Rozdział 1. Pierwsze kroki w MATLAB-ie Rozdział 2. Grafika w MATLAB-ie Wykresy dwu- i trójwymiarowe 25 Wykorzystanie gotowych rysunków 36
|
|
- Adam Mazurkiewicz
- 8 lat temu
- Przeglądów:
Transkrypt
1 Spis treści Wstęp... 5 Rozdział 1. Pierwsze kroki w MATLAB-ie... 7 Rozdział 2. Grafika w MATLAB-ie Wykresy dwu- i trójwymiarowe 25 Wykorzystanie gotowych rysunków 36 Rozdział 3. Matematyka i wyrażenia logiczne...40 Funkcje i operatory 40 Relacje i wyrażenia logiczne 45 Rozdział 4. Programowanie...48 M-pliki skryptowe i funkcyjne 48 Rozdział 5. Macierze, tablice i łańcuchy Macierze i tablice 67 Macierze rzadkie 71 Łańcuchy i tablice znakowe 75 Tablice wielowymiarowe 77 Tablice komórkowe 79 Rozdział 6. Struktury, klasy i obiekty Struktury 81 Programowanie obiektowo zorientowane 82 Klasy i obiekty 82 3
2 Rozdział 7. Grafika obiektowa Hierarchia obiektów grafiki MATLAB-a 88 Interfejs graficzny użytkownika (GUI) 89 Parametry obiektów Handle Graphics 93 Rozdział 8. Metody numeryczne Numeryczna algebra liniowa 101 Równania różniczkowe zwyczajne i cząstkowe 106 Analiza funkcji 115 Rozdział 9. Rozszerzenia MATLAB-a Rozdział 10. Simulink pakiet do symulacji Biblioteki bloków 130 Przygotowanie modelu i symulacja 141 Rozdział 11. Środowisko pakietu MATLAB Elementy rozszerzające środowisko MATLAB-a 153 MATLAB w Internecie 167 Spis literatury Skorowidz Spis treści
3 Rozdział 5. Macierze, tablice i łańcuchy Tworzenie macierzy i wektorów z użyciem funkcji i operatora (:) oraz sposoby usuwania i przemieszczania kolumn oraz wierszy przedstawiono w rozdziale 1. Pierwsze kroki w MATLAB-ie. Funkcje zdefiniowane dla macierzy pełnych i tablic mogą być stosowane dla macierzy rzadkich jeśli nie prowadzi to do fałszywych wyników. Przykładowo, przy obliczaniu funkcji cosinus nie jest dopuszczalne pominięcie bliskich zeru elementów macierzy, gdyż cos(0) = 1, a nie zero. Dodatkowe informacje można uzyskać, wykonując polecenia: help elmat, help arith, help slash, help ctranspose, help kron i inne. Macierze i tablice Operacje macierzowe i tablicowe W MATLAB-ie wykonuje się dwa rodzaje operacji na wektorach i macierzach. Operacje macierzowe (ang. matrix operation) są określone regułami algebry liniowej. Operacje tablicowe (ang. array operation) to inne operacje wykonywane na elementach macierzy (tabela 5.1). Iloczyn X Y to operacja mnożenia zgodna z zasadami rachunku macierzowego. Mnożenie macierzowe można wykonać, gdy liczba kolumn macierzy X jest równa liczbie wierszy macierzy Y lub gdy jeden z czynników jest wartością skalarną. Poprzedzenie operatora mnożenia, dzielenia lub potęgowania kropką (notacja kropkowa) powoduje zmianę operacji macierzowej na tablicową, jak w prawej kolumnie tabeli 5.1. Taki sposób 67
4 Tabela 5.1. Operacje macierzowe i tablicowe Symbol operacji macierzowej Nazwa operacji Symbol operacji tablicowej + dodawanie + odejmowanie * mnożenie.* ^ potęgowanie. ^ / dzielenie prawostronne./ n dzielenie lewostronne.n ' sprzężenie macierzy ' ' transpozycja macierzy ' kron iloczyn tensorowy Kroneckera zapisu umożliwia niejawne indeksowanie elementów wektora lub macierzy i wykonanie operacji dla elementów o tych samych indeksach jak opisano wyżej w przypadku mnożenia tablicowego. Iloczyn z kropką X. Y to operacja tablicowa. Realizuje ona mnożenie elementów wektorów lub macierzy o tych samych indeksach (X(i, j) Y(i, j)). Operacja ta jest wykonywana, jeśli rozmiar X i Y jest taki sam lub gdy jeden z czynników jest skalarem. Odmienne działanie operatorów sprzężenia i transponowania macierzy ujawnia się jedynie dla macierzy lub wektorów zawierających wartości zespolone. Funkcje do generowania macierzy accumarray wypełnia wskazane indeksami elementy tablicy wartościami, które pobiera z zadanego wektora. Powtórzenie indeksów powoduje akumulację wartości 68 MATLAB. Leksykon kieszonkowy
5 : operator (:) tworzy wektor lub macierz o równomiernie rozłożonych wartościach compan diag eye freqspace gallery hadamard hankel hilb invhilb macierz stowarzyszona wielomianu umieszcza (lub odczytuje) elementy na przekątnej lub paraleli macierzy macierz jednostkowa, jedynki na przekątnej wektor lub macierz o równomiernie rozłożonych wartościach częstotliwości macierze testowe macierz Hadamarda macierz Hankela macierz Hilberta odwrotna macierz Hilberta linspace wektor o wartościach rozłożonych równomiernie logspace wektor o wartościach rozłożonych logarytmicznie magic kwadrat magiczny meshgrid tablica dla wykresów trójwymiarowych (siatkowych) ones macierz o elementach równych 1 pascal macierz Pascala rand macierz losowa o rozkładzie (rozłożeniu) równomiernym randn macierz losowa o rozkładzie (rozłożeniu) normalnym repmap(a,m,n) tworzenie dużej macierzy zawierającej n m kopii A Rozdział 5. Macierze, tablice i łańcuchy 69
6 rosser toeplitz vander wilkinson zeros macierz 8 8 do testowania algorytmów do obliczania wartości własnych macierz Toeplitza macierz Vandermonde'a macierz do testowania algorytmów do obliczania wartości własnych macierz z elementami zerowymi Więcej informacji podaje help elmat. Przykład tworzenia macierzy dwupasmowej (przekątna i równoległa do niej) A = diag([1:3],-2) +diag([5:-1:1],0) Informacje o tablicach size length ndims numel disp wymiar tablicy długość wektora lub najdłuższego boku tablicy liczba wymiarów tablicy liczba elementów tablicy wyświetlenie macierzy lub tekstu isempty TRUE dla tablicy pustej isequal TRUE, jeśli wartości numeryczne są identyczne isequalwithequalnans jak isequal, ale dodatkowo zakłada NaN==NaN isscalar TRUE dla wielkości skalarnej isvector TRUE dla wektora blkdiag tworzy macierz blokowo-diagonalną z zadanych macierzy 70 MATLAB. Leksykon kieszonkowy
7 Operacje na macierzach fliplr flipud odbicie lustrzane kolumn macierzy: lewo-prawo odbicie lustrzane wierszy macierzy: góra-dół reshape zmiana wymiaru macierzy, np. reshape(a,3,5) tworzy macierz A 3 5 rot90 obrót macierzy o 90 sub2ind przenumerowanie wybranych indeksów macierzy A(n,m) do A(:) ind2sub przenumerowanie wybranych indeksów macierzy A(:) do A(n,m) tril macierz trójkątna z elementów pod główną przekątną triu Przykłady macierz trójkątna z elementów nad główną przekątną x=diag(magic(5),1) % wstawia do x elementy położone bezpośrednio nad przekątną macierzy magic(5) Macierze rzadkie Typowymi przykładami macierzy rzadkich są: macierze pasmowe (w tym diagonalna), macierze blokowe oraz macierze trójkątne. MATLAB wykonuje operacje na macierzach rzadkich inteligentnie i szybko. Zestaw funkcji dotyczących macierzy rzadkich uzyskuje się za pomocą polecenia help sparfun. Tworzenie macierzy rzadkich Macierz pełna jest przekształcana w macierz rzadką przy użyciu funkcji sparse lub spconvert. Funkcja sparse może być wywoływana na kilka sposobów, które przedstawiono w tabeli 5.2. Rozdział 5. Macierze, tablice i łańcuchy 71
8 Tabela 5.2. Sposoby wywołania funkcji sparse Sposób wywołania S = sparse(i,j,s,m,n,nzmax) S = sparse(i,j,s,m,n) S = sparse(i,j,s) S = sparse(m,n) lub S=sparse([],[],[],m,n,0) Opis generuje macierz rzadką o wymiarach m n i rezerwuje dla niej nzmax elementów niezerowych nie przewidziano rezerwy dla elementów niezerowych wymiar macierzy określają zależności: m = max(i), n = max(j) generuje macierz rzadką o wymiarach n m i zerowych elementach gdzie: [i,j,s] trzy kolumny, określające odpowiednio: indeksy i, j oraz wartości odpowiednich elementów sij macierzy rzadkiej. Elementy s ij mogą być liczbami zespolonymi; m, n wymiar macierzy rzadkiej; nzmax maksymalna liczba elementów niezerowych macierzy S. Przy przekształceniach macierzy rzadkiej (na przykład po jej odwróceniu) może wzrosnąć liczba jej elementów niezerowych. Należy przewidzieć odpowiedni zapas wolnych miejsc w macierzy rzadkiej poprzez ustawienie wystarczająco dużej wartości parametru nzmax w funkcji sparse. Rezerwą na dodatkowe elementy niezerowe jest różnica (nzmax liczba elementów niezerowych macierzy). Funkcje generujące macierze rzadkie sparse speye sprand generowanie macierzy rzadkiej z macierzy pełnej macierz jednostkowa macierz losowa o rozkładzie równomiernym 72 MATLAB. Leksykon kieszonkowy
9 sprandn macierz losowa o rozkładzie normalnym sprandsym macierz symetryczna losowa spdiags macierze diagonalna i pasmowa Przekształcanie i badanie macierzy rzadkiej full przekształcenie macierzy rzadkiej w pełną spconvert utworzenie macierzy rzadkiej np. z danych w formacie ASCII find wyszukiwanie elementów niezerowych: [i,j,s]=find(a) nnz liczba elementów niezerowych nonzeros elementy niezerowe nzmax maksymalna liczba elementów niezerowych (zarezerwowana pamięć) spones spalloc issparse spfun spy zamiana elementów niezerowych na jedynki rezerwowanie pamięci dla elementów niezerowych TRUE, gdy zmienna jest macierzą rzadką zastosuj funkcję do niezerowych elementów wizualizacja elementów niezerowych macierzy Porządkowanie elementów macierzy colamd colmmd colperm symamd symmmd minimalny stopień permutacji kolumny zastąpiona funkcją colamd permutacja kolumn według rosnących indeksów elementów niezerowych minimalny stopień permutacji dla macierzy symetrycznych zastąpiona funkcją symamd Rozdział 5. Macierze, tablice i łańcuchy 73
10 symrcm odwrotne porządkowanie Cuthill-McKee randperm permutacja losowa dmperm dekompozycja Dulmage-Mendelsohn Algebra liniowa eigs svds luinc cholinc normest oblicza największe wartości i wektory własne macierzy rzadkich (biblioteka ARPACK) oblicza kilka wartości osobliwych, stosując eigs niepełny rozkład trójkątny LU niepełny rozkład Choleskiego oszacowanie normy wektora i macierzy condest oszacowanie jak cond(a,1), z normą L 1 sprank rząd strukturalny macierzy rzadkiej Układy równań liniowych (metody iteracyjne) pcg bicg metoda sprzężonych gradientów z poprawą uwarunkowania macierzy (ang. preconditioned conjugate gradients) metoda wzajemnie sprzężonych gradientów (ang. biconjugate gradients) bicgstab stabilizowana metoda wzajemnie sprzężonych gradientów (ang. biconjugate gradients stabilized) cgs gmres lsqr metoda sprzężonych gradientów w kwadracie (ang. conjugate gradients squared) uogólniona metoda minimalnych residuów (ang. generalized minimum residual) metoda sprzężonych gradientów dla nadokreślonego układu równań (ang. LSQR implementation of conjugate gradients on the normal equations) 74 MATLAB. Leksykon kieszonkowy
11 minres qmr symmlq metoda minimalnych residuów (ang. minimum residual) metoda quasi-minimalnych residuów (ang. quasim minimal residual) metoda dla symetrycznych układów równań liniowych (ang. symmetric LQ) Operacje na grafach (drzewa) treelayout drzewo lub las treeplot etree etreeplot gplot Różne symbfact wizualizacja drzewa drzewo eliminacji wizualizacja drzewa eliminacji rysunek grafu macierzy rzadkiej, jak w teorii grafów analiza symbolicznej dekompozycji spparms określenie parametrów porządkowania macierzy rzadkiej spaugment utworzenie macierzy dla zagadnienia średniokwadratowego Rozdział 5. Macierze, tablice i łańcuchy 75
MATLAB. Leksykon kieszonkowy
PRZYK ADOWY ROZDZIA Wydawnictwo Helion ul. Chopina 6 44-100 Gliwice tel. (32)230-98-63 e-mail: helion@helion.pl IDZ DO KATALOG KSI EK ZAMÓW DRUKOWANY KATALOG TWÓJ KOSZYK CENNIK I INFORMACJE ZAMÓW INFORMACJE
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
MATLAB - laboratorium nr 1 wektory i macierze
MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
Modelowanie danych hodowlanych
Modelowanie danych hodowlanych 1. Wykład wstępny 2. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzę dzia Informatyki Magdalena Deckert Izabela Szczę ch Barbara Wołyń ska Bartłomiej Prę dki Politechnika Poznań ska Instytut Informatyki Agenda Definiowanie macierzy
Algebra macierzy
Algebra macierzy Definicja macierzy Macierze Macierze Macierze Działania na macierzach Działania na macierzach A + B = B + A (prawo przemienności dodawania) (A + B) + C = A + (B + C) (prawo łączności dodawania)
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Wszystko proszę zapisywać komendą diary do pliku o nazwie: imie_ nazwisko 1. Definiowanie macierzy i odwoływanie się do elementów:
Podstawowe struktury danych Tablice, macierze. LABORKA Piotr Ciskowski
Podstawowe struktury danych Tablice, macierze LABORKA Piotr Ciskowski przykład 1. zabawy z macierzami wygeneruj macierze Pascala różnych rozmiarów, wydedukuj z nich zasadę tworzenia» pascal ( 5 ) przykład
04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =
04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,
Wprowadzenie do środowiska
Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Obliczenia w programie MATLAB
Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się
do MATLABa podstawowe operacje na macierzach WYKŁAD Piotr Ciskowski
Wprowadzenie do MATLABa podstawowe operacje na macierzach WYKŁAD Piotr Ciskowski M A T L A B : Computation Visualization Programming easy to use environment MATLAB = matrix laboratory podstawowa jednostka
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII
Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII
Języki Modelowania i Symulacji
e Języki Modelowania i Symulacji e Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 14 grudnia 2011 O czym będziemy mówili? e 1 e 2 3 4 5 e help sparse rzadka zawiera stosunkowo mała
Symulacja obliczeń kwantowych
Model kwantowych bramek logicznych w NumPy Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 10 października 2007 Plan prezentacji 1 Python
Wykład 4. Matlab cz.3 Tablice i operacje na tablicach
Wykład 4 Matlab cz.3 Tablice i operacje na tablicach Dr inż. Zb. Rudnicki Tematyka wykładu 1. Macierze, wektory, tablice - wprowadzenie 2. Rozmiary i typy tablic 3. Zapis - nawiasy i znaki specjalne 4.
Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1
Numeryczna algebra liniowa Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak
WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.
Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego
Diary przydatne polecenie. Korzystanie z funkcji wbudowanych i systemu pomocy on-line. Najczęstsze typy plików. diary nazwa_pliku
Diary przydatne polecenie diary nazwa_pliku Polecenie to powoduje, że od tego momentu sesja MATLAB-a, tj. polecenia i teksty wysyłane na ekran (nie dotyczy grafiki) będą zapisywane w pliku o podanej nazwie.
Pisząc okienkowy program w Matlabie wykorzystujemy gotowe obiekty graficzne, lub możemy tworzyć własne obiekty dziedzicząc już zdefiniowane.
MATLAB Co to jest? program komputerowy będący interaktywnym środowiskiem do wykonywania obliczeń naukowych i inżynierskich oraz do tworzenia symulacji komputerowych. Nazwa Nazwa programu pochodzi od angielskich
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
Podstawowe operacje na macierzach
Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab
Metody Numeryczne Laboratorium 1 Wstęp do programu Matlab 1. Wiadomości wstępne liczby, format Program Matlab używa konwencjonalną notację dziesiętną, z kropka dziesiętną. W przypadku notacji naukowej
III TUTORIAL Z METOD OBLICZENIOWYCH
III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do
Metody optymalizacji - wprowadzenie do SciLab a
Metody optymalizacji - wprowadzenie do SciLab a 1 Zmienne Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Operator przypisania wartości zmiennej = Przykład x=2
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Metody numeryczne II. Układy równań liniowych
Metody numeryczne II. Układy równań liniowych Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Układ równań liniowych Układem równań
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
WPROWADZENIE DO ŚRODOWISKA SCILAB
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
MACIERZE. Sobiesiak Łukasz Wilczyńska Małgorzata
MACIERZE Sobiesiak Łukasz Wilczyńska Małgorzata Podstawowe pojęcia dotyczące macierzy Nie bez przyczyny zaczynamy od pojęcia macierzy, które jest niezwykle przydatne we wszystkich zastosowaniach, obliczeniach
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
BIBLIOTEKA NUMPY, CZĘŚĆ 1
BIBLIOTEKA NUMPY, CZĘŚĆ 1 1. INSTALACJA BIBLIOTEKI NUMPY Aby móc skorzystać z biblioteki Numpy (i każdej innej zewnętrznej biblioteki) w swoim projekcie należy ją najpierw zainstalować w środowisku wirtualnym
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab
Podstawy Automatyki ćwiczenia Cz.1 Środowisko Matlab Podstawową jednostką obliczeniową w programie Matlab jest macierz. Wektory i skalary mogą być tutaj rozpatrywane jako specjalne typy macierzy. Elementy
Wprowadzenie do pakietów MATLAB/GNU Octave
Wprowadzenie do pakietów MATLAB/GNU Octave Ireneusz Czajka wersja poprawiona z 2017 Chociaż dla ścisłości należałoby używać zapisu MATLAB/GNU Octave, w niniejszym opracowaniu używana jest nazwa Matlab,
Wykład 4. Matlab cz.3 Tablice i operacje na tablicach
Wykład 4 Matlab cz.3 Tablice i operacje na tablicach Dr inż. Zb. Rudnicki Tematyka wykładu 1. Macierze, wektory, tablice - wprowadzenie 2. Rozmiary i typy tablic 3. Zapis - nawiasy i znaki specjalne 4.
A A A A A A A A A n n
DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności
Zakłócenia w układach elektroenergetycznych LABORATORIUM
Zakłócenia w układach elektroenergetycznych LABORATORIUM Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu
AUTOMATYZACJA OBLICZEŃ INŻYNIERSKICH. Dr hab. inż. Jacek Kucharski, prof. PŁ Dr inż. Piotr Urbanek
AUTOMATYZACJA OBLICZEŃ INŻYNIERSKICH Dr hab. inż. Jacek Kucharski, prof. PŁ Dr inż. Piotr Urbanek CEL OGÓLNY Zdobycie umiejętności efektywnego wykorzystywania wybranych narzędzi informatycznych dla potrzeb
MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli!
Modele układów dynamicznych - laboratorium MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli! 1 2 MATLAB MATLAB (ang. matrix laboratory) to pakiet przeznaczony do wykonywania
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia
ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA MATLAB jest zintegrowanym środowiskiem
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska
RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy
Dodatkowo klasa powinna mieć destruktor zwalniający pamięć.
Zadanie 1. Utworzyć klasę reprezentującą liczby wymierne. Obiekty klasy powinny przechowywać licznik i mianownik rozłożone na czynniki pierwsze. Klasa powinna mieć zdefiniowane operatory czterech podstawowych
Wartości i wektory własne
Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem
Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.
Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje
Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia
Ekoenergetyka Matematyka 1. Wykład 3.
Ekoenergetyka Matematyka Wykład 3 MACIERZE Macierzą wymiaru n m, gdzie nm, nazywamy prostokątną tablicę złożoną z n wierszy i m kolumn: a a2 a j am a2 a22 a2 j a2m [ a ] nm A ai ai 2 a aim - i-ty wiersz
i proste algorytmy numeryczne LABORKA Piotr Ciskowski
Macierze i proste algorytmy numeryczne LABORKA Piotr Ciskowski przykład 1. zabawy z macierzami wygeneruj macierze Pascala różnych rozmiarów, wydedukuj z nich zasadę tworzenia» pascal ( 5 ) przykład 1.
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 4 RACHUNEK TABLICOWY NA MACIERZACH W PROGRAMIE KOMPUTEROWYM MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR 4 Rachunek tablicowy na macierzach
d) Definiowanie macierzy z wykorzystaniem funkcji systemu Matlak
OPTYMALIZACJA W ŚRODOWISKU MATLAB. Cel ćwiczeń Celem ćwiczeń jest zaznajomienie studentów z podstawową obsługą środowiska obliczeń inżynierskich Matlab oraz zapoznanie się z możliwościami przeprowadzenia
Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję
Elementy metod numerycznych - zajęcia 9
Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Tworzenie macierzy pełnych Generowanie macierzy pełnych Funkcje przekształcające macierze pełne
SPIS TREŚCI 1. WSTĘP 7 2. ŚRODOWISKO MATLABA 10 2.1. Charakterystyka 10 2.2. Budowa pakietu 11 2.2.1. Okno poleceń, katalogów i pamięci roboczej 12 2.2.2. Podstawowe zasady poruszania się w obrębie środowiska
Ukªady równa«liniowych - rozkªady typu LU i LL'
Rozdziaª 9 Ukªady równa«liniowych - rozkªady typu LU i LL' W tym rozdziale zapoznamy si z metodami sªu» cych do rozwi zywania ukªadów równa«liniowych przy pomocy uzyskiwaniu odpowiednich rozkªadów macierzy
Programowanie w języku Matlab
Programowanie w języku Matlab D. Caban, P. Skurowski Wykład. Składnia języka, podstawowe struktury i operacje Matlab Nazwa pochodzi od MATrix LAboratory Środowisko obliczeń numerycznych i symbolicznych
Wprowadzenie do MATLABA. Dr inż. Mirosław Kwiesielewicz Wydział Elektrotechniki i Automatyki Politechnika Gdańska
Wprowadzenie do MATLABA Dr inż. Mirosław Kwiesielewicz Wydział Elektrotechniki i Automatyki Politechnika Gdańska Funkcje środowiska MATLAB/SIMULINK MATLAB - ang. matrix laboratory Środowisko do obliczeń
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Laboratorium Komputerowego Wspomagania Analizy i Projektowania
Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 2. Podstawowe operacje macierzowe. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
WIMIM/MIBM/N1/-/B04 WIMIM/ME/S1/-/C46 WIMIM/IM/S1/-/B19
WIMIM/MIBM/N1/-/B04 WIMIM/ME/S1/-/C46 WIMIM/IM/S1/-/B19 Co mam zrobić, jeżeli obliczenia potrzebne są na wczoraj, trzeba jeszcze zrobić wykres, a do tego mam użyć Bardzo Skomplikowanego Czegoś wiedząc
Wprowadzenie do Mathcada 1
Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.
GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
do MATLABa programowanie WYKŁAD Piotr Ciskowski
Wprowadzenie do MATLABa programowanie WYKŁAD Piotr Ciskowski instrukcje sterujące instrukcja warunkowa: if instrukcja wyboru: switch instrukcje iteracyjne: for, while instrukcje przerwania: continue, break,
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Technologie informacyjne lab. 3
Technologie informacyjne lab. 3 Cel ćwiczenia: Poznanie podstaw środowiska MATLAB/Octave: obliczenia macierzowe, rozwiązywanie równań i układów równań, wykresy funkcji 1 i 2 zmiennych. Aktualnie Uczelnia
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
1) Podstawowe obliczenia. PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium. Wykonał: Łukasz Konopacki Sala 125. Grupa: poniedziałek/p,
PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium Wykonał: Sala 125 Łukasz Konopacki 155796 Grupa: poniedziałek/p, 16.10 18.10 Prowadzący: Dr.inż.Ewa Szlachcic Termin oddania sprawozdania: Ocena: Matlab - firmy
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Dostawa oprogramowania. Nr sprawy: ZP /15
........ (pieczątka adresowa Oferenta) Zamawiający: Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu, ul. Staszica,33-300 Nowy Sącz. Strona: z 5 Arkusz kalkulacyjny określający minimalne parametry techniczne
Numeryczna algebra liniowa
Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak podstawowe operacje na wektorach i macierzach, a także rozwiązywanie układów
2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26
Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne
Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze
Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory
MATLAB i Simulink : poradnik użytkownika / Bogumiła Mrozek, Zbigniew Mrozek. Wyd. 4. Gliwice, cop Spis treści. Przedmowa 13
MATLAB i Simulink : poradnik użytkownika / Bogumiła Mrozek, Zbigniew Mrozek. Wyd. 4. Gliwice, cop. 2018 Spis treści Przedmowa 13 Rozdział 1. Wstęp 15 1.1. Dlaczego MATLAB odnosi sukcesy? 15 1.1.1. MATLAB
01.Wprowadzenie do pakietu MATLAB
01.Wprowadzenie do pakietu MATLAB 1. Typy i formaty danych: Informacje o typach danych dost pnych w MATLABie uzyskuje si m: help datatypes, a sposoby ich wy±wietlania m help format. Do podstawowych typów
2. Tablice. Tablice jednowymiarowe - wektory. Algorytmy i Struktury Danych
2. Tablice Tablica to struktura danych przechowująca elementy jednego typu (jednorodna). Dostęp do poszczególnych elementów składowych jest możliwy za pomocą indeksów. Rozróżniamy następujące typy tablic:
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek