Materiały wykładowe (fragmenty)
|
|
- Magda Urban
- 8 lat temu
- Przeglądów:
Transkrypt
1 Materiały wykładowe (fragmenty) 1
2 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7 2
3 Wyłączenie odpowiedzialności Prezentowane materiały, będące dodatkiem pomocniczym do wykładów, z konieczności fragmentarycznym i niedopracowanym, naleŝy wykorzystywać z pełnąświadomością faktu, Ŝe mogą nie być pozbawione przypadkowych błędów, braków, wypaczeń i przeinaczeń :-) Autor 3
4 4
5 Wizualizacja danych wielowymiarowych wykorzystująca metodę skalowania wielowymiarowego (ang. Multidimensional Scaling, MDS) 5
6 6
7 Wykres rozrzutu Wykres rozrzutu (inna nazwa: punktowy XY) 7
8 Wykres rozrzutu 2D
9 Wykres rozrzutu 3D
10 Wykres rozrzutu 4D
11 Wykres rozrzutu nd (n >> 3)
12 Wykres rozrzutu 1D
13 13
14 Wizualizacja funkcji Problem wizualizacji funkcji Funkcje/argumenty rzeczywiste (zbiór liczb rzeczywistych jest obrazowany jako oś liczbowa) argument wektorowy o rozmiarze 1 1 (lub argument skalarny): dwa wymiary argument wektorowy o rozmiarze 2 1: trzy wymiary argument wektorowy o rozmiarze 3 1: cztery wymiary Funkcje/argumenty zespolone (zbiór liczb zespolonych jest obrazowany jako płaszczyzna liczbowa) argument wektorowy o rozmiarze 1 1 (lub argument skalarny): cztery wymiary argument wektorowy o rozmiarze 2 1 (czyli skalarny): sześć wymiarów argument wektorowy o rozmiarze 3 1 (czyli skalarny): osiem wymiarów 14
15 Wizualizacja funkcji Wizualizacja funkcji rzeczywistych argument wektorowy o rozmiarze 1 1 (lub argument skalarny): dwa wymiary wykres dwuwymiarowy 15
16 Wizualizacja funkcji Wizualizacja funkcji rzeczywistych argument wektorowy o rozmiarze 2 1: trzy wymiary wykres trójwymiarowy 16
17 Wizualizacja funkcji Wizualizacja funkcji rzeczywistych argument wektorowy o rozmiarze 2 1: trzy wymiary wykres konturowy (bez tła)
18 Wizualizacja funkcji Wizualizacja funkcji rzeczywistych argument wektorowy o rozmiarze 2 1: trzy wymiary wykres konturowy (z tłem)
19 Wizualizacja funkcji Wizualizacja funkcji rzeczywistych argument wektorowy o rozmiarze 2 1: trzy wymiary obraz dwuwymiarowy 19
20 Wizualizacja funkcji Wizualizacja funkcji rzeczywistych argument wektorowy o rozmiarze 3 1: cztery wymiary??? 20
21 Wizualizacja funkcji Wizualizacja funkcji zespolonych argument wektorowy o rozmiarze 1 1 (lub arg. skalarny): cztery wymiary para obrazów dwuwymiarowych Moduł f(x) = x 1/2 +log(x)/2.5 Faza f(x) = x 1/2 +log(x)/2.5 21
22 22
23 Wizualizacja danych wielowymiarowych Podejścia do wizualizacji danych wielowymiarowych wizualizacja wielowymiarowych opisów obiektów obrazuje poszczególne obiekty obiekty są reprezentowane w postaci (mniej lub bardziej złoŝonych) figur ułatwia dostrzeganie róŝnic pomiędzy poszczególnymi obiektami wizualizacja wielowymiarowych konfiguracji obiektów obrazuje wzajemne połoŝenia obiektów obiekty są reprezentowane w postaci punktów ułatwia dostrzeganie systematycznych róŝnic pomiędzy zbiorami obiektów 23
24 24
25 Normalizowanie danych Cechy danych znormalizowanych zero odpowiada średniej arytmetycznej (kolumny) wartość zero oznacza wartość średnią wartość dodatnia oznacza wartość większą od średniej wartość ujemna oznacza wartość mniejszą od średniej jedynka odpowiada odchyleniu standardowemu (kolumny) wartość plus jeden oznacza wartość większąśredniej o jedno odchylenie standardowe wartość jeden oznacza wartość większąśredniej o jedno odchylenie standardowe 25
26 Normalizowanie danych Normalizowanie danych operacja mająca na celu ujednolicenie jednostek parametrów jej wykonanie realizuje przyjęte załoŝenie o równym traktowaniu wszystkich parametrów JeŜeli dane oryginalne są zapisane jako elementy x ij macierzy X (o rozmiarach MxN), przez dane znormalizowane z ij rozumie się: xij x j zij = s gdzie: x j j jest średnią arytmetyczną zmiennej x j (czyli kolumny j macierzy X) s j jest odchyleniem standardowym zmiennej x j (czyli kolumny j macierzy X) normalizacja jest w praktyce złoŝeniem centrowania i skalowania Normalizowanie jest dokonywane na zmiennych (czyli kolumnach macierzy danych) 26
27 Normalizowanie danych Pewne dane
28 Normalizowanie danych Parametry kolumn 8,1 9,3 71,14 9 7,9 11,9 93, ,5 12,3 81,79 8 8,4 12,2 34,90 3 6,7 10,8 48,90 7 6,4 11,7 35,30 2 7,2 13,0 24,90 2 7,2 12,0 60,60 9 7,0 12,0 56,95 8 6,6 13,2 38,36 4 7,0 9,9 50,05 9 9,7 11,0 85,35 8 8,3 10,9 44,99 8 7,7 10,2 50,36 4 8,3 9,9 61,62 6 7,60 11,35 55,90 6,47 (średnie) 0,84 1,14 19,31 2,65 (odchylenia std.) 28
29 Normalizowanie danych Te same dane znormalizowane 0,57-1,74 0,76 0,93 0,34 0,46 1,87 1,31-0,11 0,80 1,29 0,56 0,92 0,72-1,05-1,34-1,03-0,47-0,35 0,18-1,37 0,29-1,03-1,34-0,46 1,40-1,55-1,72-0,46 0,55 0,23 0,93-0,69 0,55 0,05 0,56-1,14 1,57-0,88-0,96-0,69-1,23-0,29 0,93 2,40-0,30 1,47 0,56 0,80-0,39-0,55 0,56 0,11-0,98-0,28-0,96 0,80-1,23 0,29-0,20 29
30 Normalizowanie danych Dane w obu wersjach
31 31
32 Przykładowa wizualizacja wielowymiarowych opisów 32
33 Przykładowa wizualizacja wielowymiarowych opisów (StatSoft Statistica) 33
34 Przykładowa wizualizacja wielowymiarowych opisów (StatSoft Statistica) 34
35 Przykładowa wizualizacja wielowymiarowych opisów (StatSoft Statistica) 35
36 Przykładowa wizualizacja wielowymiarowych opisów (StatSoft Statistica) 36
37 Przykładowa wizualizacja wielowymiarowych opisów (StatSoft Statistica) 37
38 Przykładowa wizualizacja wielowymiarowych opisów (StatSoft Statistica) 38
39 Przykładowa wizualizacja wielowymiarowych opisów (StatSoft Statistica) 39
40 Przykładowa wizualizacja wielowymiarowych opisów Inne metody współrzędne równoległe ( 40
41 Przykładowa wizualizacja wielowymiarowych opisów Inne metody Krzywe Andrews a (1/sqrt(2), sin(x), cos(x), sin(2x), cos(2x),...) ( 41
42 42
43 Wizualizacja danych wielowymiarowych Prezentowana metoda skalowanie wielowymiarowe (ang. multidimensional scaling, MDS) dokonuje wizualizacji wielowymiarowych konfiguracji obiektów 43
44 Wizualizacja danych wielowymiarowych Przykład przewodni: dane o 15 modelach samochodów osobowych (tzw. obiekty, przykłady, obserwacje) opisanych w kategoriach 4 parametrów (tzw. zmienne, atrybuty) zuŝycie paliwa przyspieszenie cena wyposaŝenie ZałoŜenie: wszystkie parametry są traktowane jako równie waŝne 44
45 Wizualizacja danych wielowymiarowych Opisy wybranych 3 samochodów: Mitsubishi Carisma: zuŝ.=7,2; przysp.=12,0; cena=60,60; wyposaŝ.=9 Opel Astra II: zuŝ.=7,0; przysp.=12,0; cena=56,95; wyposaŝ.=8 Saab 9 3S: zuŝ.=9,7; przysp.=11,0; cena=85,35; wyposaŝ.=8 Przykładowa analiza (nieskomplikowana /wobec niewielkiej liczby opisywanych obiektów/) wniosek 1: Carisma bardzo zbliŝony do Astra II wniosek 2: 9 3S mocno róŝny zarówno od Carisma jak i od Astra II 45
46 Wizualizacja danych wielowymiarowych Opisy wszystkich 15 samochodów (tabela informacyjna) Marka Model ZuŜycie Przyspieszenie Cena WyposaŜenie Alfa Romeo 156 8,1 9,3 71,14 9 Audi A4 7,9 11,9 93,35 10 BMW 316l 7,5 12,3 81,79 8 Daewoo Lanos 8,4 12,2 34,90 3 Honda Civic 6,7 10,8 48,90 7 Hyunday Accent 6,4 11,7 35,30 2 Lada Samara 7,2 13,0 24,90 2 Mitsubishi Carisma 7,2 12,0 60,60 9 Opel Astra II 7,0 12,0 56,95 8 Peugeot 206 XR 6,6 13,2 38,36 4 Renault Megane 7,0 9,9 50,05 9 Saab 9 3S 9,7 11,0 85,35 8 Seat Cordoba 8,3 10,9 44,99 8 Toyota Corrola 7,7 10,2 50,36 4 Volkswagen Golf IV 8,3 9,9 61,
47 Wizualizacja danych wielowymiarowych Przykładowa analiza (zdecydowanie trudniejsza ze względu na duŝą liczbę obiektów) oczywiście Carisma bardzo zbliŝona do Astra II, ale: czy to jedyna para obiektów o mocno zbliŝonych opisach? jeŝeli istnieją inne takie pary, to jakie? które obiekty są najbardziej zbliŝone? oczywiście 9 3S mocno róŝny od Carisma i Astra II, ale: czy to jedyna para obiektów o mocno zróŝnicowanych opisach? jeŝeli istnieją inne takie pary, to jakie? które obiekty są najbardziej zróŝnicowane? 47
48 Wizualizacja danych wielowymiarowych Podejście bezpośrednie: utworzenie wykresu rozrzutu niemoŝliwe ze względu na liczbę zmiennych (przekraczającą 3) 48
49 Wizualizacja danych wielowymiarowych Potencjalne podejście pośrednie: wprowadzenie miary odległości (najlepiej na znormalizowanych danych) i zobrazowanie tych odległości dla kaŝdej pary obiektów (bez względu na liczbę parametrów je opisujacych) odległość pomiędzy nimi wyraŝa się pojedynczą wartością skalarną 49
50 Wizualizacja danych wielowymiarowych Znormalizowane opisy 15 samochodów (tabela informacyjna) Marka Model ZuŜycie Przyspieszenie Cena WyposaŜenie Alfa Romeo 156 0,57-1,74 0,76 0,93 Audi A4 0,34 0,46 1,87 1,31 BMW 316l -0,11 0,80 1,29 0,56 Daewoo Lanos 0,92 0,72-1,05-1,34 Honda Civic -1,03-0,47-0,35 0,18 Hyunday Accent -1,37 0,29-1,03-1,34 Lada Samara -0,46 1,40-1,55-1,72 Mitsubishi Carisma -0,46 0,55 0,23 0,93 Opel Astra II -0,69 0,55 0,05 0,56 Peugeot 206 XR -1,14 1,57-0,88-0,96 Renault Megane -0,69-1,23-0,29 0,93 Saab 9 3S 2,40-0,30 1,47 0,56 Seat Cordoba 0,80-0,39-0,55 0,56 Toyota Corrola 0,11-0,98-0,28-0,96 Volkswagen Golf IV 0,80-1,23 0,29-0,20 50
51 51
52 Odległość Euklidesowa Idea odległości między wektorami x i y (wektory jako punkty) 52
53 Odległość Euklidesowa Miara odległości δ(x,y) między wektorami x i y musi spełniać tzw. aksjomaty odległości δ(x,y) 0, przy czym δ(x,y) = 0 x = y δ(x,y) = δ(y,x) δ(x,y) + δ(y,z) δ(x,z) (nierówność trójkąta) 53
54 Odległość Euklidesowa Odległość Euklidesowa między wektorami x i y δ E (x,y) = x y inaczej: δ E (x,y) = z, gdzie z = x y odległość Euklidesowa między wektorami x i y jest normą Euklidesową wektora będącego róŝnicą wektorów x i y poniewaŝ z = (z T z) 1/2, więc δ E (x,y) = ((x y) T (x y)) 1/2 54
55 Odległość Euklidesowa Dla wektorów a T = [a 1, a 2,, a n ] i b T = [b 1, b 2,, b n ] mamy: δ E (a,b) = a b = ( a 1 b a 2 b a n b n 2 ) 1/2 55
56 Odległość Euklidesowa Przykład 1 zadanie: obliczyć odległość Euklidesową pomiędzy punktami, których współrzędne przedstawiają wektory x = [4, 2] T oraz y = [7, 2] T rozwiązanie klasyczne (na podstawie tw. Pitagorasa): δ E (x,y) = ( (4 7) 2 + (2 ( 2)) 2 ) 1/2 = = ( ( 3) 2 + (4) 2 ) 1/2 = ( ) 1/2 = 25 1/2 = 5 rozwiązanie prezentowane (na podstawie normy wektora): δ E (x,y) = x y = [4, 2] T [7, 2] T = [ 3, 4] T = = ( [ 3, 4] T [ 3, 4] ) 1/2 = ( ( 3) ( 3) ) 1/2 = = ( ( 3) 2 + (4) 2 ) 1/2 = ( ) 1/2 = 25 1/2 = 5 56
57 Odległość Euklidesowa Przykład 2 zadanie: jaka jest długość przekątnej kwadratu o boku długości 1? rozwiązanie: umieszczamy kwadrat w układzie współrzędnych, tak aby pewien jego wierzchołek miał współrzędne [0, 0] T przeciwległy do niego wierzchołek miał współrzędne [1, 1] T obliczamy odległość pomiędzy wektorami [0, 0] T i [1, 1] T odpowiedź: 2 1/2 (uwaga: kwadrat jest szczególnym przypadkiem hipersześcianu wielowymiarowego, a konkretnie hipersześcianem dwuwymiarowym) 57
58 Odległość Euklidesowa Quiz zadanie: jaka jest długość przekątnej sześcianu o boku długości 1? odpowiedź: 3 1/2 (uwaga: sześcian jest szczególnym przypadkiem hipersześcianu wielowymiarowego, a konkretnie hipersześcianem trójwymiarowym) zadanie: jaka jest długość przekątnej hipersześcianu czterowymiarowego o boku długości 1? odpowiedź: 4 1/2 = 2 zadanie: przekątna ilowymiarowego hipersześcianu ma długość 3? odpowiedź: 9 58
59 Odległość Euklidesowa Właściwości normy wektorowej: x 0, przy czym x = 0 x = 0 ax = a x x+y x + y (nierówność trójkąta) 59
60 Odległość Euklidesowa Właściwości odległości Euklidesowej między wektorami x i y odległość Euklidesowa spełnia oczywiście aksjomaty odległości, a więc x y 0, przy czym x y = 0 x y = 0 x = y nieujemność i zerowość spełniana przez normę wektora x y = y x symetryczność spełniana przez róŝnicę wektorów x y + y z x z, przy czym x y = 0 x y = 0 x = y nierówność trójkąta spełniana przez normę wektora 60
61 Odległość Euklidesowa Spełnialność nierówności trójkąta przez odległość Euklidesową między wektorami x i y odległość Euklidesowa δ E (x,y) między wektorami x i y jest zdefiniowana jako δ E (x,y) = x y niech a = x y oraz b = y z wtedy a + b = x y + y z = x z ale zachodzi twierdzenie CBS, czyli: a + b a + b, zatem x z x y + y z a więc ostatecznie zachodzi δ E (x,z) δ E (x,y) + δ E (y,z) 61
62 Odległość Euklidesowa Dany jest zbiór obiektów/wektorów x 1,, x m Macierz odległości Euklidesowych D = [d ij ], gdzie d ij = δ E (x i,x j ) spełnia następujące właściwości d ii = 0 (zerowa przekątna) d ij = d ji (symetria) d ik d ij + d jk (nierówność trójkąta) 62
63 63
64 Wizualizacja danych wielowymiarowych Odległość Euklidesowa pomiędzy samochodami a T = [z a, p a, c a, w a ] i b T = [z b, p b, c b, w b ] d(a,b) = a b = = ((z a z b ) 2 + (p a p b ) 2 + (c a c b ) 2 + (w a w b ) 2 ) 1/2 gdzie z a i z b : znormalizowane zuŝycie paliwa pojazdów a i b p a i p b : znormalizowane przyspieszenie pojazdów a i b c a i c b : znormalizowana cena pojazdów a i b w a i w b : znormalizowane wyposaŝenie pojazdów a i b Obliczanie odległości jest dokonywane na obiektach (czyli wierszach macierzy danych) 64
65 Wizualizacja danych wielowymiarowych Odległości pomiędzy (wybranymi wcześniej) trzema pojazdami: d( Carisma, Astra II ) = 0,48 d( 9 3S, Carisma ) = 3,25 d( 9 3S, Astra II ) = 3,51 Te same odległości w innej formie (macierz odległości): Carisma 0,00 0,48 3,25 Astra II 0,48 0,00 3,51 9 3S 3,25 3,51 0,00 Carisma Astra II 9 3S 65
66 Wizualizacja danych wielowymiarowych Odległości pomiędzy wszystkimi pojazdami (macierz odległości) 156 0,00 2,51 2,72 3,82 2,45 4,04 4,83 2,57 2,74 4,49 1,72 2,47 1,94 2,34 1,35 A4 2,51 0,00 1,11 4,00 3,00 4,29 4,73 1,86 2,23 4,02 2,96 2,36 2,71 3,45 2,81 316l 2,72 1,11 0,00 3,19 2,30 3,29 3,70 1,20 1,39 2,94 2,67 2,76 2,38 2,83 2,57 Lanos 3,82 4,00 3,19 0,00 2,83 2,33 1,66 2,95 2,72 2,27 3,48 3,63 2,25 2,07 2,63 Civic 2,45 3,00 2,30 2,83 0,00 1,86 2,97 1,51 1,21 2,40 1,13 3,91 1,88 1,69 2,12 Accent 4,04 4,29 3,29 2,33 1,86 0,00 1,57 2,77 2,30 1,36 2,92 4,95 3,00 2,13 3,18 Samara 4,83 4,73 3,70 1,66 2,97 1,57 0,00 3,31 2,92 1,24 3,95 5,04 3,31 2,86 3,77 Carisma 2,57 1,86 1,20 2,95 1,51 2,77 3,31 0,00 0,48 2,52 1,87 3,25 1,79 2,55 2,46 Astra II 2,74 2,23 1,39 2,72 1,21 2,30 2,92 0,48 0,00 2,10 1,86 3,51 1,86 2,32 2, XR 4,49 4,02 2,94 2,27 2,40 1,36 1,24 2,52 2,10 0,00 3,46 4,89 3,16 2,91 3,68 Megane 1,72 2,96 2,67 3,48 1,13 2,92 3,95 1,87 1,86 3,46 0,00 3,70 1,77 2,07 1,96 9 3S 2,47 2,36 2,76 3,63 3,91 4,95 5,04 3,25 3,51 4,89 3,70 0,00 2,58 3,33 2,33 Cordoba 1,94 2,71 2,38 2,25 1,88 3,00 3,31 1,79 1,86 3,16 1,77 2,58 0,00 1,79 1,41 Corrola 2,34 3,45 2,83 2,07 1,69 2,13 2,86 2,55 2,32 2,91 2,07 3,33 1,79 0,00 1,19 Golf IV 1,35 2,81 2,57 2,63 2,12 3,18 3,77 2,46 2,45 3,68 1,96 2,33 1,41 1,19 0, A4 316l Lanos Civic Accent Samara Carisma Astra II 206 XR Megane 9 3S Cordoba Corrola Golf IV 66
67 Wizualizacja danych wielowymiarowych Obrazowanie odległości w postaci obrazu macierzy idea kaŝdy element macierzy jest traktowany jako pewien piksel obrazu wartości elementów macierzy są obrazowane jako kolory jedynym problemem jest dobranie odwzorowania wartości na kolory Zobrazowanie w ten sposób macierzy odległości umoŝliwia łatwe dostrzeganie par obiektów charakteryzujących się małymi/duŝymi odległościami 67
68 Wizualizacja danych wielowymiarowych Wizualizacja macierzy odległości (obraz macierzy) 68
69 Wizualizacja danych wielowymiarowych Obrazowanie odległości w postaci mapy MDS idea kaŝdy obiekt jest traktowany jako pewien punkt na płaszczyźnie połoŝenia punktów są tak dobrane, aby odległości między nimi były jak najbardziej zbliŝone do odległości pomiędzy obiektami zasadniczym problemem jest odpowiednie dobranie połoŝeń punktów (problem ten jest rozwiązywany przez metodę MDS) Zobrazowanie w ten sposób obiektów umoŝliwia łatwe śledzenie względnych odległości pomiędzy wszystkimi parami obiektów 69
70 Wizualizacja danych wielowymiarowych Wizualizacja mapy MDS (wykres rozrzutu) 70
71 Wizualizacja danych wielowymiarowych Współrzędne MDS (tabela informacyjna) Marka Model X Y Alfa Romeo 156-1,74 0,57 Audi A4 0,46 0,34 BMW 316l 0,80-0,11 Daewoo Lanos 0,72 0,92 Honda Civic -0,47-1,03 Hyunday Accent 0,29-1,37 Lada Samara 1,40-0,46 Mitsubishi Carisma 0,55-0,46 Opel Astra II 0,55-0,69 Peugeot 206 XR 1,57-1,14 Renault Megane -1,23-0,69 Saab 9 3S -0,30 2,40 Seat Cordoba -0,39 0,80 Toyota Corrola -0,98 0,11 Volkswagen Golf IV -1,23 0,80 71
72 Wizualizacja danych wielowymiarowych Zmienne generowane w metodzie MDS są sztuczne nie posiadają jednostek nie są z załoŝenia w Ŝaden szczególny sposób związane z oryginalnymi zmiennymi w praktyce mogą być jednak z nimi mniej lub bardziej skorelowane 72
73 73
74 Wizualizacja danych wielowymiarowych Problem wizualizowania danych wielowymiarowych X Y Z a b c d e
75 Wizualizacja danych wielowymiarowych Sedno MDS: generowanie współrzędnych z macierzy odległości a b c d e x y a b c d e a b c d e
76 Wizualizacja danych wielowymiarowych Nieodłączny problem MDS: niedokładność odwzorowania? a b c d e a b c d e a b c d e x y a b c d e a b c d e
77 Wizualizacja danych wielowymiarowych Zastosowanie MDS: wizualizowanie danych wielowymiarowych X Y Z a b c d e
78 Wizualizacja danych wielowymiarowych Zastosowanie MDS: wizualizowanie danych wielowymiarowych X Y Z a b c d e ? a b c d e a b c d e a b c d e x y a b c d e a b c d e
79 Wizualizacja danych wielowymiarowych Zastosowanie MDS: wizualizowanie danych wielowymiarowych X Y Z a b c d e
80 Wizualizacja danych wielowymiarowych Bardziej złoŝone podejścia do wizualizacji danych wielowymiarowych ( bardziej złoŝone, tzn. wykraczające poza wizualizację wielowymiarowych opisów obiektów i wizualizację wielowymiarowych konfiguracji obiektów) jednoczesna wizualizacja wielowymiarowych opisów obiektów oraz wielowymiarowych konfiguracji obiektów obrazuje wzajemne połoŝenia obiektów obiekty są reprezentowane w postaci punktów ułatwia dostrzeganie systematycznych róŝnic pomiędzy zbiorami obiektów 80
81 81
82 Norma Frobeniusa macierzy Norma Frobeniusa. F macierzy X = [x ij ] X F = ( (x ij ) 2 ) 1/2 (pierwiastek z sumy kwadratów wszystkich elementów) 82
83 83
84 Wizualizacja danych wielowymiarowych Zadanie optymalizacji w MDS (wersja podstawowa) dane: macierz odległości D o rozmiarach mxm niech: X będzie macierzą zmiennych X jest macierzą o rozmiarach mxd, gdzie d jest liczbą wymiarów konfiguracji wynikowej (dla konfiguracji na płaszczyźnie d = 2) D(X) = pdist(x) będzie macierzą odległości Euklidesowych pomiędzy wektorami wierszowymi macierzy X D(X) jest macierzą o rozmiarach mxm s(x) = D(X) D F będzie wartością macierzowej normy Frobeniusa z róŝnicy pomiędzy macierzą D(X) a macierzą D s(x) jest skalarem (funkcją skalarną od argumentu macierzowego) zadanie: znaleźć minimum funkcji s(x) 84
85 Wizualizacja danych wielowymiarowych Cechy zadania optymalizacji w MDS (wersja podstawowa) funkcja celu: s(x) funkcja skalarna od argumentu macierzowego X o wymiarach mxd liczba zmiennych skalarnych w problemie (liczba wymiarów przestrzeni, w której dokonywana jest optymalizacja): m*d ograniczenia: brak 85
86 Wizualizacja danych wielowymiarowych Jakość rozwiązań generowanych w metodzie MDS dokładne, tzn. takie, dla których s(x) = 0 (mogą nie istnieć) przybliŝone, tzn. takie, dla których s(x) > 0 (zawsze istnieją) uŝyteczne/dobre, tzn. takie, dla których s(x) jest małe nieuŝyteczne/słabe, tzn. takie, dla których s(x) jest duŝe 86
87 Wizualizacja danych wielowymiarowych Związane z danymi przyczyny niedokładności rozwiązań MDS zbyt wysoka wielowymiarowość przestrzeni oryginalnej niespełnialność aksjomatów miary odległości oryginalnej 87
88 Wizualizacja danych wielowymiarowych Niespełnialność aksjomatów odległości jako przyczyna niedokładności rozwiązań MDS przykład (rozwiązanie przybliŝone) niech M 1,, M m będzie zbiorem miejscowości i niech D = [d ij ] będzie macierzą czasów przejazdu, tzn. macierzą której element d ij jest czasem przejazdu z mniejscowości M i do miejscowości M j w niektórych przypadkach moŝe zachodzić d ij d ji, a więc D moŝe nie być macierzą symetryczną 88
89 Wizualizacja danych wielowymiarowych Niespełnialność aksjomatów odległości jako przyczyna, c.d. niech s(x) = D(X) D F będzie minimalizowaną funkcją celu wyraŝenie D(X) D F oznacza normę macierzową (Frobeniusa), a więc zachodzi D(X) D F 0 oraz D(X) D F = 0 D(X) D = O D(X) = D jednocześnie, poniewaŝ D(X) = [d ij ] jest macierzą odległości Euklidesowych, więc spełnia warunki d ii = 0 (zerowa przekątna) d ij = d ji (symetria) d ik d ij + d jk (nierówność trójkąta) 89
90 Wizualizacja danych wielowymiarowych Niespełnialność aksjomatów odległości jako przyczyna, c.d. jeŝeli macierz D nie spełnia któregoś (lub wielu, potencjalnie wszystkich) spośród powyŝszych warunków, to zawsze będzie istniała jakaś róŝnica pomiędzy macierzą D(X) a macierzą D czyli dla dowolnego rozwiązania X będzie zachodziło D(X) D, a więc D(X) D O, a więc D(X) D F 0, a to oznacza, Ŝe D(X) D F > 0 (kaŝde rozwiązanie X jest przybliŝone) 90
91 Wizualizacja danych wielowymiarowych Zbyt wysoka wielowymiarowość jako przyczyna niedokładności rozwiązań MDS przykład skalowania z czterech wymiarów do dwóch załoŝenie: wszystkie odległości Euklidesowe 91
92 Wizualizacja danych wielowymiarowych Zbyt wysoka wielowymiarowość jako przyczyna niedokładności rozwiązań MDS przykład skalowania z czterech wymiarów do jednego załoŝenie: wszystkie odległości Euklidesowe 92
93 Wizualizacja danych wielowymiarowych Zbyt wysoka wielowymiarowość jako przyczyna niedokładności rozwiązań MDS przykład skalowania z dwóch wymiarów do jednego załoŝenie: wszystkie odległości Euklidesowe wynikowe rozwiązanie przybliŝone ale uŝyteczne 93
94 Wizualizacja danych wielowymiarowych Zbyt wysoka wielowymiarowość jako przyczyna niedokładności rozwiązań MDS przykład skalowania z dwóch wymiarów do jednego załoŝenie: wszystkie odległości Euklidesowe wynikowe rozwiązanie przybliŝone ale bezuŝyteczne 94
95 Wizualizacja danych wielowymiarowych Zbyt wysoka wielowymiarowość jako przyczyna niedokładności rozwiązań MDS regularnej figury z przestrzeni r-wymiarowej nie moŝna przedstawić w przestrzeni s-wymiarowej (gdy r > s) ze względu na brak odpowiedniej ilości miejsca przykłady regularnych kształtów: hipersimpleksy, hipersześciany, hipersfery problem dotyczy w praktyce wszystkich figur (mniej lub bardziej regularnych) dokładność odwzorowania spada wraz ze wzrostem róŝnicy pomiędzy r i s dla r = s (brak róŝnicy) dokładność ta powinna być zawsze pełna (otrzymujemy rozwiązanie dokładne) 95
96 Wizualizacja danych wielowymiarowych Rozwiązania dla macierzy odległości postaci D mxm = 1 1 T I szczególnym przypadkiem regularnej figury n-wymiarowej jest simpleks n-wymiarowy (simpleks n-wymiarowy składa się z n+1 równoodległych od siebie wzajemnie wierzchołków) o długości boku równej 1 dla n=2: simpleksem jest odcinek dla n=3: simpleksem jest trójkąt równoboczny dla n=4: simpleksem jest czworościan foremny dla n=5: simpleksem jest hiperczworościan foremny dla kaŝdego n simpleks n-wymiarowy charakteryzuje się tym, Ŝe macierz odległości pomiędzy jego wierzchołkami jest postaci 1 1 T I, czyli zawiera zera na przekątnej jedynki poza przekątną rozwiązania proponowane przez metodę MDS dla tego rodzaju macierzy odległości są bardzo charakterystycznymi figurami 96
97 Wizualizacja danych wielowymiarowych Rozwiązania dla macierzy odległości postaci D mxm = 1 1 T I m = 15 97
98 Wizualizacja danych wielowymiarowych Rozwiązania dla macierzy odległości postaci D mxm = 1 1 T I m = 25 98
99 Wizualizacja danych wielowymiarowych Kiedy rozwiązanie problemu MDS jest dokładne w sytuacji, gdy znamy oryginalną konfigurację punktów (a nie tylko macierz odległości pomiędzy tymi punktami)? 99
100 Wizualizacja danych wielowymiarowych Figura clock : współrzędne oryginalnych punktów 100
101 Wizualizacja danych wielowymiarowych Figura clock : wizualizacja (wykres rozrzutu) oryginalnych punktów
102 Wizualizacja danych wielowymiarowych Figura clock : macierz odległości oryginalnych punktów 102
103 Wizualizacja danych wielowymiarowych Figura clock : współrzędne nowych punktów 103
104 Wizualizacja danych wielowymiarowych Figura clock : wizualizacja (wykres rozrzutu) nowych punktów
105 Wizualizacja danych wielowymiarowych Figura clock : porównanie konfiguracji oryginał wynik MDS
106 Wizualizacja danych wielowymiarowych W sytuacji, gdy znamy oryginalną konfigurację punktów (a nie tylko macierz odległości pomiędzy tymi punktami), rozwiązanie problemu MDS uznajemy za dokładne, gdy konfigurację nowych punktów moŝna doprowadzić do konfiguracji oryginalnych punktów za pomocą złoŝenia następujących przekształceń izometrii obroty symetrie osiowe przesunięcia (równomiernego) przeskalowania (wszystkich odległości) Przekształcenie będące złoŝeniem powyŝszych przekształceń jest nazywane przekształceniem dopuszczalnym (ang. feasible) 106
107 Wizualizacja danych wielowymiarowych RóŜne aspekty MDS funkcja celu (w rozmaitych konkretnych postaciach) nosi ogólną nazwę stresu (ang. stress) aby unikać pierwiastków przy obliczaniu odległości, stosuje się podnoszenie do kwadratu odległości oryginalnych MDS dostarcza nietrywialnych zadań optymalizacyjnych o znanych rozwiązaniach (dokładnych/przybliŝonych) przedstawiona wersje metody noszą ogólnie nazwę metrycznych (ang. metric), alternatywę stanowią tzw. wersje porządkowe (ang. ordinal) porównywaniem rozwiązań znalezionych przez MDS zajmuje się tzw. analiza Prokrustesa 107
108 108
109 Wizualizacja danych wielowymiarowych Przykład obliczeniowy oryginalna konfiguracja punktów nieznana (czyli: klasyczne MDS) 109
110 Wizualizacja danych wielowymiarowych Dane są: macierz odległości docelowych 3x3: D = trzy obiekty docelowy wymiar mapy:
111 Wizualizacja danych wielowymiarowych Tworzone są: macierz zmiennych: X = x 11 x 12 x 21 x 22 trzy punkty x 31 x 32 kaŝdy o dwóch współrzędnych a 11 a 12 a 13 macierz odległości aktualnych A = pdist(x) = a 21 a 22 a 23, gdzie a ij = 2 2 ( xi1 x j1) + ( xi 2 x j2) a 31 a 32 a 33 odległości pomiędzy punktami o współrzędnych postaci x i = [x i1, x i2 ] T norma A D = funkcja celu 3 3 i= 1 j= ( aij dij ) = ( ( xi1 x j1) + ( xi 2 x j2) dij ) i= 1 j=
112 Wizualizacja danych wielowymiarowych Powstały problem programowania funkcja celu: s(x) = liczba zmiennych: 6 liczba ograniczeń: ( ( xi1 x j1) + ( xi2 x j2) dij ) i= 1 j= 1 2 (charakter problemu: nieliniowy bez ograniczeń) 112
113 113 Wizualizacja danych wielowymiarowych Operacje upraszczające problem (eliminacja pierwiastkowania) funkcja oryginalna: s(x) = bez pierwiastka zewnętrznego s (X) = bez pierwiastków wewnętrznych s (X) = ( ) = = ) ( ) ( i j ij j i j i d x x x x ( ) = = ) ( ) ( i j ij j i j i d x x x x ( ) = = ) ( ) ( i j ij j i j i d x x x x
114 Wizualizacja danych wielowymiarowych Funkcja celu (pełna wersja) w przypadku ogólnym m obiektów wejściowych, n wymiarów wyjściowych s(x) = m m n i= 1 j= 1 k = 1 ( x ik x jk ) 2 d ij 2 114
115 115
116 Przykładowe zastosowania Mapa odległości drogowych pomiędzy wybranymi miastami w Europie 116
117 Przykładowe zastosowania Mapa róŝnic genetycznych u Europejczyków (+części Afryki Płn) kolor: grupa językowa 117
118 Przykładowe zastosowania Mapa wybranych patogenów człowieka 118
119 119
Materiały wykładowe (fragmenty)
Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7
Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań
... Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7 Wyłączenie odpowiedzialności
Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań
... Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7 Wyłączenie odpowiedzialności
Materiały wykładowe (fragmenty)
Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Teoria Informacji i Metody Kompresji Danych
Teoria Informacji i Metody Kompresji Danych 1 Przykładowe zadania (dodatkowe materiały wykładowe) 2 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL
Wykład 10 Skalowanie wielowymiarowe
Wykład 10 Skalowanie wielowymiarowe Wrocław, 30.05.2018r Skalowanie wielowymiarowe (Multidimensional Scaling (MDS)) Główne cele MDS: przedstawienie struktury badanych obiektów przez określenie treści wymiarów
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
Teoria Informacji i Metody Kompresji Danych
Teoria Informacji i Metody Kompresji Danych 1 Materiały wykładowe (fragmenty) 2 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.
FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga
Materiały wykładowe (fragmenty)
Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7
ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ. Joanna Bryndza
ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ Joanna Bryndza Wprowadzenie Jednym z kluczowych problemów w szacowaniu poziomu ryzyka przedsięwzięcia informatycznego
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Skalowanie wielowymiarowe idea
Skalowanie wielowymiarowe idea Jedną z wad metody PCA jest możliwość używania jedynie zmiennych ilościowych, kolejnym konieczność posiadania pełnych danych z doświadczenia(nie da się użyć PCA jeśli mamy
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
Modele (graficznej reprezentacji) danych przestrzennych postać danych przestrzennych
Modele (graficznej reprezentacji) danych przestrzennych postać danych przestrzennych Jest to sposób graficznej reprezentacji połoŝenia przestrzennego, kształtu oraz relacji przestrzennych obiektów SIP
ALGORYTMY OPTYMALIZACJI wyklad 1.nb 1. Wykład 1
ALGORYTMY OPTYMALIZACJI wyklad.nb Wykład. Sformułowanie problemu optymalizacyjnego Z ksiąŝki Practical Optimization Methods: With Mathematica Applications by: M.A.Bhatti, M.Asghar Bhatti ü Przykład. (Zagadnienie
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych zestaw A klasa I 1. Zbiór wszystkich środków okręgów (leżących na jednej płaszczyźnie) przechodzących przez: a)
Geometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany
Zadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO
2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.
Dział Rozdział Liczba h
MATEMATYKA ZR Ramowy rozkład materiału w kolejnych tomach podręczników 1. Działania na liczbach Tom I część 1 1.1. Ćwiczenia w działaniach na ułamkach 1.. Obliczenia procentowe 1.3. Potęga o wykładniku
Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz
Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński 1 2.1. Przestrzeń i płaszczyzna Podstawowe definicje Punkt - najmniejszy bezwymiarowy
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w
Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki
Uniwersytet Mikołaja Kopernika w Toruniu Egzamin wstępny z matematyki lipca 2006 roku Zestaw I wariant A Czas trwania egzaminu: 240 minut 1. Dane są zbiory liczbowe A = {x; x R x < 2}, B = {x; x R x +
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2017 Mirosław Sobolewski (UW) Warszawa, 2017 1 / 10 Definicja Funkcja
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
KLUCZ ODPOWIEDZI POPRAWNA ODPOWIEDŹ 1 D 2 C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 10 C 11 B 12 A 13 A 14 B 15 D 16 B 17 C 18 A 19 B 20 D
Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH NR ZADANIA POPRAWNA ODPOWIEDŹ D C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 0 C B A 3 A 4 B 5 D 6 B 7 C 8 A 9 B 0 D Zadanie ( pkt) Okręgowa
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.
Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y
PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: LICZBY I WYRAŻENIA ALGEBRAICZNE
Ewa Koralewska PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem LP.. 2. 3. 5. OGÓLNA PODST- AWA PROGRA- MOWA a a TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna.
i = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
FUNKCJA LINIOWA, OKRĘGI
FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.
1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Jarosław Wróblewski Matematyka dla Myślących, 2008/09
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (dokończenie).
Algebra z geometrią Lista 1 - Liczby zespolone
Algebra z geometrią Lista 1 - Liczby zespolone 1. Oblicz a) (1 + i)(2 i); b) (3 + 2i) 2 ; c) (2 + i)(2 i); d) (3 i)/(1 + i); e) (1 + i 3)/(2 + i 3); f) (2 + i) 3 ; g) ( 3 i) 3 ; h) ( 2 + i 3) 2 2. Korzystając
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
Model odpowiedzi i schemat oceniania do arkusza I
Model odpowiedzi i schemat oceniania do arkusza I Zadanie 1 (4 pkt) n Odczytanie i zapisanie danych z wykresu: 100, 105, 100, 10, 101. n Obliczenie mediany: Mediana jest równa 101. n Obliczenie średniej
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W SZKOLE PONADGIMNAZJALNEJ. Kryteria oceniania w zakresie obowiązkowym treści nauczania. Liczby rzeczywiste
mgr Małgorzata Kowalczyk PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W SZKOLE PONADGIMNAZJALNEJ Kryteria oceniania w zakresie obowiązkowym treści nauczania. Liczby rzeczywiste Dopuszczający Wykonywanie
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy
BRYŁY PLATOŃSKIE W CZTERECH WYMIARACH
BRYŁY PLATOŃSKIE W CZTERECH WYMIARACH Adam Doliwa doliwa@matman.uwm.edu.pl Instytut Matematyczny Polskiej Akademii Nauk (Warszawa) Uniwersytet Warmińsko-Mazurski (Olsztyn) SPOTKANIA Z MATEMATYK A Olsztyn,
Dział I FUNKCJE TRYGONOMETRYCZNE
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Średnie. Średnie. Kinga Kolczyńska - Przybycień
Czym jest średnia? W wielu zagadnieniach praktycznych, kiedy mamy do czynienia z jakimiś danymi, poszukujemy liczb, które w pewnym sensie charakteryzują te dane. Na przykład kiedy chcielibyśmy sklasyfikować,
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
zestaw DO ĆWICZEŃ z matematyki
zestaw DO ĆWICZEŃ z matematyki poziom podstawowy rozumowanie i argumentacja karty pracy ZESTAW II Zadanie. Wiadomo, że,7 jest przybliżeniem liczby 0,5 z zaokrągleniem do miejsc po przecinku. Wyznacz przybliżenie
Temat: Liczby definicje, oznaczenia, własności. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Liczby definicje, oznaczenia, własności A n n a R a j f u r a, M a t e m a t y k a s e m e s t r, W S Z i M w S o c h a c z e w i e Kody kolorów: pojęcie zwraca uwagę A n n a R a j f u r a, M a
RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska
RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy
x+h=10 zatem h=10-x gdzie x>0 i h>0
Zadania optymalizacyjne. Jaka jest największa możliwa wartość iloczynu dwóch liczb, których suma jest równa 60? Rozwiązanie: KROK USTALENIE WZORU Liczby oznaczamy przez a i b więc x+y=60 Następnie wyznaczamy
Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik
Rozwiązania zadań Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY Zadanie 1 (5pkt) Równanie jest kwadratowe, więc Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik /:4 nierówności
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
1 Wartości własne oraz wektory własne macierzy
Rozwiązania zadania umieszczonego na końcu poniższych notatek proszę przynieść na kartkach Proszę o staranne i formalne uzasadnienie odpowiedzi Za zadanie można uzyskać do 6 punktów (jeżeli przyniesione
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
I V X L C D M. Przykłady liczb niewymiernych: 3; 2
1 LICZBY Liczby naturalne: 0; 1; 2; 3;.... Liczby całkowite:...; -3; -2; -1; 0; 1; 2; 3;.... Liczbą wymierną nazywamy każdą liczbę, którą można zapisać w postaci ułamka a b, gdzie a i b są liczbami całkowitymi,
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające;
Techniki optymalizacji. Cz. 1
Techniki optymalizacji Cz. 1 1 Przedstawiane metody/rozwiązania Rodzaje przedstawianych metod: klasyczne dla dziedziny optymalizacji ciągłej dawno zdefiniowane dokładnie przebadane Związki z metodami metaheurystycznymi: