Silniki spalinowe Teoria
|
|
- Urszula Szymańska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Silniki palinowe eoia D inż. Stefan Kluj
2 Zaada działania
3 Założenia obiegu teoetycznego tała ilość czynnika palanie zatąpione dopowadzeniem ciepła pzy tałej objętości i pzy tałym ciśnieniu wydech zatąpiony odpowadzeniem ciepła pzy tałej objętości pężanie i ozpężanie ą adiabatyczne tzn. bez wymiany ciepła z otoczeniem
4 Wkaźniki obiegu ekonomiczność czyli pawność teoetyczna efektywność czyli śednie ciśnienie teoetyczne V V L V L p t t t ) ( Q Q Q Q Q Q Q P V t η
5 Obieg Sabathe
6 Dodatkowe wkaźniki obiegu (cz. ) wpółczynnik pzyotu objętości pzy tałym ciśnieniu lub topień wtępnego ozpężania ρ V V wpółczynnik pzyotu ciśnienia pzy tałej objętości ϕ p p 3
7 Dodatkowe wkaźniki obiegu (cz. ) topień pężania ε V V topień ozpężania lub topień natępnego ozpężania δ V V 5
8 Obieg Otto
9 Obieg Diela
10 Poównanie pawności obiegów (cz. a) ZASADA PORÓWNYWANIA Q O Q S Q D η to Q Q Q o o o Q Q o η t Q Q η td Q D Q
11 Poównanie pawności obiegów (cz. b) Ponieważ Q > Q > Q D o Dlatego η > η > to t η td
12 Poównanie pawności obiegów (cz. )
13 Poównanie efektywności obiegów
14 Obiegi zeczywite - Poównanie z teoetycznymi a. nie jet już obiegiem zamkniętym bo natępuje wydech b. w celu palania dopowadza ię okeśloną ilość paliwa, któe może być palone w óżny poób c. pzemiany pężania i ozpężania ą nieodwacalne d. w cylindze pozotaje pewna ilość gazów, któe podgzewają świeży ładunek e. uwzględnia ię taty wynikłe z opoów pzetłaczania czynnika
15 V e V S ( h ) w ε e V e V V K K Obieg zeczywity ilnika -
16 Obieg zeczywity ilnika -
17 Kołowy wyke ozządu -
18 Kołowy wyke ozządu - Silnik nie doładowany Silnik doładowany α α α α PD KD PW KW α α α α PD KD PW KW α PW α KW kąt pzekycia zawoów
19 Staty obiegu zeczywitego
20 Napełnianie cz. Paamety powietza a. pzed cylindem: p d, d, m d, d lub p 0, 0, m 0, 0 b. w cylindze: p l, l, m l, l p l p, l d Ilość powietza, któa mogła by ię zmieścić w cylindze pzy paametach: p d i d (lub p 0 i 0 ) m V ρ d V pd R d m V ρ Paamety ezty palin pozotających w cylindze: p,, m, o V pd R o
21 Napełnianie cz. Wpółczynnik ezty palin γ 0,05 0, γ m m l Wpółczynnik napełnienia cylinda η v 0,75 0,90 η v m m l η Dla - zamiat ε wtawia ię ε e wówcza η v odnoi ię do V e, albo też, oblicza ię η η σ v v v ε ε p p d l d γ ( ) w odnieione do V
22 Napełnianie cz. 3 Czynniki ekploatacyjne wpływające na wpółczynnik napełnienia cylinda p d - η v ε - η v d - η v p - η v γ - η v - η v n - makimum pzy okeślonej pędkości obotowej (zazwyczaj znamionowej)
23 Spężanie cz. Paamety na początku pężania : p,, ρ, V, m, Paamety na końcu pężania: p,, ρ, V, m m,, p p ε n, ε n- Śedni wykładnik politopy pężania: n,35, lepze chłodzenie goze chłodzenie
24 Spężanie cz.
25 Spężanie cz. 3 Wykładnik politopy pężania n ośnie gdy: maleje intenywność chłodzenia tzn. np. tounek powiezchni cylinda do objętości (F c / V) ośnie pędkość obotowa ilnika ośnie obciążenie ilnika bo ośnie śednia tempeatua cyklu maleje d bo kótzy cza pzekazywania ciepła do ścianek
26 Spężanie cz. Paamety końca pężania Silnik niedoładowany doładowany p k [Pa] 3,5 5,0 5,0 0,0 Stopnie pężania Niedoładowany wolnoobotowy 3 śednioobotowy 5 zybkoobotowy 5 8 Doładowany 3 k [K]
27 Pzeciętny kład paliwa c 0,8 0,88 h 0, 0, 0,0005 0,035 o 0, ,03
28 Właściwości paliw cz. Gętość pzy 0 C nie jet pecjalnie itotną cechą i wyóżnikiem, ponieważ nawet badzo dobe oleje mogą mieć gętość powyżej 0,9 Jedn. Olej napędowy Ga oil Dieel oil Light fuel oil Olej opałowy edium fuel oil Heavy fuel oil kg/dm 3 0,8-0,8 0,8 0,8-0,88 0,88 0,88-0,90 0,90 0,90-0,9 0,9 0,9-0,99 0,99
29 Właściwości paliw cz. Lepkość pzy 38 C jet badzo ważnym paametem bo okeśla podatność paliwa do tanpotu i palania. Paliwa o dużej lepkości muzą być podgzewane do tanpotu i palania, zaś tempeatua podgzania wynika z lepkości paliwa w tempeatuze odnieienia i lepkości jaką mui mieć ono pzed pompą paliwową. Wynoi ona zwykle: RI (tj.,,5ºe) ilniki wolnoobotowe RI (tj.,7,ºe) ilniki śednio i zybkoobotowe Jedn. Olej napędowy Ga oil Dieel oil Light fuel oil Olej opałowy edium fuel oil Heavy fuel oil RI
30 Właściwości paliw cz. 3 Zawatość iaki jet badzo ważnym paametem, gdyż powtające w czaie palania związki iaki twozą z wodą, zawatą w powietzu, kwa iakowy powodujący intenywną koozję tzw. nikotempeatuową powiezchni omywanych pzez gazy palinowe. Koozję tę można częściowo zneutalizować pzez toowanie olejów cylindowych ze pecjalnymi dodatkami alkalicznymi (tzw. wyoka liczba BN) Jedn. Olej napędowy Ga oil Dieel oil Light fuel oil Olej opałowy edium fuel oil Heavy fuel oil % 0-0,50,5 0,5- -,5,
31 Właściwości paliw cz. Zawatość pozotałości tałych (liczba Conadona) wkazuje na kłonność paliwa do twozenia tałych pozotałości podcza palania, co pzyja uzkodzeniom końcówek wtykiwaczy, pieścieni tłokowych itp Jedn. Olej napędowy Ga oil Dieel oil Light fuel oil Olej opałowy edium fuel oil Heavy fuel oil % 0-0,050,05 0,05-0,5 0,5 0,
32 Właściwości paliw cz. 5 Zawatość popiołu jet itotna bowiem działa on jako ścieniwo na pieścienie tłokowe, tuleje i zawoy, pzyja też ich wypalaniu zwłazcza, gdy wytępuje w nim duża zawatość wanadu i odu (tzw. koozja wyokotempeatuowa powyżej 600ºC); Jedn. Olej napędowy Ga oil Dieel oil Light fuel oil Olej opałowy edium fuel oil Heavy fuel oil % 0-0,0050,005 0,005-0,0 0,0 0,0-0,0 0,0 0,0-0,05 0,05 0,05-0, 0,
33 Właściwości paliw cz. 6 Liczba cetanowa okeśla zdolność paliwa do amozapłonu (patz zwłoka zapłonu). Silniki o n<00 ob./ min. ą na nią mało ważliwe, ale dla n> 00 ob./ min. LC 0 jet abolutnie niezbędna. LO 0 LC -zależność pzybliżona Jedn. Olej napędowy Ga oil Dieel oil Light fuel oil Olej opałowy edium fuel oil Heavy fuel oil
34 Właściwości paliw cz. 7 Watość opałowa nie zmienia ię zbytnio w zależności od odzaju paliwa Jedn. Olej napędowy Ga oil Dieel oil Light fuel oil Olej opałowy edium fuel oil Heavy fuel oil J/kg,7 3,,70,86,5
35 Właściwości paliw cz. 8 empeatua amozapłonu ºC empeatua zapłonu minimum 65 ºC Zatoowanie Jedn. Olej napędowy Ga oil Dieel oil Light fuel oil Olej opałowy edium fuel oil Heavy fuel oil zybkoobotowe Śednioobotowe wolnoobotowe
36 eoetyczne zapotzebowanie powietza do palania 0 0, c h kmol kg powietza paliwa Dla pzeciętnego kładu paliwa 0 0,5 kmol kg powietza paliwa dla powietza 9 kg kmol kg powietza kg powietza µ p 8, 97 m0, 5 kmol powietza kg paliwa
37 Wpółczynnik nadmiau powietza pzy palaniu cz. Definicja: λ ml m g ml m p g 0 p 0 l Watości:,8, wolnoobotowe,6,0 śednioobotowe,5,8 zybkoobotowe Dawka paliwa na cykl: g p F tp S tp ρ p η tp k h η tp S k η tp tp h F tp f ρ ( n) p
38 Wpółczynnik nadmiau powietza pzy palaniu cz. Zależność λ od paametów pacy λ V k m0 3 tałt dla paliwa i ilnika η h v ρ η d tp Spadek λ pzy tałej natawie h może być wywołane pzez: -padek η v (np. goze pzepłukanie), -padek ρ d (np. goze chłodzenie powiezchni), ( n) ( η wplywa nieznacznie bo η f, zaś pzy h idem, n idem) tp tp
39 eoetyczny wpółczynnik pzemiany molekulanej Ilość powietza pzed palaniem odnieiona do kg paliwa l g l p kmol kg powietza paliwa Pzyot ilości gazów uzykanych ze palania h 0 kmol pal. l 3 kg paliwa eoetyczny wpółczynnik pzemiany molekulanej (zakłada obecność tylko czytego powietza w palaniu) µ t l l l
40 Rzeczywity wpółczynnik pzemiany molekulanej Rzeczywita ilość gazów pzed palaniem odnieiona do kg paliwa Rzeczywita ilość gazów po palaniu odnieiona do kg paliwa Rzeczywity wpółczynnik pzemiany molekulanej (uwzględnia obecność palin z popzedniego cyklu) ( ) l l γ ( ) t l l l γ µ t γ γ µ µ
41 Równanie palania cz. Potać ogólna (bilan enegii dla kg paliwa) U Q U L 3 pzed palaniem po palaniu
42 Równanie palania cz. Enegia wewnętzna pzed palaniem ( ) v l l v v v v l c U c c ale c c U γ λ λ γ α ; ; :. 0 0
43 Równanie palania cz. 3 Enegia wewnętzna po palaniu ( ) ( ) ( ) v l v c U ale c U 0 0 :. γ λ µ γ λ µ γ µ µ β
44 Równanie palania cz. Enegia dopowadzona w paliwie w czaie palania γ. Q ξ W d
45 Równanie palania cz. 5 Enegia (paca) użyteczna wytwozona w czaie palania ( )( ) R L R V p R V p p p ale V p V p L γ ϕ µ λ ϕ δ ; ; :
46 Równanie palania cz. 6 Potać zczegółowa ównania palania ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) K kmol J R c W R c R c W R c R R c W c R c W c p d v v d v v d v v d v 8,3 : / µ γ λ ξ ϕ µ γ λ ξ ϕ ϕ µ µ γ λ ξ γ λ γ ϕ µ λ γ λ µ ξ γ λ
47 Równanie palania cz. 7 Ciepło właściwe powietza na początku palania (pzy Vcont.) Ciepło właściwe czytych palin na końcu palania (pzy Vcont.) Ciepło właściwe miezaniny powietza i palin na końcu palania (pzy Vcont.) Ciepło właściwe miezaniny powietza i palin na końcu palania (pzy pcont.) K kmol J c v,5 97 K kmol J c v 3, ( ) ( )( ) ( ) ( ) obliczeniowa potać b a c K kmol J c c c v v v v 0,06,06 γ λ γ λ γ ( ) potać obliczeniowa b c c K kmol J R c c p v p
48 Równanie palania cz. 8 Potać obliczeniowa A B C 0 B B A AC K
49 Pzebieg palania cz.
50 Pzebieg palania cz.
51 Pzebieg palania cz. 3
PORÓWNANIE WYKRESU INDYKATOROWEGO I TEORETYCZNEGO - PRZYKŁADOWY TOK OBLICZEŃ
1 PORÓWNANIE WYKRESU INDYKATOROWEGO I TEORETYCZNEGO - PRZYKŁADOWY TOK OBLICZEŃ Dane silnika: Perkins 1104C-44T Stopień sprężania : ε = 19,3 ε 19,3 Średnica cylindra : D = 105 mm D [m] 0,105 Skok tłoka
WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.
WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,
Silniki tłokowe. Dr inŝ. Robert JAKUBOWSKI
Silniki tłokowe Dr inŝ. Robert JAKUBOWSKI Podstawowe typy silnika tłokowego ze względu na zasadę działania Silnik czterosuwowy Silnik dwusuwowy Silnik z wirującym tłokiem silnik Wankla Zasada pracy silnika
Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers
Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia
Podstawowe układy pracy tranzystora bipolarnego
L A O A T O I U M P O D T A W L K T O N I K I I M T O L O G I I Podtawowe układy pacy tanzytoa bipolanego Ćwiczenie opacował Jacek Jakuz 4A. Wtęp Ćwiczenie umożliwia pomia i poównanie paametów podtawowych
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci
Wykład 11. Pompa ciepła - uzupełnienie II Zasada Termodynamiki Entropia w ujęciu termodynamicznym c.d. Entropia w ujęciu statystycznym
Wykład 11 Pompa ciepła - uzupełnienie II Zasada emodynamiki Entopia w ujęciu temodynamicznym c.d. Entopia w ujęciu statystycznym W. Dominik Wydział Fizyki UW emodynamika 2018/2019 1/30 G Pompa cieplna
RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w
RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności
Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.
Temat 8 Ogólny opis konstkcji 06 8. Wstęp Istnieje wiele typów i ozwiązań konstkcyjnych. Mniejsza wiedza dotycząca zjawisk pzepływowych Niski koszt podkcji Kótki cykl pojektowy Solidna konstkcja pod względem
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego
Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane,
Mikrosilniki synchroniczne
Mikoilniki ynchoniczne Specyfika eoii: R >0 z uwagi na ounkowo dużą waość ezyancji ojana nie wolno jej pomijać w analizie zjawik mikomazyny ynchonicznej. Zwykle wykozyywane ą óżne odzaje momeny ynchonicznego:
WZORY Z FIZYKI POZNANE W GIMNAZJUM
WZORY Z IZYKI POZNANE W GIMNAZJM. CięŜa ciała. g g g g atość cięŝau ciała N, aa ciała kg, g tały ółczyik zay zyiezeie zieki, N g 0 0 kg g. Gętość ubtacji. getoc aa objetoc ρ V Jedotką gętości kładzie SI
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Parametry otoczenia p H, T H Spręż sprężarki π S, Temperatura gazów przed turbiną T 3 Model obliczeń
PRĘDKOŚCI KOSMICZNE OPRACOWANIE
PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza
GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
5. Ogólne zasady projektowania układów regulacji
5. Ogólne zaay projektowania ukłaów regulacji Projektowanie ukłaów to proce złożony, gzie wyróżniamy fazy: analizę zaania, projekt wtępny, ientyfikację moelu ukłau regulacji, analizę właściwości ukłau
Instrukcja do ćwiczeń laboratoryjnych. Sterowanie dławieniowe-szeregowe prędkością ruchu odbiornika hydraulicznego
Intrukcja do ćwiczeń laboratoryjnych Sterowanie dławieniowe-zeregowe prędkością ruchu odbiornika hydraulicznego Wtęp teoretyczny Prędkość ilnika hydrotatycznego lub iłownika zależy od kierowanego do niego
5. Równanie Bernoulliego dla przepływu płynów rzeczywistych
5. Równanie Bernoulliego dla przepływu płynów rzeczywitych Protota równania Bernoulliego prawia że toowane jet ono również dla przepływu płynu lepkiego, io że w ty przypadku wzytkie przeiany energii ą
Koszt produkcji energii napędowej dla różnych sposobów jej wytwarzania. autor: Jacek Skalmierski
Koszt produkcji energii napędowej dla różnych sposobów jej wytwarzania autor: Jacek Skalmierski Plan referatu Prognozowane koszty produkcji energii elektrycznej, Koszt produkcji energii napędowej opartej
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016
EUROELEKTRA Ogólnopolka Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok zkolny 015/016 Zadania z elektrotechniki na zawody III topnia Rozwiązania Intrukcja dla zdającego 1. Cza trwania zawodów: 10 minut..
PRZYCZYNY I SKUTKI ZMIENNOŚCI PARAMETRÓW MASZYN INDUKCYJNYCH
LV SESJA STUENCKICH KÓŁ NAUKOWYCH PRZYCZYNY I SKUTKI ZMIENNOŚCI PARAMETRÓW MASZYN INUKCYJNYCH Wykonali: Michał Góki, V ok Elektotechnika Maciej Boba, V ok Elektotechnika Oiekun naukowy efeatu: d hab. inż.
Obiegi gazowe w maszynach cieplnych
OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost
Bilans sił agregatu ciągnikowego. Bilansu mocy ciągnika rolniczego
+ k Bilans sił agegat ciągnikowego > f k > fp + ft + x M k G c x y fp k ft Y p Y k e P e P m P σ P f P β P a P P p Bilans mocy ciągnika olniczego P + P + P + P Pm + Pσ + Pf + Pβ - moc efektywna silnika
Przejmowanie ciepła przy konwekcji swobodnej w przestrzeni ograniczonej (szczeliny)
inż. Michał Stzeszewski 0-006 Pzejowanie ciepła pzy konwekcji swobonej w pzestzeni oganiczonej (szczeliny) Zaania o saozielnego ozwiązania v. 0.. powazenie celu uposzczenia achunkowego ozwiązania zjawiska
Projekt 2 studium wykonalności. 1. Wyznaczenie obciążenia powierzchni i obciążenia ciągu (mocy)
Niniejzy projekt kłada ię z dwóch części: Projekt 2 tudium wykonalności ) yznaczenia obciążenia powierzchni i obciążenia ciągu (mocy) przyzłego amolotu 2) Ozacowania koztów realizacji projektu. yznaczenie
PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r
PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda
POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej
PITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petochemii Instytut Inżynieii Mechanicznej w Płocku Zakład Apaatuy Pzemysłowej ABRATRIUM TERMDYNAMIKI Instukcja stanowiskowa Temat: Analiza spalin
MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów.
MODEL ODOWEDZ SCHEMAT OCENANA AKUSZA Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy makymalną liczbę punktów.. Amperomierz należy podłączyć zeregowo. Zadanie. Żaróweczki... Obliczenie
Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia. Zdolność do wykonywania pracy lub produkowania ciepła
Jak miezyć i jak liczyć efekty cieplne eakcji? Enegia Zdolność do wykonywania pacy lub podukowania ciepła Paca objętościowa paca = siła odległość 06_73 P = F A W = F h N m = J P = F A Aea = A ciśnienie
OCZYSZCZANIE POWIETRZA Z LOTNYCH ZWIĄZKÓW ORGANICZNYCH
DZIŁ HMIZN POLITHNIKI RSZSKIJ ZKŁD THNOLOGII NIORGNIZNJ I RMIKI Laboatoium PODST THNOLOGII HMIZNJ Instukcja do ćwiczenia pt. OZSZZNI POITRZ Z LOTNH ZIĄZKÓ ORGNIZNH Powadzący: d inŝ. ogdan Ulejczyk STĘP
MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów.
MODEL ODOWEDZ SCHEMAT OCENANA AKUSZA Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy makymalną liczbę punktów. Numer zadania Czynności unktacja Uwagi. Amperomierz należy podłączyć
l b sin π + k m - współczynnik przeliczeniowy (dla R i X ) r 5.2. Obliczenie parametrów schematu zastępczego mm - średnia długość
5.. Oiczenie petów cetu ztępczego 5... ezytncj jednej fzy uzwojeni tojn z N γ Cu ( α ϑ S c Cu z ( - śedni długość zwoju. π K ( d d - śedni długość p połączeni czołowego. K wpółczynnik wydłużeni połączeni
Maszyny Elektryczne i Transformatory st. st. sem. III (zima) 2012/2013
Kolokwium poprawkowe Wariant C azyny Elektryczne i Tranormatory t. t. em. III (zima) 01/013 azyna Aynchroniczna Trójazowy ilnik indukcyjny pierścieniowy ma natępujące dane znamionowe: P 13 kw n 147 or/min
Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny
Zadania do rozdziału 3. Zad.3.1. Rozważy klocek o aie kg ciągnięty wzdłuż gładkiej pozioej płazczyzny przez iłę P. Ile wynoi iła reakcji F N wywierana na klocek przez gładką powierzchnię? Oblicz iłę P,
STEROWANIE WG. ZASADY U/f = const
STEROWANIE WG. ZASADY U/f = cont Rozruch bezpośredni ilnika aynchronicznego (bez układu regulacji, odpowiedź na kok wartości zadanej napięcia zailania) Duży i niekontrolowany prąd przy rozruchu Ocylacje
Poradnik instalatora VITODENS 100-W
Poadnik instalatoa Vitodens 100-W, typ B1HA,, 6,5 do 35,0 kw Gazowy kocioł kondensacyjny, wiszący Wesja na gaz ziemny i płynny B1HA jednofunkcyjny 6,5 19,0 kw, 6,5 26,0 kw, 8,8 35 kw dwufunkcyjny 6,5 26,0
FIZYKA BUDOWLI. wilgoć w przegrodach budowlanych. przyczyny zawilgocenia przegród budowlanych
FIZYKA BUDOWLI zagadnienia cieplno-wilgotnościowe pzegód budowlanych 1 wilgoć w pzegodach budowlanych pzyczyny zawilgocenia pzegód budowlanych wilgoć technologiczna związana z pocesem wytwazania i podukcji
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Opracował Dr inż. Robert Jakubowski Parametry otoczenia p H, T H Spręż sprężarki, Temperatura gazów
23 PRĄD STAŁY. CZĘŚĆ 2
Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
Uwagi: LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie nr 16 MECHANIKA PĘKANIA. ZNORMALIZOWANY POMIAR ODPORNOŚCI MATERIAŁÓW NA PĘKANIE.
POLITECHNIKA KRAKOWSKA WYDZIAŁ MECHANZNY INSTYTUT MECHANIKI STOSOWANEJ Zakład Mechaniki Doświadczalnej i Biomechaniki Imię i nazwisko: N gupy: Zespół: Ocena: Uwagi: Rok ak.: Data ćwicz.: Podpis: LABORATORIUM
Matematyka ubezpieczeń majątkowych r.
Zadanie. W kolejnych okesach czasu t =,,3,... ubezpieczony, chaakteyzujący się paametem yzyka Λ, geneuje szkód. Dla danego Λ = λ zmienne N t N, N, N 3,... są waunkowo niezależne i mają (bzegowe) ozkłady
Zmiany zagęszczenia i osiadania gruntu niespoistego wywołane obciążeniem statycznym od fundamentu bezpośredniego
Zmiany zagęzczenia i oiadania gruntu niepoitego wywołane obciążeniem tatycznym od fundamentu bezpośredniego Dr inż. Tomaz Kozłowki Zachodniopomorki Uniwerytet Technologiczny w Szczecinie, Wydział Budownictwa
Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7
Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach: kołowym, pierścieniowym, protokątnym 7 Wprowadzenie Do obiczenia naprężeń tycznych wywołanych momentem kręcającym w przekrojach
Energia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I. Zadania zamknięte. Zadania otwarte
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I Jeżeli zdający rozwiąże zadanie inną, merytorycznie poprawną metodą, to za rozwiązanie otrzymuje makymalną liczbę punktów. Zadania zamknięte
TECHNIKI INFORMATYCZNE W ODLEWNICTWIE
ECHNIKI INFORMAYCZNE W ODLEWNICWIE Janusz LELIO Paweł ŻAK Michał SZUCKI Faculty of Foundy Engineeing Depatment of Foundy Pocesses Engineeing AGH Univesity of Science and echnology Kakow Data ostatniej
PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
TERMODYNAMIKA FENOMENOLOGICZNA
TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N
Modelowanie zmienności i dokładność oszacowania jakości węgla brunatnego w złożu Bełchatów (pole Bełchatów)
Akademia Góniczo-Hutnicza, Kopalnia Węgla Bunatnego, Wydział Geologii, Geofizyki i Ochony śodowiska Bełchatów Wasztaty Gónicze 24 Jacek Mucha, Tadeusz Słomka, Wojciech Mastej, Tomasz Batuś Akademia Góniczo-Hutnicza,
15. STANOWISKOWE BADANIE MECHANIZMÓW HAMULCOWYCH Cel ćwiczenia Wprowadzenie
15. STANOWISKOWE BADANIE MECHANIZMÓW HAMULCOWYCH 15.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie na stanowisku podstawowyc zależności caakteyzującyc funkcjonowanie mecanizmu amulcowego w szczególności
Aerodynamika I Efekty lepkie w przepływach ściśliwych.
Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego
PRZENIKANIE W pzemyśle uch ciepła zachodzi ównocześnie dwoma lub tzema sposobami, najczęściej odbywa się pzez pzewodzenie i konwekcję. Mechanizm tanspotu ciepła łączący wymienione sposoby uchu ciepła nazywa
STANDARDY EMISJI ZANIECZYSZCZEŃ DO POWIETRZA Z PROCESÓW ENERGETYCZNEGO SPALANIA PALIW ANALIZA ZMIAN
STANISŁAW KIRSEK, JOANNA STUDENCKA STANDARDY EMISJI ZANIECZYSZCZEŃ DO POWIETRZA Z PROCESÓW ENERGETYCZNEGO SPALANIA PALIW ANALIZA ZMIAN THE STANDARDS OF AIR POLLUTION EMISSION FROM THE FUELS COMBUSTION
SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie
DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje
ZAGADNIENIE WYZNACZANIA PARAMETRÓW OBIEKTÓW ELEKTROMAGNETYCZNYCH W WARUNKACH ICH PRACY
Pace Nakowe Intytt Mazyn, Napędów i Pomiaów Elektycznych N 6 Politechniki Wocławkiej N 6 Stdia i Mateiały N 7 7 obiekt elektomagnetyczny, model zatępczy, wyznaczanie paametów Józef NOWAK, Jezy BAJOREK,
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów. Schemat punktowania zadań
1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczaowych ginazjów 0 tycznia 019 r. etap rejonowy Scheat punktowania zadań Makyalna liczba punktów 40. 85% 4pkt. Uwaga! 1. Za poprawne rozwiązanie zadania
FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii
FALE MECHANICZNE CD Gętość energii ruchu alowego otencjalnej W rzyadku al mechanicznych energia ali kłada ię z energii kinetycznej i energii Energia kinetyczna Energia kinetyczna małego elementu ośrodka
MAGISTERSKA PRACA DYPLOMOWA
POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT MASZYN, NAPĘDÓW I POMIARÓW ELEKTRYCZNYCH MAGISTERSKA PRACA DYPLOMOWA Układy teowania pędkością kątową ilników aynchonicznych w zeokim zakeie egulacji
Fizyka, technologia oraz modelowanie wzrostu kryształów
Fizyka, technologia oraz modelowanie wzrotu kryztałów Staniław Krukowki i Michał Lezczyńki Intytut Wyokich Ciśnień PAN 01-14 Warzawa, ul Sokołowka 9/37 tel: 88 80 44 e-mail: tach@unipre.waw.pl, mike@unipre.waw.pl
ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH
ĆWZENE 3 EZONANS W OBWODAH EEKTYZNYH el ćwiczenia: spawdzenie podstawowych właściwości szeegowego i ównoległego obwodu ezonansowego pzy wymuszeniu napięciem sinusoidalnym, zbadanie wpływu paametów obwodu
Wymagania edukacyjne Technologia napraw zespołów i podzespołów mechanicznych pojazdów samochodowych 723103
Wymagania edukacyjne PRZEDMIOT Technologia napraw zespołów i podzespołów mechanicznych pojazdów samochodowych KLASA II MPS NUMER PROGRAMU NAUCZANIA (ZAKRES) 723103 1. 2. Podstawowe wiadomości o ch spalinowych
Przejmowanie ciepła przy kondensacji pary
d iż. Michał Stzeszewski 004-01 Pzejowaie ciepła pzy kodesacji pay Zadaia do saodzielego ozwiązaia v. 0.9 1. powadzeie Jeżeli paa (asycoa lub pzegzaa) kotaktuje się z powiezchią o tepeatuze T s iższej
Kształty żłobków stojana
Kztałty żłobów tojana Kztałty żłobów winia: a), b), c) lati olewane Al. ) - i) lati lutowane z pętów Cu Wymiay żłoba oplowego Kąt zbieżności ściane żłoba: Śenica mniejza: = π + h )in in ( b Śenica więza:
Układ uśrednionych równań przetwornicy
Układ uśrednionych równań przetwornicy L C = d t v g t T d t v t T d v t T i g t T = d t i t T = d t i t T v t T R Układ jet nieliniowy, gdyż zawiera iloczyny wielkości zmiennych w czaie d i t T mnożenie
WRAŻLIWOŚĆ MODELU O STRUKTURZE UPROSZCZONEJ SPADKÓW PODCIŚNIENIA W KOLEKTORZE APARATU UDOJOWEGO
Poblemy Inżynieii Rolniczej n 2/2010 Maia Majkowka 1), Adam Kupczyk 2) Szkoła Główna Gopodatwa Wiejkiego w Wazawie 1) Wydział Zatoowań Infomatyki i Matematyki 2) Wydział Inżynieii Podukcji WRAŻLIWOŚĆ MODELU
TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku
TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak
OPTYMALIZACJA PRZETWARZANIA ENERGII DLA MAŁYCH ELEKTROWNI WODNYCH Z GENERATORAMI PRACUJĄCYMI ZE ZMIENNĄ PRĘDKOŚCIĄ OBROTOWĄ
Zezyty oblemowe Mazyny Elektyczne N 9/ Daiuz Bokowki, Tomaz Węgiel olitechnika Kakowka OTYMALZACJA RZETWARZANA ENERG DLA MAŁYC ELEKTROWN WODNYC Z GENERATORAM RACUJĄCYM ZE ZMENNĄ RĘDKOŚCĄ OBROTOWĄ ENERGY
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań
1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 10 marca 2017 r. zawody III topnia (finałowe) Schemat punktowania zadań Makymalna liczba punktów 60. 90% 5pkt. Uwaga! 1. Za poprawne rozwiązanie zadania
Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej
Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski
dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B
Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu
POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji
POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002 Wstęp. Ze względu
Widmo rozruchu silnika o zapłonie samoczynnym jako kryterium oceny warunków użytkowania samochodu Paweł Droździel
Widmo ozuchu silnika o zapłonie samoczynnym jako kyteium oceny waunków użytkowania samochodu Paweł Doździel Polskie Naukowo-Techniczne Towazystwo Eksploatacyjne Waszawa 9 Opiniodawcy: Vladimí Hlavňa Kzysztof
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH. Badanie wentylatora
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Badanie wentylatora Laboratorium Pomiarów Mazyn Cieplnych (PM-3) Opracował: Sprawdził: Zatwierdził:
Wykład 7: Przekazywanie energii elementy termodynamiki
Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne
Drobiną tą jest: A) proton B) neutron C) atom wodoru D) elektron
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Koiji Wojewódzkiego Konkuru Przediotowego z Fizyki Iię i nazwiko ucznia... Szkoła... Punkty
Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi
Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi STAN RÓWNOWAGI TERMODYNAMICZNEJ Jeżeli w całej swojej masie, we wszystkich punktach swojej objętości gaz ma jednakowe parametry:
G Sprawozdanie o mocy i produkcji energii elektrycznej i ciepła elektrowni (elektrociepłowni) przemysłowej. Nr turbozespołu zainstalowana
MINISTERSTWO GOSPODARKI pl. Trzech Krzyży 3/5, 00-507 Warszawa Nazwa i adres jednostki sprawozdawczej G 10.3 Sprawozdanie o mocy i produkcji energii elektrycznej i ciepła elektrowni (elektrociepłowni)
Elektrostatyka. + (proton) - (elektron)
lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością
1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej
1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością
TERMODYNAMIKA PROCESOWA. Wykład V
ERMODYNAMIKA PROCESOWA Wykład V Równania stanu substancji czystych Równanie stanu gazu doskonałego eoia stanów odpowiadających sobie Równania wiialne Pof. Antoni Kozioł, Wydział Chemiczny Politechniki
Państwowa Wyższa Szkoła Zawodowa w Koninie. Janusz Walczak
Państwowa Wyższa Szkoła Zawodowa w Koninie Janusz Walczak Te r m o d y n a m i k a t e c h n i c z n a Konin 2008 Tytuł Termodynamika techniczna Autor Janusz Walczak Recenzja naukowa dr hab. Janusz Wojtkowiak
MASZYNA ASYNCHRONICZNA 1. Oblicz sprawność silnika dla warunków znamionowych przy zadanej mocy strat i mocy znamionowej. Pmech
MAYA AYCHOCA. Oblcz pawość lka dla wauków zaoowych pzy zadaej ocy tat ocy zaoowej. ech η η el ech ech. Jak a podtawe ocy zaoowej zaoowej pędkośc oblcza ę zaoowy oet lka? η 60 60 η 9,55 η 3. Wyzacz pawość
3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?
1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii
Sterowanie jednorodnym ruchem pociągów na odcinku linii
Sterowanie jednorodnym ruchem pociągów na odcinku linii Miroław Wnuk 1. Wprowadzenie Na odcinku linii kolejowej pomiędzy kolejnymi pociągami itnieją odtępy blokowe, które zapewniają bezpieczne prowadzenie
Rozdział V WARSTWOWY MODEL ZNISZCZENIA POWŁOK W CZASIE PRZEMIANY WODA-LÓD. Wprowadzenie
6 Rozdział WARSTWOWY MODL ZNISZCZNIA POWŁOK W CZASI PRZMIANY WODA-LÓD Wpowadzenie Występujące po latach eksploatacji zniszczenia zewnętznych powłok i tynków budowli zabytkowych posiadają często typowo
KOOF Szczecin:
Źródło: III OLIMPID FIZYCZN (953/954). Stopień I, zadanie teoretyczne 4 Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Stefan Czarnecki: Olimpiady Fizyczne I IV. PZWS, Warzawa
Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m
TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA
Arkuz zawiera informacje prawnie cronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2017 Nazwa kwalifikacji: Organizacja i prowadzenie ekploatacji złóż metodą odkrywkową Oznaczenie kwalifikacji:
Filtry aktywne czasu ciągłego i dyskretnego
Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki czau ciągłego i dykretnego Wrocław 9 Politechnika Wrocławka Intytut Telekomunikacji, Teleinformatyki i Akutyki odzaje Ze względu
Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi
Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi STAN RÓWNOWAGI TERMODYNAMICZNEJ Jeżeli w całej swojej masie, we wszystkich punktach swojej objętości gaz ma jednakowe parametry:
00507 Praca i energia D
00507 Paca i enegia D Dane oobowe właściciela akuza 00507 Paca i enegia D Paca i moc mechaniczna. Enegia mechaniczna i jej kładniki. Zaada zachowania enegii mechanicznej. Zdezenia dokonale pęŝyte. ktualizacja
IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO
MODELOWANIE INśYNIERSKIE ISSN 896-77X 36,. 87-9, liwice 008 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO JÓZEF IERIEL, KRZYSZTOF KURC Katedra Mechaniki Stoowanej i Robotyki, Politechnika Rzezowka
EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU
Dr inż. Grzegorz Straż Intrukcja do ćwiczeń laboratoryjnych pt: EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU Wprowadzenie. Zalecenia dotyczące badań gruntów w edometrze: Zalecane topnie wywoływanego naprężenia:
Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza