WYKŁAD 5C: TABLICE ANALITYCZNE PRZYKŁADY

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYKŁAD 5C: TABLICE ANALITYCZNE PRZYKŁADY"

Transkrypt

1 METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 5C: TABLICE ANALITYCZNE PRZYKŁADY III rok kognitywistyki UAM, Reguły 1.1 KRZ Reguły rozszerzania tablic analitycznych dla formuł bez kwantyfikatorów (dla języka KRZ) zapisanych w notacji Smullyana są następujące: ψ ψ α α 1 β β 1 β 2 α 2 Ćwiczenie. Zapisz reguły dla α-formuł oraz β-formuł w przypadku poszczególnych funktorów prawdziwościowych oraz ich negacji. Przypominamy tabelę składników formuł, zapisanych w jednolitej notacji: α α 1 α 2 ϕ ψ ϕ ψ (ϕ ψ) ϕ ψ (ϕ ψ) ϕ ψ (ϕ ψ) ϕ ψ (ϕ ψ) ϕ ψ ϕ ψ ϕ ψ ϕ ψ ϕ ψ ϕ ψ ϕ ψ β β 1 β 2 (ϕ ψ) ϕ ψ ϕ ψ ϕ ψ ϕ ψ ϕ ψ ϕ ψ ϕ ψ ϕ ψ ϕ ψ (ϕ ψ) ϕ ψ (ϕ ψ) ϕ ψ (ϕ ψ) ϕ ψ 1

2 1.2 KRP W przypadku języków pierwszego rzędu, dodajemy następujące reguły rozszerzania tablic analitycznych (w notacji Smullyana): γ (dla dowolnego termu zamkniętego języka L par ) γ(t) δ (dla dowolnego nowego parametru a) δ(a) Przypominamy jednolitą notację dla formuł z kwantyfikatorami: 2 Wskazówki heurystyczne γ γ(t) δ δ(t) xϕ ϕ(x/t) xϕ ϕ(x/t) xϕ ϕ(x/t) xϕ ϕ(x/t) Propozycja notacji podana została na wykładzie. Jeśli budzi jakieś wątpliwości, proszę pytać. Rozważane dalej przykłady powinny być pomocne w rozumieniu tej notacji oraz sprawnym posługiwaniu się nią. Kolejność kroków budowania tablicy: (o ile to możliwe, to) najpierw reguły nierozgałęziające, potem rozgałęziające. Oszczędzanie niepotrzebnej pracy: jeśli uzyskałaś na którejś gałęzi budowanej tablicy analitycznej parę formuł wzajem sprzecznych (lub ), to zamknij tę gałaź. 3 Dowody tablicowe 3.1 W KRZ 1. Zbudujemy tablice analityczne: 1. dla formuły (p q) (p q) oraz 2. dla zaprzeczenia tej formuły, tj. dla formuły ((p q) (p q)). Tablica analityczna dla (p q) (p q): 2

3 (p q) (p q) 1. (1 l ) (p q) 2. (1 p ) (p q) 3. (2 g ) p (2 d ) q 1 (3 g ) p (3 d ) q 4. (4) q 2 Tablica analityczna dla ((p q) (p q)): [(p q) (p q)] 1. (1 g ) p q 3. (1 d ) (p q) 2. (2) p q 4. (3 l ) p (3 p ) q (4 l ) p (4 p ) q (4 l ) p (4 p ) q p,4 p Żadna z tych tablic nie jest, jak widać, sprzeczna (zamknięta). 2. Zbudujemy dowód tablicowy prawa modus ponendo ponens: ((ϕ ψ) ϕ) ψ Konstruujemy zatem tablicę, w której korzeniu umieszczamy zaprzeczenie formuły ((ϕ ψ) ϕ) ψ: 3

4 (((ϕ ψ) ϕ) ψ) 1. (1 g ) (ϕ ψ) ϕ 2. (1 d ) ψ (2 g ) ϕ ψ 3. (2 d ) ϕ (3 l ) ϕ (3 p ) ψ 2d,3 l 1d,3 p Tablica jest sprzeczna, a więc ((ϕ ψ) ϕ) ψ jest tezą tablicową. 3. Zbudujemy tablicę analityczną dla zbioru: S = {p r, p q, q r}. (0.1) p r 1. (0.2) p q 2. (0.3) q r 3. (1 g ) p (1 d ) r (2 l ) p (2 p ) q 1g,2 l (3 l ) q (3 p ) r 2p,3 l 1d,3 p 4. Zbudujemy tablicę analityczną dla zbioru: S = { (p q) r, (r s), (p q) t, t (r q) }. 4

5 (0.1) (p q) r 2. (0.2) (r s) 1. (0.3) (p q) t 3. (0.4) t (r q) 4. (1 g ) r (1 d ) s (2 l ) (p q) 5. (2 p ) r (3 l ) p q (3 p ) t 2l,3 l (4 l ) t (4 p ) r q 6. 1g,2 p 3p,4 l (5 g ) p (5 d ) q (6 l ) r (6 p ) q 1g,6 l 5g,6 p 5. Ustalimy czy wniosek wynika tablicowo z przesłanek: p q r s (p q) (r s) Budujemy zatem tablicę analityczną, rozpoczynając ją od przesłanek oraz zaprzeczonego wniosku: 5

6 (0.1) p q 5. (0.2) r s 3. (0.3) ((p q) (r s)) 1. (1 g ) p q 4. (1 d ) (r s) 2. (2 g ) r (2 d ) s (3 l ) r (3 p ) s (4 l ) p (4 p ) q (5 l ) p (5 p ) q (5 l ) p (5 p ) q 2g,3 p 4l,5 l Tablica nie jest zamknięta, a więc wniosek nie wynika tablicowo z przesłanek. 3.2 W logice pierwszego rzędu 1. Zbudujemy tablicę analityczną dla zbioru zdań: { x y ((P (x) P (y)) Q(x, y)), x y ((P (x) R(y)) Q(x, y)), x ( P (x) R(x)) }. 6

7 x y ((P (x) P (y)) Q(x, y)) 1. a x y ((P (x) R(y)) Q(x, y)) 6. a x ( P (x) R(x)) 5. b (1) y ((P (a) P (y)) Q(a, y)) 2. b (2) ((P (a) P (b)) Q(a, b)) 3. (3 g ) P (a) P (b) 4. (3 d ) Q(a, b) (4 g ) P (a) (4 d ) P (b) (5) ( P (b) R(b)) 8. (6) y ((P (a) R(y)) Q(a, y)) 7. b (7) (P (a) R(b)) Q(a, b) 11. (8 l ) P (b) 9. (8 p ) R(b) 10. (9) P (b) 4d,9 (10) R(b) (11 l ) (P (a) R(b)) 12. (11 p ) Q(a, b) 3d,11 p (12 l ) P (a) (12 p ) R(b) 4g,12 l 10,12p Zauważmy, że (na mocy prawa De Morgana) x ( P (x) R(x)) jest równoważne zdaniu x (P (x) R(x)). Niech predykat P będzie dumnie interpretowany jako własność bycia Polakiem, R jako własność bycia obcokrajowcem, zaś Q(x, y) interpretujmy jako x szydzi z y. Otrzymujemy wtedy następujące brednie: 7

8 Pewien Polak nie szydzi z co najmniej jednego Niepolaka. Każdy Polak szydzi ze wszystkich obcokrajowców. Nikt nie jest jednocześnie Niepolakiem oraz nieobcokrajowcem. Po zastosowaniu prawa De Morgana do ostatniego z tych zdań otrzymujemy zgrabniejszy stylistycznie, ale w dalszym ciągu sprzeczny tekst: Pewien Polak nie szydzi z kogoś, kto Polakiem nie jest. Wszyscy Polacy szydza z każdego obcokrajowca. Każdy jest Polakiem lub obcokrajowcem. 2. Ustalimy czy wniosek wynika tablicowo z przesłanek: x (P (x) Q(x)) y (R(y) Q(y)) z (P (z) R(z)) Budujemy zatem tablicę analityczną, rozpoczynając ją od przesłanek oraz zaprzeczonego wniosku: x (P (x) Q(x)) 2. a 4. b y (R(y) Q(y)) 1. a z (P (z) R(z)) 3. b (1) R(a) Q(a) 5. (2) P (a) Q(a) 8. (3) (P (b) R(b)) 6. (4) P (b) Q(b) 7. (5 g) R(a) (5 d ) Q(a) (6 g) P (b) (6 d ) R(b) (7 l ) P (b) (7 p) Q(b) 6g,7l (8 l ) P (a) (8 p) Qa 8

9 Tablica nie jest zamknięta, a zatem wniosek nie wynika tablicowo z przesłanek. Otwarte gałęzie tablicy pozwalają zbudować modele, w których prawdziwe są przesłanki, a fałszywy jest wniosek: P Q R a + + b + + P Q R a? + + b + + Ta notacja powinna być oczywista, dla przykładu: 1. Znak + na przecięciu kolumny dla P oraz wiersza dla b w drugiej z tych tabelek oznacza, że na gałęzi znajduje się zdanie atomowe P (b). 2. Znak na przecięciu kolumny dla R oraz wiersza dla b w drugiej z tych tabelek oznacza, że na gałęzi znajduje się zdanie atomowe R(b). 3. Znak? na przecięciu kolumny dla P oraz wiersza dla a w drugiej z tych tabelek oznacza, że na gałęzi nie ma ani zdania atomowego P (a) ani zdania atomowego P (a). Zauważmy ponadto, że pierwsza przesłanka jest formułą typu γ, a więc należało zastosować do niej stosowną regułę zarówno dla stałej a, jak i dla stałej b. 3. Ostatni walczyk w Międzyzdrojach. Czy z przesłanek: Każdy kogoś lubi. Niektórzy lubia tylko tych, którzy ich nie lubia. wynika tablicowo wniosek: Ktoś jest lubiany przez niesamoluba.? Znajdujemy strukturę składniową przesłanek i wniosku. Występuje tu tylko jeden predykat: czytajmy L(x, y) jako x lubi y. Wtedy oczywiście L(x, x) czytamy: x lubi siebie (przyjmijmy, że jest to równoznaczne z x jest samolubem). Badane wnioskowanie przebiega według następującego schematu: x y L(x, y) x y (L(x, y) L(y, x)) x y (L(y, x) L(y, y)) Budujemy zatem tablicę analityczną, rozpoczynając ją od przesłanek oraz zaprzeczonego wniosku: 9

10 x y L(x, y) 2. a x y (L(x, y) L(y, x)) 1. a x y (L(y, x) L(y, y)) 5. b (1) y(l(a, y) L(y, a)) 4. a 6. b (2) y L(a, y) 3. b (3) L(a, b) (4) L(a, a) L(a, a) 10. (5) y (L(y, b) L(y, y)) 7. a (6) L(a, b) L(b, a) 8. (7) (L(a, b) L(a, a)) 9. (8 l ) L(a, b) (8 p) L(b, a) 3,8l (9 l ) L(a, b) (9 p) L(a, a) 3,9l (10 l ) L(a, a) (10 p) L(a, a) 9,10l 9,10p Tablica jest zamknięta, a zatem wniosek wynika tablicowo z przesłanek. 4. Zbudujemy tablicę analityczną dla zbioru formuł: {P (a), Q(a), x(p (x) (R(x) S(x))), S(a), x((r(x) T (x)) Q(x)), x(r(x) T (x))}. 10

11 (0.1) P (a) (0.2) Q(a) (0.3) x(p (x) (R(x) S(x))) 1. a (0.4) S(a) (0.5) x((r(x) T (x)) Q(x)) 2. a (0.6) x(r(x) T (x)) 3. a (1) (P (a) (R(a) S(a))) 4. (2) ((R(a) T (a)) Q(a)) 5. (3) (R(a) T (a)) (4 l ) P (a) (4 p) R(a) S(a) ,4l (5 l ) (R(a) T (a)) 7. (5 p) Q(a) 0.2,5p (6 l ) R(a) (6 p) S(a) 0.4,6p (7 l ) R(a) (7 p) T (a) 6l,7 l (8 l ) R(a) (8 p) T (a) 6l,8 l 7p,8 p Tablica zamknięta. Zauważmy, że ponieważ w zdaniach naszego zbioru występowała stała a, więc należało dla niej zastosować regułę dla wszystkich γ-formuł w tablicy. 5. Spróbujemy zbudować tablicę analityczną dla zbioru zdań: { x(p (x) Q(x)), x y(r(y) S(y, x)), x((r(x) Q(x)) T (x)), x y((t (y) S(y, x)) T (x)), x y(( P (y) S(x, y)) T (x))}. 11

12 x (P (x) Q(x)) 4. a 5. b x y (R(y) S(y, x)) 6. a 7. b x ((R(x) Q(x)) T (x)) 8. a 9. b x y ((T (y) S(y, x)) T (x)) 10. a 11. b ( x y (( P (y) S(x, y)) T (x))) 1. a (1) y (( P (y) S(a, y)) T (a)) 2. b (2) (( P (b) S(a, b)) T (a)) 3. (3 g) P (b) S(a, b) (3 d ) T (a) (4) P (a) Q(a) (5) P (b) Q(b) (6) y (R(y) S(y, a)) (7) y (R(y) S(y, b)) (8) (R(a) Q(a)) T (a) (9) (R(b) Q(b)) T (b) (10) y ((T (a) S(y, a)) T (a)) 12. a 13. b (11) y ((T (y) S(y, b)) T (b)) 14. a 15. b (12) (T (a) S(a, a)) T (a) (13) (T (a) S(b, a)) T (a) (14) (T (y) S(a, b)) T (b) (15) (T (y) S(b, b)) T (b) Wykonaliśmy wszystkie kroki dotyczące γ-formuł oraz stałych a i b. Jest widoczne, że druga formuła zmusza do wprowadzania coraz to nowych stałych (tak, jak ma to miejsce w formułach (6) oraz (7) powyżej). W konsekwencji, nie można zakończyć budowy tablicy analitycznej w tym przypadku. 6. Lawina miłości. Jak się wydaje (przyjmując, że pasywizacja w języku naturalnym odpowiada braniu konwersu relacji), strukturze składniowej zdania O ile choćby jeden osobnik jest zakochany sam w sobie, to jeśli każdy kogoś kocha, to ktoś jest kochany przez wszystkich odpowiada następujące zdanie języka KRP:. ( ) x xk(x, x) ( x y K(x, y) y x K(x, y)) 12

13 Spróbujemy zbudować tablice analityczne: dla zdania ( ) oraz dla jego zaprzeczenia. Najpierw tablica dla ( ): x K(x, x) ( x y K(x, y) y x K(x, y)) 1. (1 l ) x K(x, x) 2. a (1 p ) x y K(x, y) y x K(x, y) 3. (2) K(a, a) (3 l ) x y K(x, y) 4. a (3 p ) y x K(x, y) 6. a (4) y K(a, y) 5. a (5) K(a, a) (6) x K(x, a) 7. a (7) K(a, a) Zauważmy, że w lewej gałęzi tablicy nie mieliśmy do dyspozycji δ-formuły, pozwalającej wprowadzić nową stałą. W takiej sytuacji wprowadzamy nową stałą na mocy reguły dla γ-formuł. Otrzymana tablica nie jest zamknięta, a więc jej gałęzie otwarte (akurat wszystkie są otwarte) są spełnialne. Zauważmy również, że możemy wprowadzać tę samą stałą dla δ-formuł, znajdujących się na różnych gałęziach (można też zawsze używać różnych stałych na poszczególnych gałęziach). Teraz spróbujemy zbudować tablicę analityczną dla negacji zdania ( ): 13

14 ( x K(x, x) ( x y K(x, y) y x K(x, y))) 1. (1 g ) x K(x, x) 3. a 1 (1 d ) ( x y K(x, y) y x K(x, y)) 2. (2 g ) x y K(x, y) 4. a 1 8. a a 3 (2 d ) y x K(x, y) 5. a 1 9. a a 3 (3) K(a 1, a 1 ) (4) y K(a 1, y) 6. a 2 (5) x K(x, a 1 ) 7. a 3 (6) K(a 1, a 2 ) (7) K(a 3, a 1 ) (8) y K(a 2, y) 12. a 4 (9) x K(x, a 2 ) 13. a 5 (10) y K(a 3, y) 14. a 6 (11) x K(x, a 3 ) 15. a 7. Nie można zakończyć budowy tej tablicy. W ten oto sposób jeden samolub uruchomił potężną (nieskończoną!) lawinę miłości. Czy potrafisz napisać wzór na miłość ukryty w tej konstrukcji? Mówiąc poważnie: czy potrafisz wskazać model, w którym prawdziwa byłaby negacja zdania ( )? Jerzy Pogonowski Zakład Logiki i Kognitywistyki UAM pogon@amu.edu.pl 14

15 Wybrane pozycje bibliograficzne Annelis, I.A From Semantic Tableaux to Smullyan Trees: A History of the Development of the Falsifiability Tree Method. Modern Logic 1, Bell, J.L., Machover, M A Course in Mathematical Logic. North-Holland Publishing Company, Amsterdam New York Oxford. Beth, E.W Semantic Entailment and Formal Derivability. Mededelingen der Koninklijke Nederlandse Akademie van wetenschapen, afd. letterkunde, new series, vol. 18, no. 13, Amsterdam. Fitting, M First-Order Logic and Automated Theorem Proving. Springer Verlag, New York Berlin Heidelberg London Paris Tokyo Hong Kong. Gentzen, G Untersuchungen über das logische Schliessen. Mathematische Zeitschrift 39, , Georgacarakos, G.N., Smith, R Elementary Formal Logic. McGraw-Hill Book Company. Handbook of Automated Reasoning A. Robinson, A. Voronkov (eds.), Elsevier, Amsterdam London New York Oxford Paris Shannon Tokyo, The MIT Press, Cambridge, Massachusetts. Handbook of Tableau Methods Edited by: D Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J., Kluwer Academic Publishers, Dordrecht Boston London. Hintikka, J Form and Content in Quantification Theory. Acta Philosophica Fennica 8, Hodges, W Logic. Pelican Books. Howson, C Logic with trees. Routledge, London and New York. Jeffrey, R Formal Logic: Its Scope and Limits. McGraw-Hill, New York. Kleene, S.C Mathematical Logic. John Wiley & Sons, Inc. New York London Sydney. Kripke, S A Completeness Theorem in Modal Logic. Journal of Symbolic Logic 24,

16 Lis, Z Wynikanie semantyczne a wynikanie formalne. Studia Logica X, Marciszewski, W., Murawski, R Mechanization of Reasoning in a Historical Perspective. Rodopi, Amsterdam Atlanta. Nerode, A., Shore, R.A Logic for Applications. Graduate Texts in Computer Science, Springer. Pawlak, Z Automatyczne dowodzenie twierdzeń. Państwowe Zakłady Wydawnictw Szkolnych, Warszawa (seria: Biblioteczka Matematyczna, 19). Porębska, M., Suchoń, W Elementarne wprowadzenie w logikę formalna. Państwowe Wydawnictwo Naukowe, Warszawa. Priest, G An Introduction to Non-Classical Logic. Cambridge University Press. Quine, W.V A proof procedure for quantification theory. The Journal of Symbolic Logic Volume 20, Number 2, Rasiowa, H., Sikorski, R On the Gentzen Theorem. Fundamenta Mathematicae 48, Rasiowa, H., Sikorski, R The Mathematics of Metamathematics. Państwowe Wydawnictwo Naukowe, Warszawa. Smullyan, R First-Order Logic. Springer Verlag, Berlin. Schütte, K Ein System des verknüpfenden Schliessens. Archiv für mathematische Logik und Grundlagenforschungen 2, Wang, H Toward Mechanical Mathematics. IBM Journal Research and Development 4,

III rok kognitywistyki UAM,

III rok kognitywistyki UAM, METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 14: POWTÓRKA III rok kognitywistyki UAM, 2016 2017 Dzisiejszy wykład w całości poświęcony będzie omówieniu przykładowych zadań, podobnych do

Bardziej szczegółowo

III rok kognitywistyki UAM,

III rok kognitywistyki UAM, METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 6A: REZOLUCJA III rok kognitywistyki UAM, 2016 2017 1 Rezolucja w KRZ Dowody rezolucyjne w KRZ są równie proste, jak dowody tablicowe Metoda

Bardziej szczegółowo

TABLICE ANALITYCZNE KLASYCZNY RACHUNEK LOGICZNY: (PRELIMINARIA MATEMATYCZNE I LOGICZNE) (DRZEWA, INFORMACJE O KRZ I KRP) JERZY POGONOWSKI

TABLICE ANALITYCZNE KLASYCZNY RACHUNEK LOGICZNY: (PRELIMINARIA MATEMATYCZNE I LOGICZNE) (DRZEWA, INFORMACJE O KRZ I KRP) JERZY POGONOWSKI KLASYCZNY RACHUNEK LOGICZNY: TABLICE ANALITYCZNE (PRELIMINARIA MATEMATYCZNE I LOGICZNE) (DRZEWA, INFORMACJE O KRZ I KRP) JERZY POGONOWSKI ZAKŁAD LOGIKI STOSOWANEJ UAM http://www.logic.amu.edu.pl Niniejsza

Bardziej szczegółowo

III rok kognitywistyki UAM,

III rok kognitywistyki UAM, METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ III rok kognitywistyki UAM, 2016 2017 1 Cele wykładu Wykład ma trzy zasadnicze cele: 1. Przedstawienie wybranych metod dowodowych, stosowanych w logice.

Bardziej szczegółowo

Imię i nazwisko:... OBROŃCY PRAWDY

Imię i nazwisko:... OBROŃCY PRAWDY Egzamin: Logika Matematyczna, I rok JiNoI, 30 czerwca 2014 Imię i nazwisko:........................................... OBROŃCY PRAWDY Wybierz dokładnie cztery z poniższych pięciu zadań i spróbuj je rozwiazać.

Bardziej szczegółowo

WYKŁAD 7: DEDUKCJA NATURALNA

WYKŁAD 7: DEDUKCJA NATURALNA METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 7: DEDUKCJA NATURALNA III rok kognitywistyki UAM, 2016 2017 Systemy dedukcji naturalnej pochodzą od Gerharda Gentzena (1909 1945) oraz Stanisława

Bardziej szczegółowo

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca 2012 Imię i Nazwisko:........................................................... FIGLARNE POZNANIANKI Wybierz

Bardziej szczegółowo

Metalogika (11) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (11) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (11) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (11) Uniwersytet Opolski 1 / 80 Wstęp Plan wykładu

Bardziej szczegółowo

Metoda Tablic Semantycznych

Metoda Tablic Semantycznych Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,

Bardziej szczegółowo

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ KONWERSATORIUM 6: REZOLUCJA V rok kognitywistyki UAM 1 Kilka uwag terminologicznych Słuchacze zapewne pamiętają z zajęć dotyczących PROLOGu poniższą

Bardziej szczegółowo

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca 2013 Imię i Nazwisko:.................................................................................. I Wybierz

Bardziej szczegółowo

Strzępy Notatek do Wykładu. Logika Matematyczna. dla I roku Językoznawstwa i Informacji Naukowej UAM. Semestr Letni

Strzępy Notatek do Wykładu. Logika Matematyczna. dla I roku Językoznawstwa i Informacji Naukowej UAM. Semestr Letni Strzępy Notatek do Wykładu Logika Matematyczna dla I roku Językoznawstwa i Informacji Naukowej UAM Semestr Letni 2004-2005 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Spis

Bardziej szczegółowo

Logika Matematyczna. Zadania Egzaminacyjne, 2007

Logika Matematyczna. Zadania Egzaminacyjne, 2007 Logika Matematyczna Zadania Egzaminacyjne, 2007 I Rok Językoznawstwa i Informacji Naukowej UAM Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl Podajemy rozwiązania zadań egzaminacyjnych.

Bardziej szczegółowo

Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z...

Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z... Język rachunku predykatów 1 Zmienne x, y, z... 2 Predykaty n-argumentowe P(x, y,...), Q(x, y...),... 3 Funktory zdaniowe,,,, 4 Kwantyfikatory: istnieje, dla każdego Język rachunku predykatów Ustalenie

Bardziej szczegółowo

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ KONWERSATORIA 2015/2016 V rok kognitywistyki UAM 1 Uwagi organizacyjne Zajęcia 1 8: Jerzy Pogonowski (obie grupy) Zajęcia 9-15: Szymon Chlebowski (obie

Bardziej szczegółowo

Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań

Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań 1 Wprowadzenie Na tym wykładzie przyjmuję terminologię i

Bardziej szczegółowo

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca Imię i Nazwisko:...

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca Imię i Nazwisko:... JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca 2015 Imię i Nazwisko:............................................................... DZIARSKIE SKRZATY Wybierz

Bardziej szczegółowo

Dowody założeniowe w KRZ

Dowody założeniowe w KRZ Dowody założeniowe w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl w styczniu 2007 Jerzy Pogonowski (MEG) Dowody założeniowe w KRZ w styczniu 2007 1 / 10 Dowody

Bardziej szczegółowo

LOGIKA MATEMATYCZNA WYKŁAD 10: METODA REZOLUCJI W KRZ (20XII2007) II. 10. Dowody rezolucyjne w KRZ Przypomnienia i kilka definicji

LOGIKA MATEMATYCZNA WYKŁAD 10: METODA REZOLUCJI W KRZ (20XII2007) II. 10. Dowody rezolucyjne w KRZ Przypomnienia i kilka definicji LOGIKA MATEMATYCZNA WYKŁAD 10: METODA REZOLUCJI W KRZ (20XII2007) II. 10. Dowody rezolucyjne w KRZ Pokażemy teraz działanie pewnej metody dowodowej, mającej istotne zastosowania m.in. w automatycznym dowodzeniu

Bardziej szczegółowo

Rekurencyjna przeliczalność

Rekurencyjna przeliczalność Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne

Bardziej szczegółowo

WYKŁAD 3: METODA AKSJOMATYCZNA

WYKŁAD 3: METODA AKSJOMATYCZNA METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 3: METODA AKSJOMATYCZNA III rok kognitywistyki UAM, 2016 2017 Plan na dziś: 1. Przypomnimy, na czym polega aksjomatyczna metoda dowodzenia twierdzeń.

Bardziej szczegółowo

Logika Radosna 5. Jerzy Pogonowski. KRP: tablice analityczne. Zakład Logiki Stosowanej UAM

Logika Radosna 5. Jerzy Pogonowski. KRP: tablice analityczne. Zakład Logiki Stosowanej UAM Logika Radosna 5 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl KRP: tablice analityczne Jerzy Pogonowski (MEG) Logika Radosna 5 KRP: tablice analityczne 1 / 111 Wprowadzenie

Bardziej szczegółowo

Metalogika Wstęp. Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika Wstęp. Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika Wstęp Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika Wstęp Uniwersytet Opolski 1 / 22 Wstęp Cel wykładów

Bardziej szczegółowo

Drzewa Semantyczne w KRZ

Drzewa Semantyczne w KRZ Drzewa Semantyczne w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 7 XII 2006, 13:30 15:00 Jerzy Pogonowski (MEG) Drzewa Semantyczne w KRZ 7 XII 2006, 13:30 15:00

Bardziej szczegółowo

Wybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin.

Wybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin. Logika, II rok Etnolingwistyki UAM, 20 VI 2008. Imię i Nazwisko:.............................. GRUPA: I Wybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin.

Bardziej szczegółowo

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Zdań II

Wstęp do logiki. Klasyczny Rachunek Zdań II Wstęp do logiki Klasyczny Rachunek Zdań II DEF. 1 (Słownik). Następujące znaki tworzą słownik języka KRZ: p 1, p 2, p 3, (zmienne zdaniowe) ~,,,, (spójniki) ), ( (nawiasy). DEF. 2 (Wyrażenie). Wyrażeniem

Bardziej szczegółowo

Michał Lipnicki (UAM) Logika 11 stycznia / 20

Michał Lipnicki (UAM) Logika 11 stycznia / 20 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 11 stycznia 2013 Michał Lipnicki (UAM) Logika 11 stycznia 2013 1 / 20 KRP wstęp Wstęp Rozważmy wnioskowanie: Każdy człowiek jest śmiertelny. Sokrates

Bardziej szczegółowo

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty Rachunek predykatów Wykład 4 Plan wykładu Relacje i predykaty Formuły rachunku predykatów Interpretacje Logiczna równoważność Metoda tabel Modele skończone i nieskończone Rozstrzygalność Relacje i predykaty

Bardziej szczegółowo

Klasyczny Rachunek Zdań: Tablice Analityczne. (Logika Matematyczna: Wykłady 11,12) Semestr Zimowy Jerzy Pogonowski

Klasyczny Rachunek Zdań: Tablice Analityczne. (Logika Matematyczna: Wykłady 11,12) Semestr Zimowy Jerzy Pogonowski Klasyczny Rachunek Zdań: Tablice Analityczne (Logika Matematyczna: Wykłady 11,12) Semestr Zimowy 2007 2008 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl 11.0. Wprowadzenie Omówimy

Bardziej szczegółowo

Logika Matematyczna 11 12

Logika Matematyczna 11 12 Logika Matematyczna 11 12 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl TA w KRZ Jerzy Pogonowski (MEG) Logika Matematyczna 11 12 TA w KRZ 1 / 102 Wprowadzenie Wprowadzenie

Bardziej szczegółowo

Struktury formalne, czyli elementy Teorii Modeli

Struktury formalne, czyli elementy Teorii Modeli Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j

Bardziej szczegółowo

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 15 stycznia 2011 Michał Lipnicki () Logika 15 stycznia 2011 1 / 37 Wstęp Materiały na dzisiejsze zajęcia zostały opracowane na podstawie pomocy naukowych

Bardziej szczegółowo

Metalogika (10) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (10) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (10) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (10) Uniwersytet Opolski 1 / 291 Plan wykładu Plan

Bardziej szczegółowo

Logika Matematyczna 11 12

Logika Matematyczna 11 12 Logika Matematyczna 11 12 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 3, 10 stycznia 2008 Jerzy Pogonowski (MEG) Logika Matematyczna 11 12 3, 10 stycznia 2008 1

Bardziej szczegółowo

Programowanie deklaratywne i logika obliczeniowa

Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Wykład logika 12 godzin Dr hab. inż. Joanna Józefowska, prof. PP dyżur: poniedziałek 9.30-11.00 p. 10,

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań

Andrzej Wiśniewski Logika II. Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań 1 Wprowadzenie Podobnie jak w przypadku

Bardziej szczegółowo

Lekcja 3: Elementy logiki - Rachunek zdań

Lekcja 3: Elementy logiki - Rachunek zdań Lekcja 3: Elementy logiki - Rachunek zdań S. Hoa Nguyen 1 Materiał a) Zdanie proste, złożone b) Spójniki logiczne (funktory zdaniotwórcze):,,,,, (alternatywa wykluczająca - XOR). c) Tautologia, zdanie

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Podstawowe Pojęcia. Semantyczne KRZ

Podstawowe Pojęcia. Semantyczne KRZ Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel

Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:

Bardziej szczegółowo

Logika Matematyczna (2,3)

Logika Matematyczna (2,3) Logika Matematyczna (2,3) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 11, 18 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (2,3) 11, 18 X 2007 1 / 34 Język KRZ

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Logika pragmatyczna dla inżynierów

Logika pragmatyczna dla inżynierów Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny

Bardziej szczegółowo

Logika Matematyczna (10)

Logika Matematyczna (10) Logika Matematyczna (10) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Rezolucja w KRZ Jerzy Pogonowski (MEG) Logika Matematyczna (10) Rezolucja w KRZ 1 / 39 Plan

Bardziej szczegółowo

Logika rachunek zdań

Logika rachunek zdań Wprowadzenie do Wykładu 1 Logika Logika rachunek zdań Materiały pomocnicze do wykładu dla Studentów Informatyki Wydział EAIiIB AGH Antoni Ligęza Materiały pomocnicze: http://home.agh.edu.pl/~ligeza Wprowadzenie

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria

1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria Logika obliczeniowa - zadania 1 SKŁADNIA 1. Składnia 1.1. Teoria 1. Składnia oznacza reguły tworzenia... z.... 2. Rachunek predykatów pierwszego rzędu (w skrócie: rachunek predykatów) wyróżnia cztery zbiory

Bardziej szczegółowo

Techniki informacyjne dla wnioskowania oraz generowania, reprezentacji i zarządzania wiedzą

Techniki informacyjne dla wnioskowania oraz generowania, reprezentacji i zarządzania wiedzą Zakład Zaawansowanych Technik Informacyjnych (Z-6) Techniki informacyjne dla wnioskowania oraz generowania, reprezentacji i zarządzania wiedzą Zadanie nr 2 Relacyjne systemy dedukcyjne: teoria i zastosowania

Bardziej szczegółowo

WYKŁAD 2: PRELIMINARIA LOGICZNE

WYKŁAD 2: PRELIMINARIA LOGICZNE METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 2: PRELIMINARIA LOGICZNE III rok kognitywistyki UAM, 2016 2017 1 Plan na dziś Wprowadzimy kilka pojęć, które będą istotnie wykorzystywane w

Bardziej szczegółowo

Logika Matematyczna 16 17

Logika Matematyczna 16 17 Logika Matematyczna 16 17 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRP (3) Jerzy Pogonowski (MEG) Logika Matematyczna 16 17 Semantyka KRP (3) 1 / 24

Bardziej szczegółowo

Klasyczny rachunek predykatów

Klasyczny rachunek predykatów Kultura logiczna Klasyczny rachunek predykatów Bartosz Gostkowski bgostkowski@gmail.com Alfabet klasycznego rachunku zdań reguły konsytutywne języka Alfabet klasycznego rachunku predykatów (KRP Do alfabetu

Bardziej szczegółowo

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych

Bardziej szczegółowo

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 4. Semantyka Klasycznego Rachunku Zdań 1 Skróty: Język Klasycznego Rachunku Zdań zamiast Klasyczny Rachunek Zdań piszę

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Metoda tabel syntetycznych (MTS) MTS

Bardziej szczegółowo

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie: Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:

Bardziej szczegółowo

LOGIKA Klasyczny Rachunek Zdań

LOGIKA Klasyczny Rachunek Zdań LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć

Bardziej szczegółowo

DODATEK 1: Wtedy h(α) = 1 oraz h(β) = 0. Jak pamiętamy ze szkoły, obraz sumy zbiorów jest sumą obrazów tych zbiorów. Mamy zatem:

DODATEK 1: Wtedy h(α) = 1 oraz h(β) = 0. Jak pamiętamy ze szkoły, obraz sumy zbiorów jest sumą obrazów tych zbiorów. Mamy zatem: DODATEK 1: DOWODY NIEKTÓRYCH TWIERDZEŃ DOTYCZACYCH SEMANTYKI KLASYCZNEGO RACHUNKU ZDAŃ 2.2. TWIERDZENIE O DEDUKCJI WPROST (wersja semantyczna). Dla dowolnych X F KRZ, α F KRZ, β F KRZ zachodzą następujące

Bardziej szczegółowo

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Micha l Ziembowski m.ziembowski@mini.pw.edu.pl www.mini.pw.edu.pl/ ziembowskim/ October 2, 2016 M. Ziembowski (WUoT) Elementy logiki i teorii

Bardziej szczegółowo

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność

Bardziej szczegółowo

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Istnieje wiele systemów aksjomatycznych

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera wykładu z Metod dowodzenia...

Bardziej szczegółowo

Logika. Michał Lipnicki. 18 listopada Zakład Logiki Stosowanej UAM. Michał Lipnicki Logika 18 listopada / 1

Logika. Michał Lipnicki. 18 listopada Zakład Logiki Stosowanej UAM. Michał Lipnicki Logika 18 listopada / 1 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 18 listopada 2012 Michał Lipnicki Logika 18 listopada 2012 1 / 1 Wstęp Materiały na dzisiejsze zajęcia zostały opracowane na podstawie pomocy naukowych

Bardziej szczegółowo

Programowanie funkcyjne Wykład 14. Rachunek λ z typami prostymi

Programowanie funkcyjne Wykład 14. Rachunek λ z typami prostymi Programowanie funkcyjne Wykład 14. Rachunek λ z typami prostymi Zdzisław Spławski Zdzisław Spławski: Programowanie funkcyjne, Wykład 14. Rachunek λ z typami prostymi 1 Dowody konstruktywne Dedukcja naturalna

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP 1 Pojęcie dowodu w KRP Pojęcia: formuły zdaniowej języka Klasycznego Rachunku

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Zdań III

Wstęp do logiki. Klasyczny Rachunek Zdań III Wstęp do logiki Klasyczny Rachunek Zdań III Przypomnijmy: Logika: = Teoria form (schematów, reguł) poprawnych wnioskowań. Wnioskowaniem nazywamy jakąkolwiek skończoną co najmniej dwuwyrazową sekwencję

Bardziej szczegółowo

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ). 6. Wykład 6: Rachunek predykatów. Język pierwszego rzędu składa się z: symboli relacyjnych P i, i I, gdzie (P i ) oznaczać będzie ilość argumentów symbolu P i, symboli funkcyjnych f j, j J, gdzie (f j

Bardziej szczegółowo

Kultura logiczna Klasyczny rachunek zdań 2/2

Kultura logiczna Klasyczny rachunek zdań 2/2 Kultura logiczna Klasyczny rachunek zdań 2/2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 29 III 2 Plan wykładu: Wartościowanie w KRZ Tautologie KRZ Wartościowanie v, to funkcja, która posyła zbiór

Bardziej szczegółowo

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:

Bardziej szczegółowo

Modele Herbranda. Logika obliczeniowa. Joanna Józefowska. Szukamy modelu. Przykład Problemy. Model Herbranda

Modele Herbranda. Logika obliczeniowa. Joanna Józefowska. Szukamy modelu. Przykład Problemy. Model Herbranda Plan wykładu Szukamy modelu Model Herbranda Twierdzenia Logika obliczeniowa Instytut Informatyki Plan wykładu Szukamy modelu 1 Szukamy modelu Problemy 2 Model Herbranda Uniwersum Herbranda Interpretacja

Bardziej szczegółowo

Informacje ogólne. Językoznawstwo i nauka o informacji

Informacje ogólne. Językoznawstwo i nauka o informacji Informacje ogólne 1. Nazwa Logika matematyczna 2. Kod LOGMAT 3. Rodzaj obowiązkowy 4. Kierunek i specjalność studiów Językoznawstwo i nauka o informacji 5. Poziom studiów I 6. Rok studiów I 7. Semestr

Bardziej szczegółowo

Logika Matematyczna (I JiIN UAM)

Logika Matematyczna (I JiIN UAM) Logika Matematyczna (I JiIN UAM) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 31V-1VI 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (I JiIN UAM) 31V-1VI 2007 1

Bardziej szczegółowo

Konsekwencja logiczna

Konsekwencja logiczna Konsekwencja logiczna Niech Φ 1, Φ 2,..., Φ n będa formułami logicznymi. Formuła Ψ wynika logicznie z Φ 1, Φ 2,..., Φ n jeżeli (Φ 1 Φ 2 Φ n ) Ψ jest tautologia. Formuły Φ 1, Φ 2,..., Φ n nazywamy założeniami

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Zapoznaj z poniŝszym tekstem reprezentującym wiedzę logiczną o wartościach logicznych będących interpretacjami formuł złoŝonych

Bardziej szczegółowo

Drobinka semantyki KRP

Drobinka semantyki KRP Drobinka semantyki KRP Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Drobinka semantyki KRP Uniwersytet Opolski 1 / 48 Wstęp

Bardziej szczegółowo

Język KRP zadania z rozwiązaniami

Język KRP zadania z rozwiązaniami Język KRP zadania z rozwiązaniami Michał Lipnicki 1 Napisz schematy poniższych zdań w języku KRP. (1) Stefan pije. (2) Stefan pije z Romanem. (3) Stefan pije i zakąsza. (4) Stefan pije lub Roman zakąsza.

Bardziej szczegółowo

Logika Matematyczna Spójniki logiczne Tautologie Dowodzenie Kwantyfikatory Zagadki. Logika Matematyczna. Marcelina Borcz.

Logika Matematyczna Spójniki logiczne Tautologie Dowodzenie Kwantyfikatory Zagadki. Logika Matematyczna. Marcelina Borcz. 5 marca 2009 Spis treści 1 2 3 4 5 6 Logika (z gr. logos - rozum) zajmuje się badaniem ogólnych praw, według których przebiegają wszelkie poprawne rozumowania, w szczególności wnioskowania. Logika matematyczna,

Bardziej szczegółowo

ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje

ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje ĆWICZENIE 2 Klasyczny Rachunek Zdań (KRZ): wynikanie logiczne, wnioskowanie, niezawodny schemat wnioskowania, wnioskowanie dedukcyjne, równoważność logiczna, iniowalność spójników za mocą formuły. DEF.

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Predykatów I

Wstęp do logiki. Klasyczny Rachunek Predykatów I Wstęp do logiki Klasyczny Rachunek Predykatów I KRZ jest teorią stanowiącą wstępną część logiki formalnej, część zakładaną przez inne teorie. Przypomnijmy, jest on teorią związków logicznych między zdaniami

Bardziej szczegółowo

Szymon G l ab. Struktury losowe II Graf losowy. Instytut Matematyki, Politechnika Lódzka

Szymon G l ab. Struktury losowe II Graf losowy. Instytut Matematyki, Politechnika Lódzka Instytut Matematyki, Politechnika Lódzka Graf losowy jako granica Fraisse Przez K graf oznaczmy rodzinȩ wszystkich skończonych grafów (np. na N). Niech G bȩdzie granic a Fraisse rodziny K graf. Strukturȩ

Bardziej szczegółowo

Czyli o budowie drzew semantycznych.

Czyli o budowie drzew semantycznych. Czyli o budowie drzew semantycznych ZAŁÓŻMY Jednego z Was porwał okrutny PRL. W ramach okupu żąda, by obecni na sali udowodnili, że podane przez nich formuły są zawsze prawdziwe. Zaczynają zupełnie niewinnie

Bardziej szczegółowo

Dowód pierwszego twierdzenia Gödela o. Kołmogorowa

Dowód pierwszego twierdzenia Gödela o. Kołmogorowa Dowód pierwszego twierdzenia Gödela o niezupełności arytmetyki oparty o złożoność Kołmogorowa Grzegorz Gutowski SMP II rok opiekun: dr inż. Jerzy Martyna II UJ 1 1 Wstęp Pierwsze twierdzenie o niezupełności

Bardziej szczegółowo

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Postać klauzulowa formu l 2 Regu la rezolucji Regu la rezolucji dla klauzul ustalonych Regu la rezolucji dla klauzul ustalonych a spe lnialność Ogólna

Bardziej szczegółowo

NOWE ODKRYCIA W KLASYCZNEJ LOGICE?

NOWE ODKRYCIA W KLASYCZNEJ LOGICE? S ł u p s k i e S t u d i a F i l o z o f i c z n e n r 5 * 2 0 0 5 Jan Przybyłowski, Logika z ogólną metodologią nauk. Podręcznik dla humanistów, Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk 2003 NOWE

Bardziej szczegółowo

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań System aksjomatyczny logiki Budując logikę

Bardziej szczegółowo

Adam Meissner SZTUCZNA INTELIGENCJA

Adam Meissner SZTUCZNA INTELIGENCJA Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Elementy wnioskowania automatycznego

Bardziej szczegółowo

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan na pytanie o odniesienie przedmiotowe zdań odpowiedź

Bardziej szczegółowo

Logika intuicjonistyczna semantyka Kripke go

Logika intuicjonistyczna semantyka Kripke go Logika intuicjonistyczna semantyka Kripke go Definicja 1 Strukturą częściowo uporządkowaną (ang. partially ordered set, w skrócie poset) nazywamy układ (W, ), gdzie W to dowolny zbiór niepusty, zaś jest

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać

Bardziej szczegółowo

Rachunek zdań i predykatów

Rachunek zdań i predykatów Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)

Bardziej szczegółowo

Logika Radosna 2. Jerzy Pogonowski. KRZ: dowody założeniowe. Zakład Logiki Stosowanej UAM

Logika Radosna 2. Jerzy Pogonowski. KRZ: dowody założeniowe. Zakład Logiki Stosowanej UAM Logika Radosna 2 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl KRZ: dowody założeniowe Jerzy Pogonowski (MEG) Logika Radosna 2 KRZ: dowody założeniowe 1 / 94 Wprowadzenie

Bardziej szczegółowo

Dalszy ciąg rachunku zdań

Dalszy ciąg rachunku zdań Dalszy ciąg rachunku zdań Wszystkie możliwe funktory jednoargumentowe p f 1 f 2 f 3 f 4 0 0 0 1 1 1 0 1 0 1 Wszystkie możliwe funktory dwuargumentowe p q f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 f 11 f

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo