(např. ve Weka) vycházejí z tzv. matice záměn (confusion matrix): + TP true positive FN false negative - FP false positive TN true negative
|
|
- Arkadiusz Błażej Klimek
- 5 lat temu
- Przeglądów:
Transkrypt
1 Ohodnocení úspěšnosti klasifikace Základní statistiky uváděné při ohodnocování modelů pro klasifikaci (např. ve Weka) vycházejí z tzv. matice záměn (confusion matrix): správná třída \ klasifikace TP true positive FN false negative - FP false positive TN true negative Česky se říká správně/falešně positivní/negativní.
2 správná třída \ klasifikace TP true positive FN false negative - FP false positive TN true negative Základní míry ohodnocení modelu celková správnost accurancy Acc = TP+TN TP+TN+FP+FN chyba error Err = FP+FN TP+TN+FP+FN přesnost precision Prec = TP TP+FP úplnost, sensitivita recall, sensitivity Sensit = Rec = TP TP+FN specificita specificity Speci f icity = TN TN+FP
3 Různá cena chyby Raději zařadím spam do normální pošty než normální do spamu. L kk matice ceny za chybnou klasifikaci k jakožto k. Predikce na listech se změní tak (minimalizuje cenu chyb), v listu klasifikujeme k(m) = argmin k l L lk ˆp ml. Můžeme tvořit strom uzpůsobený na ceny L kk. Pro vícekategoriální klasifikaci modifikujeme Gini = k =k L kk ˆp mk ˆp mk. Pro dvouhodnotovou vážíme prvky třídy k L kk krát. Pro porovnání modelů s proměnnou cenou chyb slouží křivka ROC (obrázek).
4 Cena za pozorování Gain 2 (S, X j ) Cost(X j ) učení robota, nakolik objekty mohou být uchopeny nebo Medicínská diagnostika. 2 Gain(S,X j) 1 (Cost(X j ) + 1) w
5 Pravidla ze stromů Ze stromu můžeme vytvořit pravidla napsáním pravidla pro každý list. Ta pravidla ale můžeme ještě zlepšit tím, že uvažujeme každý atribut v každém pravidle a zjistíme, jestli jeho vynecháním pravidlo nezlepšíme (tj. nezlepšíme chybu na validačních datech resp. pesimistický odhad chyby na trénovacích datech). To funguje celkem dobře, ale učí se dlouho, protože pro každý atribut musíme projít všechny trénovací příklady. Algoritmy tvořící pravidla přímo bývají rychlejší. Výsledná pravidla setřídíme podle klesající úspěšnosti.
6 Stromy pro numerickou predikci Listy stromů obsahují numerické hodnoty, rovné průměru trénovacích příkladů v listu. pro výběr atributu k dělení zkoušíme všechny řezy, vybíráme maximální zlepšení střední kvadratické chyby. Tyto stromy se nazývají také regresní stromy, protože statistici nazývají regrese proces pro predikci numerických hodnot. Můžeme i kombinovat regresní přímku a rozhodovací strom tím, že v každém uzlu bude regresní přímka takový strom se nazývá model tree.
7 CART Hledá proměnnou j a bod řezu s na oblasti R 1 ( j, s) = {X X j s} a R 2 ( j, s) = {X X j > s} takové, aby minimalizovaly [ min j,s = min c1 ] (y i c 1 ) 2 + min c2 (y i c 2 ) 2 x i R 1 ( j,s) x i R 2 ( j,s) vnitřní minima jsou průměry, tj. ĉ 1 = avg(y i x i R 1 ( j, s)).
8 Prořezávání v CART Naučme strom T 0 až k listům s málo (5 ti) záznamy. Vytvoříme hierarchii podstromů T T 0 postupným sléváním listů dohromady. Listy stromu T o velikosti T indexujeme m, list m pokrývá oblast R m, definujeme: ĉ m = 1 N m Q m (T) = 1 N m x i R m y i, x i R m (y i ĉ m ) 2.
