0 WIELOMIANACH LOSOWYCH 1 WEWNĘTRZNEJ STOPIE ZWROTU INWESTYCJI
|
|
- Ksawery Zalewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Henryk Zawadzki 0 WIELOMIANACH LOSOWYCH 1 WEWNĘTRZNEJ STOPIE ZWROTU INWESTYCJI Wstęp Wewnętrzna stopa zwrotu inwestycji (Internal Rate o f Return - IRR) oraz jej modyfikacje (MIRR, ERR) są wykorzystywane w finansowych (dynamicznych) metodach oceny projektów inwestycyjnych [12]. Wyznaczanie IRR sprowadza się do rozwiązania ze względu na r równania: (1) lub równoważnego mu równania algebraicznego stopnia n, otrzymanego z (1) przez pomnożenie stronami przez (1 + r )", czyli równania: W (r) = CF0 (I + r f + CF,(1 + r)n~l CFnJ l + r) + CFn = 0 (2) W powyższych równaniach CF, (t = 0, 1,2,...,/?) oznaczają przepływy pieniężne w momencie t, a n jest zakładanym okresem eksploatacji inwestycji (czasem życia ekonomicznego projektu). W szczególności CF0 jest kosztem poniesionym na początku inwestycji. Zgodnie z konwencją przyjętą w finansach, przychody mają znak dodatni, a wydatki znak ujemny. W przypadku gdy strumień przepływów pieniężnych jest deterministyczny, dokładne lub przybliżone wartości wszystkich n pierwiastków równania (2) (zarówno rzeczywistych, jak i zespolonych) można wyznaczyć np. za pomocą programów komputerowych zwanych systemami algebry komputerowej (Computer Algebra Systems), m.in. takich jak: Derive, Maple, Mathcad, Matlab czy Mathematica [17]. Innym, bardziej złożonym problemem jest obliczanie IRR, gdy przepływy pieniężne CF, nie są deterministyczne, lecz są zmiennymi losowymi, zależnymi lub niezależnymi. Wielomian W jest wtedy losowym wielomianem algebraicznym, a równanie (2) - losowym równaniem algebraicznym. W przypadku
2 166 Henryk Zawadzki tym zarówno liczba pierwiastków rzeczywistych tego równania, jak i same pierwiastki są zmiennymi losowymi o rozkładach prawdopodobieństwa zależnych od rozkładów CF,. W opracowaniu przedstawimy niektóre fakty dotyczące algebraicznych wielomianów losowych oraz podamy prosty przykład wyznaczania rozkładu prawdopodobieństwa wewnętrznej stopy zwrotu w przypadku, gdy przepływy pieniężne są niezależnymi zmiennymi losowymi o rozkładzie jednostajnym. 1. O wielomianach losowych Wielomiany losowe, a w szczególności algebraiczne wielomiany losowe od dawna są obiektem badań matematyków1. Jednym z pierwszych problemów, którym się zajmowano, był problem wyznaczania wartości oczekiwanej E liczby rzeczywistych pierwiastków losowego równania algebraicznego n-tego stopnia. W latach 30., 40. i 50. XX w. Bloch i Pólya [2], Littlewood i Offord [13], Kac [14] oraz Erdös i Turan [7] badali asymptotyczne własności E, gdy współczynniki tych wielomianów są niezależnymi, rzeczywistymi zmiennymi losowymi o tym samym rozkładzie (m.in.: dwupunktowym, jednostajnym i normalnym o wartości oczekiwanej równej zero). Kac [14] otrzymał wzór na E w przypadku, gdy współczynniki wielomianu są niezależnymi zmiennymi losowymi o standardowym rozkładzie normalnym. Wzór ten, znany jako wzór Kaca, ma postać: -X <3 > Kac dowiódł również, że dla n oo: E ~ ( 2 /k ) ln n (4) Dowód wzoru (3) oraz mocniejszą wersję wzoru (4) można również znaleźć w pracy [6], Wyniki otrzymane przez wymienionych wyżej autorów zostały uogólnione na przypadek, gdy współczynniki wielomianów są niezależnymi zmiennymi losowymi o rozkładzie należącym do obszaru przyciągania rozkładu normalnego i rozkładu a-stabilnego [10; 15] oraz na przypadek, gdy współczynniki te są zmiennymi losowymi o wartościach zespolonych [11; 16]. W [16] uogólniono m.in. podany wyżej wzór Kaca i podano formułę na wartość oczekiwaną 1W ielom iany losowe pojawiły się w lalach 60. XIX w. pracach J.J. Sylvcslra (zob. [4]).
3 O WIELOMIANACH LOSOWYCH E[ vn (fi)] liczby pierwiastków (rzeczywistych lub zespolonych) losowego wielomianu algebraicznego //-tego stopnia znajdujących się w borelowskim podzbiorze f i płaszczyzny zespolonej. Warto podkreślić, żc chociaż współczynniki wielomianów są zmiennymi losowymi, pierwiastki wielomianów wysokich stopni nic są rozmieszczone na płaszczyźnie zespolonej w sposób bezładny, lecz koncentrują się w pierścieniu wokół okręgu jednostkowego z = 1 (rys. 1). Szerokość tego pierścienia zmierza do zera, gdy n > oo. Ponadto, przy n oo argumenty pierwiastków wielomianów mają rozkład jednostajny, w tym sensie, że z prawdopodobieństwem równym jeden: v n(9,(p) ( p - 9 lim., 2/r gdzie v ( 0, <p) oznacza liczbę tych pierwiastków wielomianu stopnia n, które spełniają warunek 6 < arg z < <p, gdzie O < 6 < ę < 2n. Pierwiastki rzeczywiste skupiają się natomiast w pobliżu liczb ±1. Odrębnym problemem jest wyznaczanie rozkładu prawdopodobieństwa pierwiastków losowych wielomianów algebraicznych. Prac na ten temat jest niewiele. Do najwcześniejszych należy [9], w której wyznaczono warunkowe gęstości rozkładów prawdopodobieństwa pierwiastków losowego równania kwadratowego, w którym parametry są ciągłymi losowymi (zależnymi lub niezależnymi). W [3], korzystając ze wzorów Viete a, wyprowadzono wzór na gęstość zmiennej losowej (z/, z2... z ) (z, oznaczają pierwiastki wielomianu) przy założeniu, że części rzeczywiste i zespolone współczynników ak (k = O,..., ń) wielomianu są niezależnymi zmiennymi losowymi o rozkładzie N (0,c k).
4 168 Henryk Zawadzki Im (z) - 1 i.* J Re (z) -0.5 : - ł Rys. 1. Rozmieszczenie pierwiastków losowego wielomianu stopnia «= z niezależnymi współczynnikami o standardowym rozkładzie normalnym Innym teoretycznym zagadnieniom związanym z wielomianami losowymi (nie tylko algebraicznymi) są poświęcone m.in. monografie [1] i [8]. 2. Wewnętrzna stopa zwrotu w przypadku losowych przepływów pieniężnych Rozważmy projekt, w którym nakłady inwestycyjne są deterministyczne i równe CF0 = - 1, natomiast przewidywane wpływy (przychody netto) CF, i CF2 w kolejnych dwóch latach są niezależnymi zmiennymi losowymi o rozkładzie jednostajnym. Niech CF/ ma rozkład jednostajny w przedziale [0.8, 1.2], a CF2 - rozkład jednostajny w przedziale [0.5, 1.5]. IRR jest (dodatnim) rozwiązaniem losowego równania kwadratowego: r 2 + (2 - a)r + (1 - a - b ) = 0
5 O WIELOMIANACH LOSOWYCH w którym dla uproszczenia zapisu przyjęto oznaczenia CFt = a oraz CF2 = b. Gdy wyróżnik tego równania będzie dodatni, czyli gdy zajdzie zdarzenie losowe A = ćj"+4fe>0 równanie to będzie miało dwa pierwiastki rzeczywiste: Łatwo sprawdzić, że dla niezależnych zmiennych losowych a i b o podanych wyżej rozkładach: oraz: P { - ( y [6 6 )< r2 < ( - 4 -t- Vl86)} = 1 Wzory na dystrybuantę i gęstość zmiennych losowych r, i r2 wyprowadzono elementarnymi metodami w [18]. W szczególności funkcja gęstości g zmiennej losowej r2 = IRR wyraża się wzorem:
6 170 Henryk Zawadzki Wykres funkcji gęstości pokazano na rys. 2. g(x) Rys. 2. Wykres funkcji gęstości zmiennej losowej [RR Wartość oczekiwana i wariancja zmiennej losowej IRR wynoszą odpowiednio2: * E(IRR) * oraz: D\IR R )« Dla porównania, za pomocą programu Mathematica obliczono wspomniane wyżej parametry zmiennej losowej IRR, symulując m = przepływów CFi i CF? o podanych wyżej rozkładach prawdopodobieństwa. Wartość oczekiwana i wariancja obliczone na podstawie otrzymanej próby były równe E(IRR) ~ i D\lR R ) * Na rys. 3 pokazano otrzymany w wyniku przeprowadzonej symulacji histogram (por. rys. 2). : Za pom ocą program u..m alhem atica' m ożna obliczyć dokładne w artości E(IRR) oraz D :(IRR). Sa one jednak bezużyteczne, gdyż sa liczbami niew ym iernym i o bardzo skom plikowanej i mało czytelnej postaci.
7 O WIELOMIANACH LOSOWYCH u.5 Rys. 3. Histogram dla IRR otrzymany w wyniku symulacji przepływów C F t i C F 2 o rozkładach jednostajnych odpowiednio w przedziałach [0.8, 1.2] i [0.5, 1.5] Uwagi końcowe Gdy przepływy pieniężne CF, (i = 1,..., n) są ciągłymi zmiennymi losowymi o nieidentycznych rozkładach, wyprowadzenie metodami analitycznymi wzorów na gęstość IRR dla n > 3 jest zadaniem bardzo złożonym. Nawet w szczególnym przypadku, gdy mamy gwarancję, że równanie (1) ma dokładnie jeden pierwiastek dodatni (tj. istnieje jedna wewnętrzna stopa zwrotu)3, otrzymanie wspomnianych wzorów wymagałoby obliczania całek n-krotnych. Rozsądną alternatywą wydają się zatem metody symulacyjne, za pomocą których można wyznaczyć nie tylko parametry zmiennej losowej IRR, ale również jej histogram. Na jego podstawie można następnie próbować estymować funkcję gęstości, stosując jedną z metod opisanych np. w [5]. Literatura 1. Bharucha-Reid A.T., Sambantham M.: Random Polynomials. Academic Press. Orlando, FL Bloch A., Pólya G.: On the Roots o f Certain Algebraic Equations. Proc. London Mat. Soc. 1932, 33, pp Bogomolny E., Bohigas O., LeboeufP.: Quantum Chaotic Dynamics and Random Polynomials. Journal of Statistical Physics 1996, 85, pp Jesi ink up. wiodv. gdv n jest nieparzyste i w cirigu (C7\) występuje tylko jedna zmiana znaku.
8 172 Henryk Zawadzki 4. Denibo A., Poonen B., Shao Q., Zeitouni O.: Random Polynomials Having Few or No Real Zeros. Journal of the American Mathematical Society 2002, No 4, Vol. 15, pp Domański Cz., Pruska K.: Nieklasyczne m etody statystyczne. Polskie Wydawnictwo Ekonomiczne, Warszawa Edelman A., KostlanE.: How Many Zeros o f a Random Polynomial Are Real? Bulletin (New Series) of the American Mathematical Society 1995, Vol. 32,(1), pp Erdös P., Turan P.: On the Distributions o f Roots o f Polynomials. Annals o f Mathematics 1950, (51), pp FarahmandB.: Topics in Random Polynomials. Pitman Research Notes in Mathematics. Series 393. Addison Wesley Longman Ltd., Harlow Hamblen J.W.: Distribution o f Roots o f Quadratic Equations with Random Coefficients. Annals of Mathematical Statistics 1956, (27), pp Ibragimov I.A., Maslova N.B.: The Mean Number o f Real Zeros o f Random Polynomials I. Coefficients with Zero Mean. Theor. Probability Appl. 1971, 16, pp Ibragimov I.A., Zeitouni O.: On Roots o f Random Polynomials. Trans, o f the American Mathematical Society 1997, 349, pp Jajuga K.: Zarządzanie kapitałem. AE, Wroclaw Littlewood J.E., Offord A.C.: On the Number o f Real Roots o f a Random Algebraic Equation I. Journal o f the London Math. Soc. 1938, 13, pp Kac M.: On the Average Number o f Real Roots o f a Random Algebraic Equation. Bulletin of the American Mathematical Society 1943, (49), pp Maslova N.B.: On the Distribution o f the Real Roots o f a Random A lgebraic Equation. Teoria Veroyatn. i Primenenia 1974, 19, s Shepp L.A., Vanderbei R.J.: The Complex Zeros o f Random Polynomials. Trans, o f the American Mathematical Society 1995, 347, pp Zawadzki H.: Mathematica " w matem atyce finansowej. Obliczanie wewnętrznej stopy zwrotu inwestycji. Zeszyty Naukowe AE, nr 31, Katowice 2004, s Zawadzki H.: Matematyczne aspekty obliczania wewnętrznej stopy zwrotu. Zeszyty Naukowe US, nr 389 (Finanse - Rynki finansowe - Ubezpieczenia, nr 2), Szczecin 2004, s
9 O WIELOMIANACH LOSOWYCH ON RANDOM POLYNOMIALS AND INTERNAL RATE OF RETURN Summary In this paper the author presents some basic facts about random algebraic polynomials and formulates the problem o f calculation o f probability distribution o f Internal Rate o f Return when cash flows are random variables. Considerations are illustrated with an example in which the distribution o f IRR is calculated both theoretically and by simulation for the independent and uniformly distributed cash flows.
Matematyka finansowa - 4. P t n 1 1 r. (Gdy P t 0 0, P t 1 0,...,P t N 0, to przyjmujemy umownie i P. Gdy t n kn. do równania definiującego.
Matematyka finansowa - 4 Przepływy pieniężne - 2 Wewnętrzna stopa zwrotu Definicja Wewnętrzna stopa zwrotu (IRR-Internal Rate of Return) dla strumienia przepływów pieniężnych P P t,p t, P t 2,...,P t w
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
STOCHASTYCZNY MODEL BEZPIECZEŃSTWA OBIEKTU W PROCESIE EKSPLOATACJI
1-2011 PROBLEMY EKSPLOATACJI 89 Franciszek GRABSKI Akademia Marynarki Wojennej, Gdynia STOCHASTYCZNY MODEL BEZPIECZEŃSTWA OBIEKTU W PROCESIE EKSPLOATACJI Słowa kluczowe Bezpieczeństwo, procesy semimarkowskie,
x v m 1 stopę zwrotu otrzymujemy równanie
Matematyka finansowa i ubezpieczeniowa - 4 Przepływy pienięŝne - 2 Wewnętrzna stopa zwrotu Definicja Wewnętrzna stopa zwrotu (IRR-Internal Rate of Return) dla strumienia przepływów pienięŝnych P Pt, Pt,
Wynik pomiaru jako zmienna losowa
Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Zmienne ciągłe i dyskretne Funkcja gęstości i dystrybuanta Wartość oczekiwana Momenty rozkładów Odchylenie standardowe Estymator zmiennej
Równania wielomianowe
Instytut Matematyki Uniwersytetu Jagiellońskiego 20 marca 2009 Kraków Równanie z jedną niewiadomą Wielomian jednej zmiennej to wyrażenie postaci P(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, gdzie współczynniki
ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Seweryn MAZURKIEWICZ* Janusz WALCZAK* ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU W artykule rozpatrzono problem
III. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych
ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR Wojciech Zieliński Katedra Ekonometrii i Statystyki SGGW Nowoursynowska 159, PL-02-767 Warszawa wojtek.zielinski@statystyka.info
O geometrii semialgebraicznej
Inauguracja roku akademickiego 2018/2019 na Wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego O geometrii semialgebraicznej Stanisław Spodzieja Łódź, 28 września 2018 Wstęp Rozwiązywanie równań
Wielomiany podstawowe wiadomości
Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
5. Analiza dyskryminacyjna: FLD, LDA, QDA
Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną
Ekonomika w Przedsiębiorstwach Transportu Morskiego wykład 10 MSTiL (II stopień)
dr Adam Salomon Ekonomika w Przedsiębiorstwach Transportu Morskiego wykład 10 MSTiL (II stopień) EwPTM program wykładu 10. Dynamiczne metody szacowania opłacalności projektów inwestycyjnych w transporcie
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r.
Matematyka Stosowana na Politechnice Wrocławskiej Komitet Matematyki PAN, luty 2017 r. Historia kierunku Matematyka Stosowana utworzona w 2012 r. na WPPT (zespół z Centrum im. Hugona Steinhausa) studia
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski
Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +
( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x
Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Wielomiany. dr Tadeusz Werbiński. Teoria
Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych
MODEL RACHUNKU OPERATORÓW DLA RÓŻ NICY WSTECZNEJ PRZY PODSTAWACH
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LIV NR 1 (192) 2013 Hubert Wysocki Akademia Marynarki Wojennej Wydział Mechaniczno-Elektryczny, Katedra Matematyki i Fizyki 81-103 Gdynia, ul. J. Śmidowicza
Zarządzanie Projektami Inwestycyjnymi
Zarządzanie Projektami Inwestycyjnymi mgr Magdalena Marczewska TiMO (Zakład Teorii i Metod Organizacji) Wydział Zarządzania Uniwersytetu Warszawskiego mmarczewska@wz.uw.edu.pl Poprzednie zajęcia Założenia
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział
Dynamiczne metody oceny opłacalności inwestycji tonażowych
Dynamiczne metody oceny opłacalności inwestycji tonażowych Dynamiczne formuły oceny opłacalności inwestycji tonażowych są oparte na założeniu zmiennej (malejącej z upływem czasu) wartości pieniądza. Im
Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 10 MSTiL niestacjonarne (II stopień)
dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 10 MSTiL niestacjonarne (II stopień) program wykładu 10. Dynamiczne metody szacowania opłacalności projektów inwestycyjnych
Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania
Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje
System finansowy gospodarki Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje Krzywa rentowności (dochodowości) Yield Curve Krzywa ta jest graficznym przedstawieniem
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
MODELOWANIE ZMIENNOŚCI CEN AKCJI MODEL ADDYTYWNY MODEL MULTIPLIKATYWNY
MODELOWANIE ZMIENNOŚCI CEN AKCJI MODEL ADDYTYWNY MODEL MULTIPLIKATYWNY Modele zmienności aktywów z czasem dyskretnym / Model addytywny Przyjmijmy następujące oznaczenia: S(0) - cena początkowa akcji S(k)
PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH
PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH ( Na przykładzie POWERSIM) M. Berndt-Schreiber 1 Plan Zasady modelowania Obiekty symbole graficzne Dyskretyzacja modelowania Predefiniowane
dr Danuta Czekaj
dr Danuta Czekaj dj.czekaj@gmail.com POLITYKA INWESTYCYJNA W HOTELARSTWIE PIH TiR_II_ST3_ZwHiG WYKŁAD_ E_LEARNING 2 GODZINY TEMAT Dynamiczne metody badania opłacalności inwestycji w hotelarstwie 08. 12.
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH
Mariusz Próchniak Katedra Ekonomii II, SGH PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Ekonomia menedżerska 1 2 Wartość przyszła (FV future value) r roczna stopa procentowa B kwota pieniędzy, którą
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
Wielomiany podstawowe wiadomości
Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s) = s n + 1 s n 1 ++a 1 s+a 0, 1) gdzie n N, a i R i = 0,,n), 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i i = 0,,n)
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.
1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.
Wstęp do analizy matematycznej
Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
XI Konferencja Metody Ilościowe w Badaniach Ekonomicznych
Rafał M. Łochowski Szkoła Główna Handlowa w Warszawie O górnym ograniczeniu zysku ze strategii handlowej opartej na kointegracji XI Konferencja Metody Ilościowe w Badaniach Ekonomicznych Zależność kointegracyjna
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
OCENA EFEKTYWNOŚCI INWESTYCJI. Jerzy T. Skrzypek
OCENA EFEKTYWNOŚCI INWESTYCJI Jerzy T. Skrzypek 1 2 3 4 5 6 7 8 Analiza płynności Analiza rentowności Analiza zadłużenia Analiza sprawności działania Analiza majątku i źródeł finansowania Ocena efektywności
Zmienne losowe. Statystyka w 3
Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie
ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
Metody niedyskontowe. Metody dyskontowe
Metody oceny projektów inwestycyjnych TEORIA DECYZJE DŁUGOOKRESOWE Budżetowanie kapitałów to proces, który ma za zadanie określenie potrzeb inwestycyjnych przedsiębiorstwa. Jest to proces identyfikacji
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku
Zadania o numerze 4 z zestawów licencjat 2014.
Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
3a. Wstęp: Elementarne równania i nierówności
3a. Wstęp: Elementarne równania i nierówności Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 Grzegorz Kosiorowski (Uniwersytet Ekonomiczny 3a. Wstęp: w Krakowie) Elementarne równania
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego
6. Zmienne losowe typu ciagłego (2.04.2007) Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją ciągłą; proste x = a, x = b, a < b, oś OX
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Przekształcenia całkowe. Wykład 1
Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie
Efektywność Projektów Inwestycyjnych. 1. Mierniki opłacalności projektów inwestycyjnych Metoda Wartości Bieżącej Netto - NPV
Efektywność Projektów Inwestycyjnych Jednym z najczęściej modelowanych zjawisk przy użyciu arkusza kalkulacyjnego jest opłacalność przedsięwzięcia inwestycyjnego. Skuteczność arkusza kalkulacyjnego w omawianym
Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty. Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu
Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu Plan prezentacji 1. Opis metody wyceny opcji rzeczywistej
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,
Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,
b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań
III. STRUKTURA I FORMA EGZAMINU
III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań
ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI
Budownictwo 18 Mariusz Poński ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI 1. Metody transformacji całkowych Najczęściej spotykaną metodą rozwiązywania
Praca domowa - seria 2
Praca domowa - seria 0 listopada 01 Zadanie 1. Zaznacz na płaszczyźnie zespolonej zbiór liczb spełniających nierówność: A = {z C : i z < Im(z)}. Rozwiązanie 1 Niech z = a + ib, gdzie a, b R. Wtedy z =
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność