadzenie. Części lekcji. 1. Część wstępna.

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU CO TO JEST ŻYCIE. SPIS TREŚCI: I. Wprowadzenie. Części lekcji. 1. Część wstępna. SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU CO TO JEST ŻYCIE. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca. III. Karty pracy. 1.

Bardziej szczegółowo

MODEL OPTYMALIZACYJNY SYNCHRONIZACJI LINII TRAMWAJOWYCH

MODEL OPTYMALIZACYJNY SYNCHRONIZACJI LINII TRAMWAJOWYCH Poznań - Rosnówko, 17-19.06.2015 r. Politechnika Poznańska Wydział Maszyn Roboczych i Transportu Zakład Systemów Transportowych MODEL OPTYMALIZACYJNY SYNCHRONIZACJI LINII TRAMWAJOWYCH mgr inż. Kamil Musialski

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 8. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 1-811-6 Projekt pn. Wzmocnienie potencjału dydaktycznego

Bardziej szczegółowo

Analiza sieci przedsiębiorstw z wykorzystaniem metody SNA

Analiza sieci przedsiębiorstw z wykorzystaniem metody SNA Analiza sieci przedsiębiorstw z wykorzystaniem metody SNA Arkadiusz Kawa, Uniwersytet Ekonomiczny w Poznaniu Słowa kluczowe: sieć przedsiębiorstw, analiza sieci społecznych, SNA, system złożony Streszczenie.

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie.

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie. Teoria ewolucji Podstawowe pojęcia. Wspólne pochodzenie. Ewolucja Znaczenie ogólne: zmiany zachodzące stopniowo w czasie W biologii ewolucja biologiczna W astronomii i kosmologii ewolucja gwiazd i wszechświata

Bardziej szczegółowo

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r Statystyka matematyczna Test χ 2 Wrocław, 18.03.2016r Zakres stosowalności Testowanie zgodności Testowanie niezależności Test McNemara Test ilorazu szans Copyright 2014, Joanna Szyda ZAKRES STOSOWALNOŚCI

Bardziej szczegółowo

Wykład 9: HUMAN GENOME PROJECT HUMAN GENOME PROJECT

Wykład 9: HUMAN GENOME PROJECT HUMAN GENOME PROJECT Wykład 9: Polimorfizm pojedynczego nukleotydu (SNP) odrębność genetyczna, która czyni każdego z nas jednostką unikatową Prof. dr hab. n. med. Małgorzata Milkiewicz Zakład Biologii Medycznej HUMAN GENOME

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II 10 października 2013: Elementarz biologii molekularnej www.bioalgorithms.info Wykład nr 2 BIOINFORMATYKA rok II Komórka: strukturalna i funkcjonalne jednostka organizmu żywego Jądro komórkowe: chroniona

Bardziej szczegółowo