9 Definujeme kriterium k optimalizaci: C α (T) = T m=1 N m Q m (T) + α T. Vyjdeme z T 0, postupně slijeme vždy dva listy, které způsobí nejmenší nárůst m N m Q m (T), až nám zbyde jen kořen. Dá se ukázat, že tato posloupnost obsahuje T α optimální stromy pro daná α. α = 0 neprořezáváme, necháme T 0, pro α = necháme jen kořen, vhodné α zvolíme na základě krosvalidace, ˆα minimalizuje krosvalidační chybu RSS, vydáme model Tˆα.
10 Krosvalidace (Crossvalidation) Snažím se odhadnout chybu z více, než jednoho testu, tím dostat stabilnější odhad. Rozdělím (stratifikovaně) data na daný počet stejných částí. Jednu část zadržím pro učení, na ostatních naučím model a otestuji schovanou částí. Tohle provedu s každou částí, jednotlivé chyby zprůměruji. Zkušenost velí dělit na 10 částí, tenfold crossvalidation.
11 Slabší stránky CART nestabilita stromů: pro trochu jiná data mohu dostat naprosto jiný strom; lze zmírnit průměrováním přes více stromů (bagging) řezy pouze kolmo na osy; dalo by se rozšířit, ale pak se hůře optimalizuje výsledek není hladký, ale schodovitý. Pokud předpokládám hladkou cílovou funkci, je to divné. MARS bude hladký (Multivariate Adaptive Regression Splines ) špatně podchytí aditivní strukturu Y = c 1 I(X 1 < t 1 ) + c 2 I(X 2 < t 2 ) c k I(X k < t k ) + ɛ po prvním dělení bude v různých větvích dělit různě, globální vzorec z toho nikdo nevykouká a nejspíš ani strom neodhalí (pro nedostatek dat u listů). MARS toto zvládne.
12 Pravidla pro regresi Hon na maxima PRIM = Bump Hunting Patient Rule Induction Method iterativně hledáme oblasti, kde je Y velké; pro každou oblast vytvoříme pravidlo CART po cca. log 2 (N) 1 řezech přijde o data, PRIM si může dovolit cca. log(n) log(1 α). Pro N = 128 a α = 0.1 to je 6 a 46 resp. 29, protože počty pozorování musí být celé. Např. XOR s matoucími nezávislými dimenzemi PRIM hravě zvládne, CART má problém.
13 PRIM Pravidla pro regresi 1. Vezmi všechna data a prostor obsahující všechna data, α = 0.05 nebo Najdi X j a jeho horní či dolní okraj, jehož oříznutím o α 100 procent pozorování vede k největší střední hodnotě zbytku. 3. Opakuj 2. dokud zbývá aspoň 10 pozorování. 4. Rozšiř oblast v libovolném směru, pokud to zvýší střední hodnotu. 5. Vyber z oblastí generovaných 1 až 4 tu (ten počet pozorování), který je nejlepší při krosvalidaci. Nazvěme odpovídající oblast B Odstraníme data v B 1 z databáze a opakujeme 2 až 5, vytvoříme B 2, atd., dokud je libo.
14 Lineární regrese Cíl: aproximovat funkci f (x), kde x je n rozměrný vektor, pomocí lineární funkce ŷ = ˆ β 0 + n x j ˆβ j j=1 Není li X T X singulární, dostaneme jednoznačné řešení ˆβ = (X T X) 1 X T y a odhad ŷ pro dané x i je ŷ(x i ) = x T i ˆβ.
15 MARS Multivariate Adaptive Regression Splines Zobecnění postupné lineární regrese i zobecnění CART model je tvaru f (X) = β 0 + M β m h m (X) m=1 kde h m (X) je funkce z C nebo součin libovolného počtu funkcí z C pro pevně zvolená h m spočteme koeficienty β m standardní lineární regresí (minimalizujeme součet kvadrátů reziduí) funkce h m volíme postupně.
16 MARS pokračování Pro každou vstupní proměnnou a každý datový bod vytvoříme dvojici funkcí báze (x t) + a (t x) +, kde to + značí nezápornou část, zápornou ořízneme nulou. Tuto dvojici nazýváme zrcadlový pár. máme tedy množinu funkcí C = {(X j t) +, (t X j ) + } t {x1, j,x 2, j,...,x N, j }, j=1,2,...,p tedy 2Np funkcí, jsou li všechny vstupní hodnoty různé.
17 MARS volba báze Začneme s konstantní h 0 = 1, funkci přidáme do modelu M = {h 0 }. Uvažujeme součin každé funkce z modelu M s každou dvojicí v C ˆβ M+1 h l (X)(X j t) + + ˆβ M+2 h l (X)(t X j ) +, h l M vybereme ten, co nejvíce sníží trénovací chybu (vždy dopočteme regresní koeficienty ˆβ). Opakujeme, dokud M nemá předem daný počet členů protože je model často přeučený, zas ubíráme, vždy tu, co nejméně zvýší trénovací chybu. Máme tak posloupnost modelů ˆf λ pro různé počty parametrů λ.
18 vybereme tu, co minimalizuje zobecněnou krosvalidaci (abychom se nemuseli namáhat krosvalidaci počítat) GCV(λ) = N i=1(y i ˆf λ (x i )) 2 (1 M(λ)/N) 2. M(λ) je počet efektivních parametrů v modelu, tj. počet funkcí h m (označím r) plus počet uzlů K (tj. použitých datových bodů t), zkušenost radí násobit počet uzlů třikrát, tj. M(λ) = r + 3K.
19 I když se nezdá, souvisí. Z MARSu CART místo po částech lineární zvolíme po částech konstantní funkce I(x t > 0) a I(x t 0) Pokud funkci modelu h m použijeme pro násobení, tak jí z modelu vymažeme, aby nešla znovu použít. Tím zajistíme, že se použije maximálně pro jedno násobení, tj. jen pro jedno dělení a máme binární strukturu stromu. a máme CART.
20 Strukturované regresní modely Minimalizaci RSS splňuje nekonečně mnoho funkcí interpolujících naměřené hodnoty to ale nebývá vhodné pro predikci (velká očekávaná a testovací chyba). Omezíme přípustné funkce, ve zvolené třídě jednoznačné řešení. Chceme jednoduché funkce, které nejsou divoké na malých okolích ve vstupním prostoru. Velikost okolí bývá parametrem, čím větší, tím větší restrikce.
21 Penalizace za složitost Míru chyby RSS přímo upravíme penaltou J( f ) za složitost modelu PRSS( f ; λ) = RSS( f ) + λj( f ) např. Hřebenová (ridge) regrese penalizuje nenulové složky β ˆβ ridge = argmin β N i=1(y i β 0 p x i j β j ) 2 + λ j=1 kubický vyhlazující splajn pro jednorozměrný vstup PRSS( f ; λ) = N i=1 (y i f (x i )) 2 + λ p β 2 j. j=1 [ f (x)] 2 dx. λ 0 řídí velikost penalty, λ = 0 vede k interpolaci, λ = dovolí jen lineární funkce x.
22 Jádrové funkce a lokální regrese Nejbližší sousedi tvoří skokovou aproximující funkci, není to hezké a je to zbytečné specifikujme okolí jádrovou funkcí K λ (x 0, x) určující, nakolik je x v okolí x 0, např. gausovské jádro K λ (x 0, x) = 1 [ λ exp x x 0 2 ] 2λ y pak odhadneme ˆf (x 0 ) = N i=1 K λ(x 0, x i )y i N i=1 K λ(x 0, x i )
23 nebo naučíme parametrickou funkci f θ minimalizací RSS RSS( f θ, x 0 ) = N K λ (x 0, x i )(y i f θ (x i )) 2 i=1 f θ = θ 0 vede na odhad viz výše (Nadaraya Watson) f θ = θ 0 + θ 1 x dává lokálně lineární regresní model. Nejbližší sousedi mají jádrovou funkci závislou na datech, je 1 ve vzdálenosti menší či rovné vzdálensti ktého souseda, jinak nula.
24 Báze funkcí a slovníkové metody vezmeme bázi funkcí {h m (x)} a modelujeme f jako jejich lineární kombinaci, θ značí parametry: f θ (x) = M θ m h m (x) m=1 vejde se sem lineární a polynomiální expanze splajny a součiny tenzorů báze radiálních funkcí jednovrstvé dopředné neuronové sítě a další.
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 26
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu Filip Železný (ČVUT) Vytěžování dat 3. listopadu / 1
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu 2014 Filip Železný (ČVUT) Vytěžování dat 3. listopadu 2014 1 / 1 Metafora pro tuto přednášku Filip
nejsou citlivé na monotónní transformace vstupů, dost dobře se vyrovnají s nerelevantními vstupy.
Přednosti rozhodovacích stromů Přirozeně pracují s kategoriálními i spojitými veličinami, přirozeně pracují s chybějícími hodnotami, jsou robustní vzhledem k outliers vybočujícím pozorováním, nejsou citlivé
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 27
Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!
Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.
Diferenciální rovnice základní pojmy. Rovnice se
Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
heteroskedasticitě Radim Navrátil, Jana Jurečková Katedra pravděpodobnosti a matematické statistiky, MFF UK, Praha
Pořadové testy v regresi při rušivé heteroskedasticitě Radim Navrátil, Jana Jurečková Katedra pravděpodobnosti a matematické statistiky, MFF UK, Praha Robust 2014, Jetřichovice 22.1.2014 Radim Navrátil,
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn
Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové
Cauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
Výzvy, které před matematiku staví
1 / 21 Výzvy, které před matematiku staví výpočetní technika Edita Pelantová Katedra matematiky, FJFI, České vysoké učení technické v Praze 25. pledna 2018 Praha Zápisy čísel v minulosti 2 / 21 Římský
Lineární algebra - iterační metody
Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat: klasifikace Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
Reprezentace dat. BI-PA1 Programování a Algoritmizace I. Ladislav Vagner
Reprezentace dat BI-PA1 Programování a Algoritmizace I. Ladislav Vagner Katedra teoretické informatiky Fakulta informačních technologíı ČVUT v Praze xvagner@fit.cvut.cz 9., 11. a 12. října 2017 Obsah Dvojková
z geoinformatických dat
z geoinformatických dat 30. listopadu 2012 Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/17.0117 Dvě DN na úseku Příklad Najděte mezní situaci pro dvě DN na úseku délky L metrů tak, aby se ještě
Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha
ROBUST 2014 Zdeněk Fabián Ústav informatiky AVČR Praha January 19, 2014 Starověk x 1,..., x n data průměry Starověk x 1,..., x n data průměry aritm., geom., harm. Novověk Model F a skórová funkce Ψ F inferenční
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36
(1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,
Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.
Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:
Martin Pergel. 26. února Martin Pergel
26. února 2017 Užitečné informace Navážeme na Programování I, změníme jazyk na C#, podrobnosti o C# budou v navazujícím kurzu, soustředíme se na totéž, co v zimě, tedy: technické programování, návrh a
Lineární regrese. Skutečné regresní funkce nejsou nikdy lineární! regrese extrémně užitečná jak svou koncepcí, tak prakticky.
Lineární regrese Lineární regrese je jednoduchý přístup k učení s učitelem (supervizovanému učení). Předpokládá, že závislost Y na X 1, X 2,..., X p je lineární. Skutečné regresní funkce nejsou nikdy lineární!
Obsah: Rozhodovací stromy. Úvod do umělé inteligence 11/12 2 / 41. akce
Učení, rozhodovací stromy, neuronové sítě Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Učení Hodnocení úspěšnosti učícího algoritmu Úvod do umělé inteligence /2 / 4 Učení Učení
vystavit agenta realitě místo přepisování reality do pevných pravidel
Učení, rozhodovací stromy, neuronové sítě Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Učení Hodnocení úspěšnosti učícího algoritmu PA026 Projekt z umělé inteligence Učení Úvod
GEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
Co to znamená pro vztah mezi simultánní a marginální hustotou pravděpodobnosti f (x) (pravděpodobnostní funkci p(x))?
Ondřej Pokora M5120 Lineární statistické modely I poznámky do cvičení podzim 2011 1 / 36 12.12.2011 Maximálně věrohodné odhady Náhodný výběr X 1,..., X n rosahu n z rozdělení pravděpodobnosti P: X i P
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
(a). Pak f. (a) pro i j a 2 f
Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na
Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17
Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
Paradoxy geometrické pravděpodobnosti
Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh
Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být
Obyčejné diferenciální rovnice 1 Úvod Obyčejnou diferenciální rovnici N-tého řádu f ( x,y,y,y,...,y (N)) = g(x) převádíme na soustavu N diferenciálních rovnic 1. řádu. Provedeme substituce y z 1 y z 2...
7. Aplikace derivace
7. Aplikace derivace 7A. Taylorův polynom 7. Aplikace derivace Verze 20. července 207 Derivace funkce se využívá při řešení úloh technické prae i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce,
POLIURETANOWE SPRĘŻYNY NACISKOWE. POLYURETHANOVÉ TLAČNÉ PRUŽINY
POLIURETAOWE SPRĘŻYY ACISKOWE. POLYURETHAOVÉ TLAČÉ PRUŽIY Oferowane są wymiary wyrobów o różnych twardościach. Konstrukcja tych sprężyn umożliwia zastąpienie sprężyn tradycyjnych tam, gdzie korozja, wibracje,
Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156
Vysvětlování modelovacích chyb Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156 Co nás čeká 1 Konjunktivní dotazy 2 Vyhodnocování konjunktivních dotazů v jazyce ALC
Kybernetika a umělá inteligence. Gerstnerova laboratoř katedra kybernetiky. Daniel Novák
Kybernetika a umělá inteligence 2. Strojové učení laboratory Gerstner Gerstnerova laboratoř katedra kybernetiky České vysoké učení technické v Praze Daniel Novák Poděkování: Filip Železný Shrnutí minulé
Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou
2. Řešení nelineárních rovnic Průvodce studiem Budeme se zabývat výpočtem reálných kořenů nelineární rovnice f(x) =0, (2.0.1) kde f je v jistém smyslu rozumná reálná funkce. Pro některé funkce (kvadratické,
Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17.
Internet a zdroje (Zdroje na Internetu) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. listopadu 2010 (KFC-INTZ) Databáze, citování 26. listopadu 2010
Lineární algebra II, přednáška Mgr. Milana Hladíka, Ph.D.
Lineární algebra II, přednáška Mgr. Milana Hladíka, Ph.D. Poznámky sepsal Robert Husák Letní semestr 29/21 Obsah 1 Permutace 1 2 Determinant 3 3 Polynomy 7 4 Vlastní čísla 9 5 Positivně definitní matice
ggplot2 Efektní vizualizace dat v prostředí jazyka R Martin Golasowski 8. prosince 2016
ggplot2 Efektní vizualizace dat v prostředí jazyka R Martin Golasowski 8. prosince 2016 Jak vizualizovat? Požadované vlastnosti nástroje opakovatelnost, spolehlivost separace formy a obsahu flexibilita,
David Nádhera Kontinuace implicitně zadané křivky
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE David Nádhera Kontinuace implicitně zadané křivky Katedra numerické matematiky Vedoucí bakalářské práce: Doc. RNDr. Vladimír Janovský
MATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny.
MATEMATIKA ALEŠ NEKVINDA DIFERENCIÁLNÍ POČET Přednáška Označíme jako na střední škole N, Z, Q, R a C postupně množinu přirozených, celých, racionálních, reálných a komplexních čísel R = R { } { } Platí:
Ústav teorie informace a automatizace. Tato prezentace je k dispozici na:
Aplikace bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace Akademie věd České republiky Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Obsah přednášky Podmíněná pravděpodobnost,
Paralelní implementace a optimalizace metody BDDC
Paralelní implementace a optimalizace metody BDDC J. Šístek, M. Čertíková, P. Burda, S. Pták, J. Novotný, A. Damašek, FS ČVUT, ÚT AVČR 22.1.2007 / SNA 2007 Osnova Metoda BDDC (Balancing Domain Decomposition
Indukowane Reguły Decyzyjne I. Wykład 8
Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne
MATEMATIKA 3 NUMERICKÉ METODY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 NUMERICKÉ METODY Dana Černá http://kmd.fp.tul.cz Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci INFORMACE O PŘEDMĚTU Konzultační hodiny: ÚT 11:00-12:00, budova G,
Anotace. Martin Pergel,
Anotace Třídění, medián lineárně. Třídění Ukazovali jsme si: bubblesort, shakesort, zatřid ování (insert-sort), přímý výběr (select-sort) důležité je znát algoritmy, není nutné pamatovat si přesné přiřazení
Kombinatorika a grafy I
Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky
Lucie Mazurová. AS a
Dynamické modelování úmrtnosti Lucie Mazurová AS 13.10. a 27.10.2017 Riziko úmrtnosti a) volatilita - odchylky od očekáváných hodnot způsobené náhodným charakterem délky života b) katastrofické riziko
Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ;
Deterministické zásobníkové automaty Definice 3.72. Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je deterministický (DPDA), jestliže jsou splněny tyto podmínky: 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z),
1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A
1 Definice 1. Množiny: podmnožina: A B x(x A x B) průnik: A B = {x A x B} sjednocení: A B = {x x A x B} rozdíl: A B = {x A x B} A B A B vlastní podmnožina 2. uspořádaná dvojice: (x, y) = {{x}, {x, y}}
Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
Západočeská univerzita v Plzni Fakulta aplikovaných věd. Katedra matematiky. Semestrální práce - matematika a byznys
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Obor: Matematické inženýrství Optimální výrobní program Semestrální práce - matematika a byznys Vypracovala: Radka Zahradníková
Numerické metody KI/NME. Doc. RNDr. Jiří Felcman, CSc. RNDr. Petr Kubera, Ph.D.
Numerické metody KI/NME Doc. RNDr. Jiří Felcman, CSc. RNDr. Petr Kubera, Ph.D. RNDr. Jiří Škvor, Ph.D. Ústí nad Labem 2016 Kurz: Obor: Klíčová slova: Anotace: Numerické metody Informační systémy, Informatika
Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace)
Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce Matematická analýza / 5 Obsah Množinové operace Operace s funkcemi Definice
Obsah Atributová tabulka Atributové dotazy. GIS1-2. cvičení. ČVUT v Praze, Fakulta stavební, katedra mapování a kartografie
ČVUT v Praze, Fakulta stavební, katedra mapování a kartografie září 2010 prezentace 1 2 Obecně otevření atributové tabulky (vlastnosti vrstvy Open Attribute Table) řádky v tabulce jednotlivé záznamy (objekty)
Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52
í150doc-start í251doc-start Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Matematika 1 Jiří Fišer 24. září 2013 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Zimní semestr
Matematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7
Matematika přednáška Lenka Přibylová 7. února 2007 Obsah Základy matematické logiky 9 Základní množinové pojmy 13 Množina reálných čísel a její podmnožiny 16 Funkce 18 Složená funkce 20 Vlastnosti funkcí
Ústav teorie informace a automatizace RESEARCH REPORT. Pavel Boček, Karel Vrbenský: Implementace algoritmu MIDIA v prostředí Google Spreadsheets
Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT Pavel Boček, Karel Vrbenský:
Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných
Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T
Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Automatové modely Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stefan
6 Dedekindovy řezy (30 bodů)
Pokročilá lineární algebra 3. série 6 Dedekindovy řezy (3 bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval Dedekind
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina
Matematika pro ekonomiku
Statistika, regresní analýza, náhodné procesy 7.10.2011 1 I. STATISTIKA Úlohy statistiky 2 1 Sestavit model 2 Odhadnout parametr(y) 1 Bodově 2 Intervalově 3 Testovat hypotézy Častá rozdělení ve statistice: