Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki
|
|
- Arkadiusz Kamiński
- 8 lat temu
- Przeglądów:
Transkrypt
1 Analiza czynnikowa Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki Budowa wskaźnika Indeks był banalny I miał wady: o Czy wszystkie podpytania były ze sobą połączone merytorycznie i statystycznie? o Czy wszystkie podpytania mierzyły tak naprawdę to samo? o Czy wszystkie podpytania były jednakowo ważne dla wskaźnika? Analiza czynnikowa jest bardziej skomplikowana, ale eliminuje ww. problemy Jest kilka metod określania liczby czynników; najpopularniejsze: Metoda Kaisera o przyjmuje istnienie tylu czynników, ile czynników ma wartość własną większą niż 1 o wartość własna określa procent wyjaśnianych przez dany czynnik wariancji o jeśli czynnik nie wyjaśnia więcej wariancji niż pojedyncza zmienna to nie ma sensu metoda Catella o z wykresem osypiska o wyszukuje się punkt reprezentujący czynnik, za którym kończy się stromizna o zlicza się czynniki powyżej tego punktu tyle ich właśnie trzeba wyodrębnić!!! korzystamy tu także z metody głównych składowych o Tylko ona pozwala uzyskać takie czynniki, które będą wyjaśniały maksymalny procent wariancji wyjściowych zmiennych Jest kilka metod obliczania ładunków czynnikowych metoda osi głównych o rekomendowana o stara się zmaksymalizować powiązania pomiędzy czynnikami a stwierdzeniami skali o nie wymaga rozkładu normalnego metoda największej wiarygodności o wymaga rozkładu normalnego o podaje poziom istotności różnicy między strukturą idealną (modelową) w strukturą uzyskaną w badaniu Rotacja by zwiększyć dopasowanie rotacje ortogonalne o najpopularniejsza: Varimax o zakładamy brak korelacji między czynnikami o przydaje się, gdy przygotowujemy predyktory dla regresji rotacje nieortogonalne (ukośne) o najpopularniejsza: Oblimin o zakładamy pewien stopień skorelowania czynników o pokaże nam też, jeśli tej korelacji nie będzie Analizę możemy prowadzić na danych surowych -> macierz korelacji danych zestandaryzowanych -> macierz kowariancji [standaryzacja: Analiza -> opis statystyczny -> statystyki opisowe -> zapisz standaryzowane wartości jako zmienne ]
2 Przy wyborze zmiennych trzeba uważać na: związki merytoryczne kierunek pytania braki odpowiedzi R11b Zbyt ufamy nauce, za mało R11c Religia-więcej konfliktów niż 1 zdec. zgoda, 5 zdec. niezgoda -> rośnie zaufanie R11d Osoby religijne często zbyt 1 zdec. zgoda, 5 zdec. niezgoda -> rośnie zaufanie R19a zajmuje się osobiście R19c R34a Religia sprzyja odnalezieniu wewnętrznego R34b Religia sprzyja zawieraniu przyjaźni R34c Religia sprzyja R34d Religia sprzyja spotykaniu właściwych ludzi Kontrola braków danych Odwrócenie R11c i R11d Analiza -> redukcja wymiarów -> analiza czynnikowa Zmienne -> wszystkie brane pod uwagę zmienne Statystyki o Statystyki opisowe o Rozwiązania wstępne o K-M-O Wyodrębnianie o Domyślne głównych składowych o Macierz korelacji, bo mamy dane surowe o Pokaż nierotowane rozwiązania czynnikowe o Wyodrębnianie na podstawie wartości własnej większe niż 1 Rotacja o Wersja pierwsza: Varimax o Wersja druga: Oblimin Opcje o Sortuj wg wartości ładunków czynnikowych o Ukryj małe współczynniki (wartość bezwzględna poniżej 0,4)
3 Interpretacja tabel: a) Całkowita wyjaśniona wariancja Skład Początkowe wartości własne Sumy kwadratów ładunków po Sumy kwadratów ładunków po rotacji owa wyodrębnieniu Ogółem % % Ogółem % wariancji % Ogółem % wariancji % wariancji skumulowa skumulowa skumulowany ny ny 1 3,736 41,514 41,514 3,736 41,514 41,514 2,788 30,983 30, ,353 15,033 56,547 1,353 15,033 56,547 1,802 20,020 51, ,083 12,028 68,576 1,083 12,028 68,576 1,582 17,573 68,576 4,778 8,639 77,215 5,685 7,609 84,824 6,485 5,386 90,210 7,402 4,462 94,671 8,286 3,183 97,854 9,193 2, ,000 Metoda wyodrębniania czynników głównych składowych. b) Wartość własna powyżej 1 to 3 czynniki Wyjaśniają w sumie (po rotacji) 68,6% wariancji (czyli 2/3 przypadków) to sporo Macierz składowych a Składowa spotykaniu właściwych ludzi,811 zawieraniu przyjaźni,774 odnalezieniu wewnętrznego,749,719 zajmuje się osobiście,680,653,482 Osoby religijne często zbyt,744 Religia-więcej konfliktów niż,412,696 Zbyt ufamy nauce, za mało,435,653 Metoda wyodrębniania czynników - Głównych składowych. a. 3 liczba wyodrębnionych składowych.
4 Nie rotowana macierz składowych Pomijamy c) Macierz rotowanych składowych a Składowa 1 2 3,846 odnalezieniu wewnętrznego,831 spotykaniu właściwych ludzi,766 zawieraniu przyjaźni,763 Zbyt ufamy nauce, za mało zajmuje się osobiście Religia-więcej konfliktów niż Osoby religijne często zbyt,779,763,610,862,834 Metoda wyodrębniania czynników - Głównych składowych. Metoda rotacji - Varimax z normalizacją Kaisera. a. Rotacja osiągnęła zbieżność w 4 iteracjach. d) Rotowana macierz Pokazuje, co ładuje każdy czynnik Czy można te czynniki nazwać? Testy Kaisera-Mayera-Olkina i Bartletta Miara KMO adekwatności doboru próby,768 Przybliżone chi-kwadrat 3352,786 Test sferyczności Bartletta df 36 Istotność,000 Test istotny (p<0,05) pokazuje, że między zmiennymi są istotne współczynniki korelacji Miara większa nić 0,5 wskazuje na dobre własności danych, a im bliżej 1 tym lepiej
5 e) Zasoby zmienności wspólnej Początkowe Po wyodrębnieniu Zbyt ufamy nauce, za mało 1,000,615 Religia-więcej konfliktów niż 1,000,768 Osoby religijne często zbyt 1,000,727 zajmuje się osobiście 1,000,567 1,000,678 odnalezieniu wewnętrznego 1,000,714 zawieraniu przyjaźni 1,000,671 1,000,724 spotykaniu właściwych ludzi 1,000,708 Metoda wyodrębniania czynników głównych składowych. Określa ile procent wariancji zmiennej wyjściowej udało się odtworzyć w nowo powstałych czynnikach Im wyższa -> tym lepiej zmienna wpisuje się w czynnik To samo dla rotacji Oblimin a) Całkowita wyjaśniona wariancja b) Macierz składowa bez rotacji c) Macierz modelowa po rotacji, pokazuje czynniki Macierz modelowa a Składowa 1 2 3,894 odnalezieniu wewnętrznego,862 zawieraniu przyjaźni,759 spotykaniu właściwych ludzi,750 Religia-więcej konfliktów niż,876
6 Osoby religijne często zbyt Zbyt ufamy nauce, za mało zajmuje się osobiście,850,823,745,553 Metoda wyodrębniania czynników - Głównych składowych. Metoda rotacji - Oblimin z normalizacją Kaisera. a. Rotacja osiągnęła zbieżność w 5 iteracjach. d) Macierz korelacji składowych Składowa ,000,261,380 2,261 1,000,210 3,380,210 1,000 Metoda wyodrębniania czynników - Głównych składowych. Metoda rotacji - Oblimin z normalizacją Kaisera. Korelacje pomiędzy czynnikami Pokazuje, że to lepsza rotacja, bo korelacje są całkiem całkiem e) Test K-M-O f) Zasób zmienności wspólnej Aby utworzyć wskaźnik a) Można postępować jak w przypadku indeksu, ale dodając teraz do siebie tylko składowe danego czynnika b) Albo wykorzystać opcję automatycznego tworzenia wskaźnika o Która uwzględnia, że poszczególne zmienne nie ładują czynnika w takim samym stopniu Oceny -> zapisz jako zmienne -> metoda Anderson-Rubin Na końcu bazy nowe zmienne Są wystandaryzowane do rozkładu normalnego Wartości należy interpretować w kategoriach odległości od średniej (o ile części odchylenia standardowego w obie strony) Ujemne niski wynik na skali Okolice zera przeciętny Dodatni wysoki wynik na skali Zapisany w ten sposób wskaźnik można wykorzystać przy innych analizach jako zmienną
7 Analiza rzetelności Wiemy, że pyt re34 w całości utworzyło jeden czynnik, jest więc dobrym materiałem na wskaźnik (skalę) O tym, jak bardzo dobra jest to skala mówi nam analiza rzetelności Analiza -> skalowanie -> analiza rzetelności Statystyki o Pozycja testowa o Skala przy wykluczeniu Statystyki rzetelności Alfa Cronbacha Liczba pozycji,851 4 Min 0,5 0,7 i wyżej skala jest rzetelna Statystyki pozycji Ogółem Średnia skali po Wariancja skali Korelacja Alfa Cronbacha usunięciu po usunięciu pozycji Ogółem po usunięciu pozycji pozycji pozycji odnalezieniu wewnętrznego 6,99 5,748,662,824 zawieraniu przyjaźni 6,46 4,818,721,798 7,01 5,705,663,823 spotykaniu właściwych ludzi 6,43 4,712,737,791 Czy dałoby się jeszcze poprawić rzetelność skali? Analiza czynnikowa a analiza rzetelności Można je wykonywać w dowolnej kolejności Jeśli najpierw czynnikowa, to rzetelności potem nas tylko upewnia Jeśli najpierw rzetelności, to czynnikowa może pokazać, czy nie ma podskal Dla re18 Trudno powiedzieć -> jako środek skali Analiza rzetelności Analiza czynnikowa z rotację oblimin Analiza rzetelności dla podskal
Zadanie 1. Za pomocą analizy rzetelności skali i wspólczynnika Alfa- Cronbacha ustalić, czy pytania ankiety stanowią jednorodny zbiór.
L a b o r a t o r i u m S P S S S t r o n a 1 W zbiorze Pytania zamieszczono odpowiedzi 25 opiekunów dzieci w wieku 8. lat na następujące pytania 1 : P1. Dziecko nie reaguje na bieżące uwagi opiekuna gdy
Bardziej szczegółowoANALIZY WIELOZMIENNOWE
ANALIZY WIELOZMIENNOWE WPROWADZENIE DO TEMATYKI BUDOWY INDEKSÓW I SKAL W trakcie prowadzenia badania, a potem analizowania jego wyników dość często posługujemy się zmiennymi wielowymiarowymi. A raczej
Bardziej szczegółowoSzukanie struktury skali mierzącej problematyczne zachowania finansowe.
Szukanie struktury skali mierzącej problematyczne zachowania finansowe. Celem poniższej analizy było stworzenie skali mierzącej problematyczne zachowania finansowej. Takie zachowania zdefiniowano jako
Bardziej szczegółowoANALIZY WIELOZMIENNOWE
ANALIZY WIELOZMIENNOWE ANALIZA REGRESJI Charakterystyka: Rozszerzenie analizy korelacji o badanie zależności pomiędzy wieloma zmiennymi jednocześnie; Podstawowe zastosowanie (ale przez nas w tym momencie
Bardziej szczegółowoAnaliza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
Bardziej szczegółowoZmienne zależne i niezależne
Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }
Bardziej szczegółowoSzukanie struktury skali mierzącej problematyczne zachowania finansowe.
Szukanie struktury skali mierzącej problematyczne zachowania finansowe. Celem poniższej analizy było stworzenie skali mierzącej problematyczne zachowania finansowe. Takie zachowania zdefiniowano jako zachowania
Bardziej szczegółowoREGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Bardziej szczegółowoRegresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Bardziej szczegółowoInżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna
1 Laboratorium VIII: Analiza kanoniczna Spis treści Laboratorium VIII: Analiza kanoniczna... 1 Wiadomości ogólne... 2 1. Wstęp teoretyczny.... 2 Przykład... 2 Podstawowe pojęcia... 2 Założenia analizy
Bardziej szczegółowoZasady rzetelnego pomiaru efektywności transferu wiedzy w e-learningu akademickim
Zasady rzetelnego pomiaru efektywności transferu wiedzy w e-learningu akademickim Wojciech BIZON Wydział Ekonomiczny Uniwersytet Gdański 1 Problem w długim horyzoncie czasowym do rozwiązania: w jaki sposób
Bardziej szczegółowoKORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Bardziej szczegółowoANALIZA CZYNNIKOWA Przykład 1
ANALIZA CZYNNIKOWA... stanowi zespół metod i procedur statystycznych pozwalających na badanie wzajemnych relacji między dużą liczbą zmiennych i wykrywanie ukrytych uwarunkowań, ktore wyjaśniają ich występowanie.
Bardziej szczegółowo08. Normalizacja wyników testu
08. Normalizacja wyników testu q Pojęcie normy q Rodzaje norm q Znormalizowana skala ciągła ( z ) q Znormalizowane skale skokowe q Kryteria wyboru właściwej skali standardowej vpojęcie normy Norma -wzór,
Bardziej szczegółowoCELE ANALIZY CZYNNIKOWEJ
ANALIZA CZYNNIKOWA... stanowi zespół metod i procedur statystycznych pozwalających na badanie wzajemnych relacji między dużą liczbą zmiennych i wykrywanie ukrytych uwarunkowań, ktore wyjaśniają ich występowanie.
Bardziej szczegółowo(x j x)(y j ȳ) r xy =
KORELACJA. WSPÓŁCZYNNIKI KORELACJI Gdy w badaniu mamy kilka cech, często interesujemy się stopniem powiązania tych cech między sobą. Pod słowem korelacja rozumiemy współzależność. Mówimy np. o korelacji
Bardziej szczegółowo10. Podstawowe wskaźniki psychometryczne
10. Podstawowe wskaźniki psychometryczne q analiza własności pozycji testowych q metody szacowania mocy dyskryminacyjnej q stronniczość pozycji testowych q własności pozycji testowych a kształt rozkładu
Bardziej szczegółowoPrzykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku
Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.
Bardziej szczegółowoAnaliza składowych głównych
Analiza składowych głównych Wprowadzenie (1) W przypadku regresji naszym celem jest predykcja wartości zmiennej wyjściowej za pomocą zmiennych wejściowych, wykrycie związku między wielkościami wejściowymi
Bardziej szczegółowoREGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ Korelacja oznacza fakt współzależności zmiennych, czyli istnienie powiązania pomiędzy nimi. Siłę i kierunek powiązania określa się za pomocą współczynnika korelacji
Bardziej szczegółowoKsięgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice
Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Przedmowa do wydania polskiego Przedmowa CZĘŚĆ I. PODSTAWY STATYSTYKI Rozdział 1 Podstawowe pojęcia statystyki
Bardziej szczegółowoAnaliza głównych składowych- redukcja wymiaru, wykł. 12
Analiza głównych składowych- redukcja wymiaru, wykł. 12 Joanna Jędrzejowicz Instytut Informatyki Konieczność redukcji wymiaru w eksploracji danych bazy danych spotykane w zadaniach eksploracji danych mają
Bardziej szczegółowoTesty nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
Bardziej szczegółowoKontekstowe wskaźniki efektywności nauczania - warsztaty
Kontekstowe wskaźniki efektywności nauczania - warsztaty Przygotowała: Aleksandra Jasińska (a.jasinska@ibe.edu.pl) wykorzystując materiały Zespołu EWD Czy dobrze uczymy? Metody oceny efektywności nauczania
Bardziej szczegółowoZajęcia 1. Rzetelność
Wzory Psychometria Zajęcia 1. Rzetelność 1950 Guliksen, za Spearmanem (1910) przyjmuje, że: t = T + e t wynik otrzymany T wynik prawdziwy pozycja danej osoby na kontinuum cechy (zdolności); przysługuje
Bardziej szczegółowoSpis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Bardziej szczegółowoRozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Bardziej szczegółowoStatystyka i eksploracja danych
Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja
Bardziej szczegółowoTestowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Bardziej szczegółowoProjekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
Bardziej szczegółowoElementy statystyki wielowymiarowej
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych
Bardziej szczegółowoKolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Bardziej szczegółowoKorelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy
Bardziej szczegółowoMODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Bardziej szczegółowoEgzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A
(imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i współczynnik ufności 0,95. Zadanie 1 W 005 roku przeprowadzono badanie ankietowe, którego
Bardziej szczegółowoANALIZA CZYNNIKOWA W BADANIACH STRUKTURY RELACJI W MARKETINGU RELACYJNYM
dr Magdalena Kowalska-Musiał Wyższa Szkoła Zarządzania i Bankowości w Krakowie ANALIZA CZYNNIKOWA W BADANIACH STRUKTURY RELACJI W MARKETINGU RELACYJNYM Wprowadzenie Zgodnie z najnowszymi trendami strategie
Bardziej szczegółowoWłasności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Bardziej szczegółowoSTATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Bardziej szczegółowoEkonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowo1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej:
Metoda analizy macierzy współczynników korelacji Idea metody sprowadza się do wyboru takich zmiennych objaśniających, które są silnie skorelowane ze zmienną objaśnianą i równocześnie słabo skorelowane
Bardziej szczegółowoDwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2
Dwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2 Poniżej prezentujemy przykładowe pytania z rozwiązaniami dotyczącymi dwuczynnikowej analizy wariancji w schemacie 2x2. Wszystkie rozwiązania są
Bardziej szczegółowoSYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Bardziej szczegółowoPsychometria. norma (wg Słownika Języka Polskiego) NORMY. Co testy mówią nam o właściwościach osób badanych?
NORMY Psychometria Co testy mówią nam o właściwościach osób badanych? A. Normalizacja wyników testu. ZE WZGLĘDU NA SPOSÓB DEFINIOWANIA GRUP ODNIESIENIA normy ogólnokrajowe normy lokalne ZE WZGLĘDU NA SPOSÓB
Bardziej szczegółowoAnaliza korespondencji
Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy
Bardziej szczegółowoStosowana Analiza Regresji
Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q
Bardziej szczegółowoLiczba zadań a rzetelność testu na przykładzie testów biegłości językowej z języka angielskiego
Ewaluacja biegłości językowej Od pomiaru do sztuki pomiaru Liczba zadań a rzetelność testu na przykładzie testów biegłości językowej z języka angielskiego Tomasz Żółtak Instytut Badań Edukacyjnych oraz
Bardziej szczegółowoPsychometria PLAN NAJBLIŻSZYCH WYKŁADÓW. Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. TEN SLAJD JUŻ ZNAMY
definicja rzetelności błąd pomiaru: systematyczny i losowy Psychometria Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. rozkład X + błąd losowy rozkład X rozkład X + błąd systematyczny
Bardziej szczegółowo1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Bardziej szczegółowoKARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4
KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)
Bardziej szczegółowoRozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY
Bardziej szczegółowoSpis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych
1 LaboratoriumV: Podstawy korelacji i regresji Spis treści Laboratorium V: Podstawy korelacji i regresji...1 Wiadomości ogólne...2 1. Wstęp teoretyczny....2 1.1 Korelacja....2 1.2 Funkcja regresji....5
Bardziej szczegółowoWprowadzenie (1) Przedmiotem analizy czynnikowej jest badanie wewnętrznych zależności w zbiorze zmiennych. Jest to modelowanie niejawne. Oprócz zmienn
Analiza czynnikowa Wprowadzenie (1) Przedmiotem analizy czynnikowej jest badanie wewnętrznych zależności w zbiorze zmiennych. Jest to modelowanie niejawne. Oprócz zmiennych, które są bezpośrednio obserwowalne
Bardziej szczegółowoAnaliza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
Bardziej szczegółowoIdea. Analiza składowych głównych Analiza czynnikowa Skalowanie wielowymiarowe Analiza korespondencji Wykresy obrazkowe.
Idea (ang. Principal Components Analysis PCA) jest popularnym używanym narzędziem analizy danych. Na metodę tę można spojrzeć jak na pewną technikę redukcji wymiarowości danych. Jest to metoda nieparametryczna,
Bardziej szczegółowoZASTOSOWANIE ANALIZY GŁÓWNYCH SKŁADOWYCH W EWALUACJI SKALI POMIARU UŻYTECZNOŚCI SERWISU INTERNETOWEGO
STUDIA OECONOMICA POSNANIENSIA 2016, vol. 4, no. 1 DOI: 10.18559/SOEP.2016.1.9 Mirosława Kaczmarek Uniwersytet Ekonomiczny w Poznaniu, Wydział Zarządzania, Katedra Badań Rynku i Usług m.kaczmarek@ue.poznan.pl
Bardziej szczegółowoZJAZD 4. gdzie E(x) jest wartością oczekiwaną x
ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych
Bardziej szczegółowoCopyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008
Redaktor: Alicja Zagrodzka Korekta: Krystyna Chludzińska Projekt okładki: Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 ISBN 978-83-7383-296-1 Wydawnictwo Naukowe Scholar
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoRecenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN
Bardziej szczegółowoWSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno
WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:
Bardziej szczegółowoMetodologia badań psychologicznych. Wykład 12. Korelacje
Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów
Bardziej szczegółowoStatystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowo( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Bardziej szczegółowometoda momentów, Wartość oczekiwana (pierwszy moment) dla zmiennej o rozkładzie γ(α, λ) to E(X) = αλ, drugi moment (wariancja) to
3.1 Wprowadzenie do estymacji Ile mamy czerwonych krwinek w krwi? Ile karpi żyje w odrze? Ile ton trzody chlewnej będzie wyprodukowane w przyszłym roku? Ile białych samochodów jeździ ulicami Warszawy?
Bardziej szczegółowoEgzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007
Egzamin ze statystyki, Studia Licencjackie Stacjonarne TEMAT C grupa 1 Czerwiec 2007 (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i
Bardziej szczegółowoPodstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak
Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie
Bardziej szczegółowoCzy egzaminy zewnętrzne mogą pomóc szkole w rozwoju? Ewa Stożek Sulejówek, czerwiec 2013
Czy egzaminy zewnętrzne mogą pomóc szkole w rozwoju? Ewa Stożek Sulejówek, czerwiec 2013 Wyniki egzaminu zewnętrznego 15 pkt 31% 6 stanin 29. centyl 101 na skali (100;15) 28,3 pkt 47% p = 0,75 7. stanin
Bardziej szczegółowoRegresja logistyczna (LOGISTIC)
Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim
Bardziej szczegółowoR-PEARSONA Zależność liniowa
R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe
Bardziej szczegółowoSpis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Bardziej szczegółowoAnaliza składowych głównych idea
Analiza składowych głównych idea Analiza składowych głównych jest najczęściej używanym narzędziem eksploracyjnej analizy danych. Na metodę tę można spojrzeć jak na pewną technikę redukcji wymiarowości
Bardziej szczegółowoZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
Bardziej szczegółowoBudowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego
Metody Analiz Przestrzennych Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego mgr Marcin Semczuk Zakład Przedsiębiorczości i Gospodarki Przestrzennej Instytut
Bardziej szczegółowoRAPORT WSKAŹNIK EDUKACYJNEJ WARTOŚCI DODANEJ PO EGZAMINIE GIMNAZJALNYM W ROKU SZKOLNYM 2012/2013
RAPORT WSKAŹNIK EDUKACYJNEJ WARTOŚCI DODANEJ PO EGZAMINIE GIMNAZJALNYM W ROKU SZKOLNYM 2012/2013 ZESPÓŁ SZKÓŁ NR 14 W BYDGOSZCZY GIMNAZJUM NR 37 INTEGRACYJNE Opracowanie A. Tarczyńska- Pajor na podstawie
Bardziej szczegółowoZASTOSOWANIE TECHNIK CHEMOMETRYCZNYCH W BADANIACH ŚRODOWISKA. dr inż. Aleksander Astel
ZASTOSOWANIE TECHNIK CHEMOMETRYCZNYCH W BADANIACH ŚRODOWISKA dr inż. Aleksander Astel Gdańsk, 22.12.2004 CHEMOMETRIA dziedzina nauki i techniki zajmująca się wydobywaniem użytecznej informacji z wielowymiarowych
Bardziej szczegółowoRegresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Bardziej szczegółowoBadanie zależności skala nominalna
Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność
Bardziej szczegółowoANALIZA REGRESJI WIELOKROTNEJ. Zastosowanie statystyki w bioinżynierii Ćwiczenia 8
ANALIZA REGRESJI WIELOKROTNEJ Zastosowanie statystyki w bioinżynierii Ćwiczenia 8 ZADANIE 1A 1. Irysy: Sprawdź zależność długości płatków korony od ich szerokości Utwórz wykres punktowy Wyznacz współczynnik
Bardziej szczegółowoDane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.
STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą
Bardziej szczegółowoRozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Bardziej szczegółowoWprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 4
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Bardziej szczegółowoWażne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Bardziej szczegółowoSTATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 STATYSTYKA
Bardziej szczegółowoStatystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA
Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:
Bardziej szczegółowoAnaliza Współzależności
Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
Bardziej szczegółowoStatystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.
Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru
Bardziej szczegółowoMetody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Bardziej szczegółowoEstymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Bardziej szczegółowoGraficzna prezentacja danych statystycznych
Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do
Bardziej szczegółowoPodstawowe definicje statystyczne
Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny
Bardziej szczegółowoWeryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
Bardziej szczegółowoWeryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowo