MODEL STRUKTURALNY RELACJI MIĘDZY SATYSFAKCJĄ
|
|
- Mikołaj Maciejewski
- 10 lat temu
- Przeglądów:
Transkrypt
1 MODEL STRUKTURALNY RELACJI MIĘDZY SATYSFAKCJĄ I LOJALNOŚCIĄ WOBEC MARKI Adam Sagan Akademia Ekonomiczna w Krakowie, Katedra Analizy Rynku i Badań Marketingowych Wstęp Modelowanie strukturalne ma wielorakie zastosowania w badaniach marketingowych. Do najważniejszych należą: analiza relacji między zmiennymi ukrytymi a wskaźnikami, które mogą mieć charakter formatywny i refleksyjny (confirmatory factor analysis - CFA), globalna ocena rzetelności i trafności skal (confirmatory factor analysis - multiple indicators multiple cause - MIMIC), analiza zależności między różnymi konstruktami teoretycznymi występującymi w marketingu (structural equation models - SEM), analiza danych panelowych i wzdłużnych /dane ze skanerów, telemetryczne itp./ (growth curve models, multiple indicator - multiple wave models - MIMW), analiza wielogrupowa i porównania międzykulturowe (multiple group analysis), analizy danych eksperymentalnych (latent variables of multivariate analysis of variance - LVANOVA), Całkowity model składa się z dwóch podstawowych części: 1/ modelu pomiarowego oraz 2/ modelu równań strukturalnych. Pierwszy z nich określa, w jaki sposób czynniki ukryte, jako konstrukty teoretyczne, są identyfikowane i wyjaśniane poprzez zmienne obserwowalne, i szacuje pomiarowe własności zmiennych obserwowalnych (rzetelność danych). Model ten wynika bezpośrednio z przyjętej teorii danej dziedziny i do niego jest ograniczona przedstawiana poprzednio konfirmacyjna analiza czynnikowa. Celem modelu równań strukturalnych jest natomiast określenie przyczynowej relacji między czynnikami ukrytymi i wielkości niewyjaśnionej wariancji. Wzajemne powiązania między zmiennymi i czynnikami są przedstawione na rys
2 δ k1 Κ1 δ k2 Κ2 Konkretność δ k3 Κ3 Model pomiarowy δ r1 R1 L1 ε l1 δ r2 R2 Rzetelność Lojalność L2 ε l2 δ r3 δ e1 R3 E1 Ukryta zmienna zależna ζ l L3 ε l3 δ e2 E2 Empatia δ e4 E4 Ukryte zmienne niezależne Model strukturalny Rys. 1. Model strukturalny zależności między satysfakcją a lojalnością wobec produktu Tak rozbudowana struktura modelu umożliwia w sumie określenie związków przyczynowych pomiędzy czterema istotnymi kategoriami zmiennych: 1. endogenicznymi zmiennymi obserwowalnymi (y), 2. egzogenicznymi zmiennymi obserwowalnymi (x), 3. endogenicznymi zmiennymi ukrytymi (czynnikami) (η), 4. egzogenicznymi zmiennymi ukrytymi (czynnikami) (ξ), 5. egzogenicznymi zmiennymi resztowymi (δ), 6. endogenicznymi zmiennymi resztowymi (ε), 7. zakłóceniami endogenicznej zmiennej ukrytej (ζ). Struktura macierzy parametrów jest przedstawiona w tabeli 1. Upraszczając nieco, można określić idee ogólnego modelu strukturalnego jako wykorzystanie jednocześnie zalet analizy czynnikowej (identyfikacja czynników ukrytych) i wielozmiennowej analizy regresji (określenie związków przyczynowo-skutkowych między ukrytymi zmiennymi endo- i egzogenicznymi). Model przedstawiony na rys. 1. jest tzw. modelem kompletnie wystandaryzowanym i podobnie jak poprzednie został zbudowany za pomocą programu STATISTICA Data Miner. 88
3 Tabela 1. Parametry modelu strukturalnego Nazwa parametru Opis parametru Lambda ( λ ψ ) Ładunki czynnikowe określające siłę związku między zależnymi zmiennymi obserwowalnymi (y) i zależnymi zmiennymi ukrytymi (Eta) Lambda ( λ ξ ) Ładunki czynnikowe określające siłę związku między niezależnymi zmiennymi obserwowalnymi (x) i niezależnymi zmiennymi ukrytymi (Ksi) Beta ( β ) Gamma ( γ ) Phi ( φ ) Psi ( ψ ) Theta-epsilon ( ε ) Theta-delta ( δ ) Współczynniki odzwierciedlające przyczynowe powiązania między ukrytymi zmiennymi zależnymi Współczynniki reprezentujące wpływ ukrytych zmiennych niezależnych na ukryte zmienne zależne Korelacje/kowariancje/ między niezależnymi zmiennymi ukrytymi Korelacje/kowariancje/ między zmiennymi ukrytymi reprezentującymi zakłócenia w pomiarze zależnych zmiennych ukrytych (Zeta) Korelacje/kowariancje/ między błędami pomiaru obserwowalnych zmiennych zależnych (epsilon) Korelacje/kowariancje między błędami pomiaru obserwowalnych zmiennych niezależnych (delta) Dopasowanie modelu strukturalnego Macierz wejściowa danych w odróżnieniu od macierzy kowariancji w klasycznych modelach strukturalnych to w modelu standaryzowanym macierz korelacji. Jej wykorzystanie pozwala na bardziej jednoznaczną interpretację zmiennych (szczególnie wyrażonych w różnych skalach). SEPATH umożliwia poprawną estymację modelu strukturalnego na 89
4 podstawie macierzy korelacji dzięki wykorzystaniu procedury obliczeniowej Melsa i Cudecka [1989]. W interpretacji zależności między zmiennymi ukrytymi również pożądane są standaryzowane parametry ścieżkowe określające zależności między zmiennymi ukrytymi. Wszystkie te zmienne mają wówczas wariancję równą jeden. O ile dosyć łatwo ustalić jednostkowe wariancje dla ukrytych zmiennych egzogenicznych, to pewne problemy występują w przypadku zmiennych endogenicznych. Program SEPATH, generując rozwiązanie w pełni standaryzowane, wykorzystuje w standaryzacji ukrytych zmiennych endogenicznych podejście Melsa, Browne a i DuToita. Okno przedstawia wyniki estymacji modelu. Istotna statystyka χ 2 wskazuje na niezbyt dobre dopasowanie modelu do danych. Jednakże inne wskaźniki jak χ 2 /ss (96.85/50) oraz RMSEA Steigera Linda sugerują dobre absolutne dopasowanie modelu do danych. Pozostałe wskaźniki dla pojedynczych prób przedstawione są poniżej. 90
5 Ocena parametrów modelu Ocena parametrów modelu jest przedstawiona poniżej. Należy zauważyć, że w odróżnieniu od poprzednich modeli są one kompletnie wystandaryzowane (ładunki czynnikowe reprezentują współczynniki korelacji między wskaźnikami a zmiennymi ukrytymi. Pomiędzy 2 2 nimi a wariancjami resztowymi istnieje zależność: δ = 1 λ. Standaryzowane współczynniki ścieżkowe określają siłę związku między ukrytymi zmiennymi egzogenicznymi (wymiarami satysfakcji) a endogeniczną (lojalnością konsumentów). 91
6 W literaturze przedmiotu toczy się spór metodologiczny dotyczący estymacji modeli pomiarowych i strukturalnych [Anderson, Gerbing 1992]. Można najogólniej wyróżnić dwa podstawowe podejścia. W pierwszym podejściu estymacja modelu pomiarowego i strukturalnego odbywa się w sposób jednoczesny (ta procedura została tu zastosowana). Jednoczesna estymacja obu części modelu uwzględnia zasadę integracji teorii (weryfikowanej przez część strukturalną modelu) i pomiaru (model pomiarowy). Zwolennicy podejścia sekwencyjnego oddzielają te dwie procedury. W pierwszym kroku estymowane są jedynie modele pomiarowe poszczególnych zmiennych ukrytych. W drugim kroku szacowane są parametry modelu strukturalnego, w którym odpowiednie ładunki czynnikowe i wariancje resztowe są ustalone z góry na podstawie wyników poprzedniego etapu. Z okna parametrów modelu wynika, że zmienne ukryte są mierzone w sposób rzetelny. 2 ( Współczynniki rzetelności Joreskoga pomiaru zmiennych ukrytych λ) ρ = 2 2 ( λ) + (1 λ ) są następujące: konkretność = 0.79, rzetelność pracowników = 0.72, empatia = 0.77, lojalność = Korelacja między egzogenicznymi zmiennymi ukrytymi empatia i konkretność jest istotna i wynosi Z punktu widzenia siły wpływu satysfakcji na lojalność konsumentów największym wpływem charakteryzuje się aspekt konkretnych cech produktu oraz w mniejszym stopniu rzetelność pracowników. Wpływ empatii na lojalność jest najsłabszy i nieistotny statystycznie. Podsumowując kwestie zastosowania modelowania strukturalnego do analizy satysfakcji i lojalności konsumentów, należy podkreślić ważną rolę tego podejścia w przygotowaniu i weryfikacji narzędzi pomiaru tak złożonych cech konsumentów, jakimi są satysfakcja i lojalność, oraz budowie modelu określającego kierunek i siłę związku między nimi. R. Schumacker i R. Lomax [1996] proponują następujące wskazówki w wykorzystaniu modeli strukturalnych w analizie i testowaniu zależności między zmiennymi ukrytymi: 1/ uwzględnienie w budowie modelu teorii badanej rzeczywistości, 2/ zastosowanie podejścia sekwencyjnego do estymacji parametrów modelu pomiarowego i strukturalnego, 3/ weryfikacja i testowanie zależności między zmiennymi ukrytymi w celu sprawdzenia efektywności i funkcjonalności istniejących relacji, 4/ stosowanie sprawdzianów krzyżowych (cross-validation) i replikacji w celu określenia stabilności oszacowania parametrów. Literatura 1. Anderson, J., C., Gerbing, D, W., Assumption and Comparative Strenghs of the Two- Step Approach. Comments on Fornell and Yi, Sociological Methods and Research, 1992/vol.20, s Cudeck, R. (1989). Analysis of Correlation Matrices using Covariance Structure Models. Psychological Bulletin, 105, Schumacker, R., Lomax, R., A Beginner's Guide to Structural Equation Modeling, Prentice Hall
MODEL POMIAROWY SATYSFAKCJI I LOJALNOŚCI
MODEL POMIAROWY SATYSFAKCJI I LOJALNOŚCI Adam Sagan Akademia Ekonomiczna w Krakowie, Katedra Analizy Rynku i Badań Marketingowych Wstęp Zaletą stosowania konfirmacyjnej analizy czynnikowej (CFA) w porównaniu
WYKORZYSTANIE ANALIZY WIELOGRUPOWEJ DO PORÓWNANIA RYNKU PRACY W REGIONACH
PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS nr 33 0 Problemy rozwoju regionalnego i lokalnego ISSN 899-39 Małgorzata Sej-Kolasa Mirosława Sztemberg-Lewandowska
Paradygmaty marketingu a modelowanie zmiennych ukrytych porównanie modeli pomiarowych skali WSAW
Zeszyty Naukowe Metody analizy danych Uniwersytet Ekonomiczny w Krakowie 909 ISSN 1898-6447 Zesz. Nauk. UEK, 2013; 909: 17 27 Katedra Analizy Rynku i Badań Marketingowych Uniwersytet Ekonomiczny w Krakowie
ZASTOSOWANIE MODELOWANIA RÓWNAŃ STRUKTURALNYCH DO BADAŃ NAD ZACHOWANIAMI KONSUMENTÓW
ZASTOSOWANIE MODELOWANIA RÓWNAŃ STRUKTURALNYCH DO BADAŃ NAD ZACHOWANIAMI KONSUMENTÓW Grzegorz Zasuwa, Katedra Zarządzania Przedsiębiorstwem, Katolicki Uniwersytet Lubelski Jana Pawła II Technika modelowania
Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model
MODELE PLS-PM I ICH ZASTOSOWANIA W PREDYKCJI I WYJAŚNIANIU ZJAWISK EKONOMICZNYCH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 39, T. 2 Adam Sagan * Uniwersytet Ekonomiczny w Krakowie MODELE PLS-PM I ICH ZASTOSOWANIA W PREDYKCJI I WYJAŚNIANIU ZJAWISK EKONOMICZNYCH STRESZCZENIE
ANALIZA CZYNNIKOWA Przykład 1
ANALIZA CZYNNIKOWA... stanowi zespół metod i procedur statystycznych pozwalających na badanie wzajemnych relacji między dużą liczbą zmiennych i wykrywanie ukrytych uwarunkowań, ktore wyjaśniają ich występowanie.
ANALIZA RZETELNOŚCI SKAL SATYSFAKCJI I LOJALNOŚCI
ANALIZA RZETELNOŚCI SKAL SATYSFAKCJI I LOJALNOŚCI Adam Sagan Akademia Ekonomiczna w Krakowie, Katedra Analizy Rynku i Badań Marketingowych Wstęp Analiza rzetelności narzędzi pomiarowych związana jest najczęściej
WPROWADZENIE DO MODELOWANIA ZJAWISK SPOŁECZNYCH I PRZYKŁADY ZASTOSOWAŃ W STATISTICA
WPROWADZENIE DO MODELOWANIA ZJAWISK SPOŁECZNYCH I PRZYKŁADY ZASTOSOWAŃ W STATISTICA Adam Sagan, Uniwersytet Ekonomiczny w Krakowie, Katedra Analizy Rynku i Badań Marketingowych Wykorzystanie podejścia
ANALIZA CZYNNIKOWA W BADANIACH STRUKTURY RELACJI W MARKETINGU RELACYJNYM
dr Magdalena Kowalska-Musiał Wyższa Szkoła Zarządzania i Bankowości w Krakowie ANALIZA CZYNNIKOWA W BADANIACH STRUKTURY RELACJI W MARKETINGU RELACYJNYM Wprowadzenie Zgodnie z najnowszymi trendami strategie
WYBRANE METODY ANALIZY DANYCH WZDŁUŻNYCH
PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU nr 207 RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS nr 327 2014 Taksonomia 22 ISSN 1899-3192 Klasyfikacja i analiza danych teoria i zastosowania
PAMIĘĆ DOŚWIADCZENIA I OPINIA STRUKTURALNA ANALIZA WPŁYWU INFORMACJI PRASOWYCH NA PREFERENCJE WYBORCZE
PAMIĘĆ DOŚWIADCZENIA I OPINIA STRUKTURALNA ANALIZA WPŁYWU INFORMACJI PRASOWYCH NA PREFERENCJE WYBORCZE Małgorzta Michalak, Szkoła Wyższa Psychologii Społecznej, Instytut Psychologii Ekonomicznej Zgodnie
Zmienne zależne i niezależne
Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Andrzej Januszewski 1 Instytut Psychologii Katolicki Uniwersytet Lubelski Jana Pawła II
Andrzej Januszewski 1 Instytut Psychologii Katolicki Uniwersytet Lubelski Jana Pawła II Studia z Psychologii w KUL, tom 17 red. O. Gorbaniuk, B. Kostrubiec-Wojtachnio, D. Musiał, M. Wiechetek, A. Błachnio,
Elementy statystyki wielowymiarowej
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Etapy modelowania ekonometrycznego
Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
METODY STATYSTYCZNE STOSOWANE DO ANALIZY
METODY STATYSTYCZNE STOSOWANE DO ANALIZY ZADOWOLENIA I LOJALNOŚCI KLIENTÓW Janusz Wątroba StatSoft Polska Sp. z o.o. Wprowadzenie Opracowanie zostało poświęcone ogólnej charakterystyce kolejnego etapu
Analiza bezrobocia w powiatach przy użyciu modelu równań strukturalnych
E q u i l i b r i u m 1 (4) 2010 ISSN 1689-765X Mirosława Żurek Analiza bezrobocia w powiatach przy użyciu modelu równań strukturalnych Słowa kluczowe: modele równań strukturalnych, SEM, bezrobocie w powiatach,
Modele wielorownaniowe
Część 1. e e jednorównaniowe są znacznym uproszczeniem rzeczywistości gospodarczej e jednorównaniowe są znacznym uproszczeniem rzeczywistości gospodarczej e makroekonomiczne z reguły składają się z większej
Zastosowanie modelowania równań strukturalnych w badaniu związków przyczynowych na przykładzie danych PISA 2012
prof. dr hab. Barbara Ciżkowicz Uniwersytet Kazimierza Wielkiego Diagnozy edukacyjne. Dorobek i nowe zadania Zastosowanie modelowania równań strukturalnych w badaniu związków przyczynowych na przykładzie
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Modele zapisane w przestrzeni stanów
Modele zapisane w przestrzeni stanów Modele Przestrzeni Stanów (State Space Models) sa to modele, w których część parametrów jest nieobserwowalna i losowa. Zachowanie wielowymiarowej zmiennej y t zależy
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN
CELE ANALIZY CZYNNIKOWEJ
ANALIZA CZYNNIKOWA... stanowi zespół metod i procedur statystycznych pozwalających na badanie wzajemnych relacji między dużą liczbą zmiennych i wykrywanie ukrytych uwarunkowań, ktore wyjaśniają ich występowanie.
ANALIZA REGRESJI WIELOKROTNEJ. Zastosowanie statystyki w bioinżynierii Ćwiczenia 8
ANALIZA REGRESJI WIELOKROTNEJ Zastosowanie statystyki w bioinżynierii Ćwiczenia 8 ZADANIE 1A 1. Irysy: Sprawdź zależność długości płatków korony od ich szerokości Utwórz wykres punktowy Wyznacz współczynnik
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN
Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 13 Mikołaj Czajkowski Wiktor Budziński Endogeniczność regresja liniowa W regresji liniowej estymujemy następujące równanie: i i i Metoda Najmniejszych Kwadratów zakłada, że wszystkie zmienne
Wojciech Skwirz
1 Regularyzacja jako metoda doboru zmiennych objaśniających do modelu statystycznego. 2 Plan prezentacji 1. Wstęp 2. Część teoretyczna - Algorytm podziału i ograniczeń - Regularyzacja 3. Opis wyników badania
Analiza regresji - weryfikacja założeń
Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.
NARZĘDZIA ANALITYCZNE W MARKETINGU RELACJI
NARZĘDZIA ANALITYCZNE W MARKETINGU RELACJI Adam Sagan, Uniwersytet Ekonomiczny w Krakowie Marketing relacji rodzaje podejść Marketing relacji jest jednym z przejawów rewolucji marketingowej dokonującej
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8
Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
ŁAD SPOŁECZNY W POWIATACH ANALIZA PRZY UŻYCIU MODELOWANIA RÓWNAŃ STRUKTURALNYCH SEM
Michał Bernard Pietrzak, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu ŁAD SPOŁECZNY W POWIATACH ANALIZA PRZY UŻYCIU MODELOWANIA RÓWNAŃ STRUKTURALNYCH SEM Streszczenie: Pojęcie modelowania równań
Strukturalne skalowanie satysfakcji obywatela metodologia ACSI-MJR
Strukturalne skalowanie obywatela metodologia ACSI-MJR Projekt Partycypacja obywatelska: diagnoza barier i stworzenie narzędzi wspomagających dobre rządzenie jest realizowany dzięki wsparciu udzielonemu
Statystyka SYLABUS A. Informacje ogólne
Statystyka SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Dziedzina
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki
Analiza czynnikowa Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki Budowa wskaźnika Indeks był banalny I miał wady: o Czy
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Stanisza r xy = 0 zmienne nie są skorelowane 0 < r xy 0,1
Statystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki
Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii
SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane
15. PODSUMOWANIE ZAJĘĆ
15. PODSUMOWANIE ZAJĘĆ Efekty kształcenia: wiedza, umiejętności, kompetencje społeczne Przedmiotowe efekty kształcenia Pytania i zagadnienia egzaminacyjne EFEKTY KSZTAŁCENIA WIEDZA Wykazuje się gruntowną
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
ZASTOSOWANIE MODELI PRZYCZYNOWO-SKUTKOWYCH DO OCENY CZYNNIKÓW SUKCESU GOSPODARSTW ROLNICZYCH PORÓWNANIE WYBRANYCH METOD
WOJCIECH SROKA Uniwersytet Rolniczy Kraków ZASTOSOWANIE MODELI PRZYCZYNOWO-SKUTKOWYCH DO OCENY CZYNNIKÓW SUKCESU GOSPODARSTW ROLNICZYCH PORÓWNANIE WYBRANYCH METOD Zjawisko przyczynowości w naukach ekonomicznych
Wskaźnik kondycji finansowej kredytobiorcy. Aspekty metodologiczne.
Wskaźnik kondycji finansowej kredytobiorcy. Aspekty metodologiczne. dr Anna Nowak-Czarnocka Zastosowania statystyki i data mining w badaniach naukowych Warszawa, 12 października 2016 Pole badawcze Ryzyko
Opis zakładanych efektów kształcenia na studiach podyplomowych WIEDZA
Opis zakładanych efektów kształcenia na studiach podyplomowych Nazwa studiów: BIOSTATYSTYKA PRAKTYCZNE ASPEKTY STATYSTYKI W BADANIACH MEDYCZNYCH Typ studiów: doskonalące Symbol Efekty kształcenia dla studiów
Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007
, transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Recenzenci Stefan Mynarski, Waldemar Tarczyński. Redaktor Wydawnictwa Anna Grzybowska. Redaktor techniczny Barbara Łopusiewicz. Korektor Barbara Cibis
Komitet Redakcyjny Andrzej Matysiak (przewodniczący), Tadeusz Borys, Andrzej Gospodarowicz, Jan Lichtarski, Adam Nowicki, Walenty Ostasiewicz, Zdzisław Pisz, Teresa Znamierowska Recenzenci Stefan Mynarski,
MYSTERY SHOPPING - JAK ANALIZOWAĆ UZYSKANE DANE? Badania Mystery shopping
MYSTERY SHOPPING - JAK ANALIZOWAĆ UZYSKANE DANE? Małgorzata Michalak, Cegedim Customer Information Badania Mystery Shopping (Tajemniczego Klienta) polegają na zbieraniu danych dotyczących oceny funkcjonowania
PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS
PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS nr 469 207 Taksonomia 29 ISSN 899-392 Klasyfikacja i analiza danych teoria i zastosowania e-issn
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera
wykorzystywane podczas zajęć wykład, ćwiczenia, Konwersatorium
Nazwa przedmiotu Budowanie teorii. Kryzys w psychologii. Prerejestracja. Moc statystyczna. Analiza mocy statystycznej w programie G*Power Wprowadzenie do R warsztat Forma zajęć (np. wykład, ćwiczenia,
Trafność testów egzaminacyjnych. Artur Pokropek, Tomasz Żółtak IFiS PAN
Trafność testów egzaminacyjnych Artur Pokropek, Tomasz Żółtak IFiS PAN Plan prezentacji EWD i trafność testów egzaminacyjnych Pięć postulatów trafności dla skal pomiarowych Wskaźniki egzaminacyjne a wyniki
Badania eksperymentalne
Badania eksperymentalne Analiza CONJOINT mgr Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Najpopularniejsze sposoby oceny wyników eksperymentu w schematach
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
7. Trafność pomiaru testowego
7. Trafność pomiaru testowego v Pojęcie trafności testu v Rodzaje trafności v Metody szacowania trafności treściowej i kryterialnej v Metody szacowania trafności teoretycznej Przesunięcie akcentu z pojęcia
1.1 Klasyczny Model Regresji Liniowej
1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)
Analiza korespondencji
Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy
Metody komputerowe statystyki Computer Methods in Statistics. Matematyka. Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W, 3L
Nazwa przedmiotu: Kierunek: Metody komputerowe statystyki Computer Methods in Statistics Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka przemysłowa Rodzaj zajęć: wykład,
Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 014/015 WydziałPsychologii i Nauk Humanistycznych Kierunek studiów:
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Zadanie 1. Za pomocą analizy rzetelności skali i wspólczynnika Alfa- Cronbacha ustalić, czy pytania ankiety stanowią jednorodny zbiór.
L a b o r a t o r i u m S P S S S t r o n a 1 W zbiorze Pytania zamieszczono odpowiedzi 25 opiekunów dzieci w wieku 8. lat na następujące pytania 1 : P1. Dziecko nie reaguje na bieżące uwagi opiekuna gdy
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Eksperyment jako metoda badawcza
Metodologia badań naukowych - wykład 4 Eksperyment jako metoda badawcza Zmienne w eksperymencie Własności badania eksperymentalnego Kontrolowanie zmienych niezależnych. Plany eksperymentalne i quasi-eksperymentalne
OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp
tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE
Prawdopodobieństwo i statystyka
Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.
STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie
STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie Spis treści Wprowadzenie... 6 1. Podstawowe informacje o systemie SAS... 9 1.1. Informacje ogólne... 9 1.2. Analityka...
Szukanie struktury skali mierzącej problematyczne zachowania finansowe.
Szukanie struktury skali mierzącej problematyczne zachowania finansowe. Celem poniższej analizy było stworzenie skali mierzącej problematyczne zachowania finansowe. Takie zachowania zdefiniowano jako zachowania
ZAŁOŻENIA FORMALNE MODELI WERYFIKOWANYCH ZA POMOCĄ UKŁADÓW RÓWNAŃ STRUKTURALNYCH
AGNIESZKA SZYMAŃSKA1 Wydział Filozofii Chrześcijańskiej Instytut Psychologii Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie Studia Psychologica UKSW 16(2) 2016 s. 93 116 ZAŁOŻENIA FORMALNE MODELI
EKONOMETRIA. Prof. dr hab. Eugeniusz Gatnar.
EKONOMETRIA Prof. dr hab. Eugeniusz Gatnar egatnar@mail.wz.uw.edu.pl Sprawy organizacyjne Wykłady - prezentacja zagadnień dotyczących: budowy i weryfikacji modelu ekonometrycznego, doboru zmiennych, estymacji
załącznik 5 NOWY PROGRAM STUDIÓW 2009/2010 STANDARDOWY SYLABUS PRZEDMIOTU KIERUNKOWEGO/SPECJALNOSCIOWEGO Koordynator przedmiotu:
załącznik 5 NOWY PROGRAM STUDIÓW 2009/2010 STANDARDOWY SYLABUS PRZEDMIOTU KIERUNKOWEGO/SPECJALNOSCIOWEGO Koordynator przedmiotu: Dr Dorota Węziak- Białowolska Sygnatura: Wykładowcy uczestniczący w opracowaniu
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Analiza regionalnych nierówności zdrowotnych w Unii Europejskiej z wykorzystaniem Indeksu Stanu Zdrowia
Renata Jaworska * Analiza regionalnych nierówności zdrowotnych w Unii Europejskiej z wykorzystaniem Indeksu Stanu Zdrowia Wstęp Problematyka zdrowia publicznego obecna jest w Unii Europejskiej (UE) od
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Modele wielorównaniowe (forma strukturalna)
Modele wielorównaniowe (forma strukturalna) Formę strukturalna modelu o G równaniach AY t = BX t + u t, gdzie Y t = [y 1t,..., y Gt ] X t = [x 1t,..., x Kt ] u t = [u 1t,..., u Gt ] E (u t ) = 0 Var (u
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
Trafność egzaminów w kontekście metody EWD
Trafność egzaminów w kontekście metody EWD Aleksandra Jasińska (a.jasinska@ibe.edu.pl) Tomasz Żółtak (t.zoltak@ibe.edu.pl) Instytut Badań Edukacyjnych ul. Górczewska 8 01-180 Warszawa JESIENNA SZKOŁA EWD
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22
Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach
Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.
Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
e) Oszacuj parametry modelu za pomocą MNK. Zapisz postać modelu po oszacowaniu wraz z błędami szacunku.
Zajęcia 4. Estymacja i weryfikacja modelu model potęgowy Wersja rozszerzona W pliku Funkcja produkcji.xls zostały przygotowane przykładowe dane o produkcji, kapitale i zatrudnieniu dla 27 przedsiębiorstw
Analiza współzależności dwóch cech I
Analiza współzależności dwóch cech I Współzależność dwóch cech W tym rozdziale pokażemy metody stosowane dla potrzeb wykrywania zależności lub współzależności między dwiema cechami. W celu wykrycia tych
Zawansowane modele wyborów dyskretnych
Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007
Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Mikroekonometria 2. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 2 Mikołaj Czajkowski Wiktor Budziński Klasyczny Model Regresji Liniowej (KMRL) Postać modelu regresji liniowej: yi = Xiβ + εi Modelujemy liniową zależność y od zmiennych objaśniających
Tomasz Stryjewski Uniwersytet Mikołaja Kopernika w Toruniu
DYNAMICZNE MODELE EKONOMETYCZNE IX Ogólnopolskie Seminarium Naukowe 6 8 września 5 w Toruniu Katedra Ekonometrii i Statystyki Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Mikołaja Kopernika w Toruniu