Wykłady z Mechaniki Kwantowej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykłady z Mechaniki Kwantowej"

Transkrypt

1 Wykłady z Mechaniki Kwantowej

2

3 Mechanika Kwantowa, Relatywistyczna Mechanika Kwantowa Wykład dla doktorantów(017) Jednej rzeczy nauczyłem się w moim długim życiu: że cała nasza nauka w konfrontacji z rzeczywistością wydaje się prymitywna i dziecinna - a jednak jest to najcenniejsza rzecz, jaka posiadamy. Albert Einstein Wykład 13 Marek Zrałek Zakład Teorii Pola i Cząstek Elementarnych Instytut Fizyki Uniwersytet Śląski Katowice, 017

4

5 W praktyce stosujemy kopenhaską interpretacje mechaniko kwantowej oficjalny pogląd profesjonalnych fizyków q Zadanie fizyków to przewidzieć wyniki doświadczeń, MK pozwala to zrobić, q Nie stajemy w obliczu problemów epistemologicznych. Są też tacy, których nie satysfakcjonuje interpretacja kopenhaska q w interpretacji tej tkwi kłopotliwy paradoks, q Filozofia Bohra wolno mówić o fizycznych cechach układu dopiero po wykonaniu odpowiedniego pomiaru (pomiar ma szczególna wagę), q Zupełnie inne znaczenie pomiaru klasycznego i kwantowego Ø klasycznie -- pomiar rejestruje tak czy inaczej istniejącą rzeczywistość, Ø kwantowo -- pomiar nie rejestruje rzeczywistości, pomiar ją kreuje q Aparatura jest klasyczne problem gdzie przebiega linia podziału pomiędzy układem kwantowym i makroskopowym aparatem, q Każdy układ kwantowy może ewoluować na dwa różne sposoby:

6 Izolowany układ -- ewolucja unitarna, Pomiar redukcja pakietu falowego Pojedynczy elektron Kwantowo: Pomiar dowolnej wielkości fizycznej zmienia na ogół stan układu kwantowego. Jeśli układ był w stanie ρ i dokonaliśmy pomiaru wielkości fizycznej A, w wyniku czego otrzymaliśmy wartość a, to stan układu po pomiarze będzie opisany operatorem statystycznym: ρ(a) = P aρp a Tr(ρP a ) Pomiar położenia elektronu lata świetlne

7 Redukcja pakietu falowego Klisza fotograficzna Pakiet falowy Wyświetlony element kliszy Pakiet falowy po redukcji Ø Musi nastąpić, Ø Kolaps następuje natychmiast w całej przestrzeni, Ø Czasami mówimy o redukcji stanu. przed pomiarem 1 = ( ) + z z po pomiarze = z

8 Redukcja stanu nie jest unitarną ewolucją w czasie zadaną równaniem Schrödingera. Jak następuje pociemnienie kliszy? P wz (t) v foton wzbudza atom, v padające fotony opiszemy falą elektromagnetyczną, v mamy atom w stanie podstawowym, na które pada sinusoidalne zaburzenie, v możemy znaleźć prawdopodobieństwo, że atom jest w stanie wzbudzonym. 1 T wz 100% szansa, że atom zostanie wzbudzony t

9 Stan atomu możemy zapisać w sposób: Tak więc: P wz = αw = 1 α p ψ + α = αp ψ p α w p + αw = ψ 1 w To wszystko co MK mówi o wzbudzaniu atomów przez fotony, co więc z tego wynika? P wz = 1 1) Kiedy następuje przejście, czy w chwili gdy? Może nastąpić w każdej chwili dla t > 0. ) W którym momencie następuje redukcja pakietu falowego, co na ten temat mówi równanie Schrödingera? Nie wiemy, równanie Schrödingera nie daje absolutnie żadnej informacji na ten temat. 3) Dlaczego więc następuje redukcja pakietu falowego? Redukcja stanu wynika z faktu, że nastąpiła obserwacja, a nie wynika z mechaniki kwantowej. 4) Jakie jest więc znaczenia funkcji falowej? Funkcja falowa nie ma przy pomiarze żadnego znaczenia, opisuje tylko naszą informację o systemie.

10 Kolaps funkcji falowej nie ma specjalnego znaczenia, to tak jakbyśmy przepowiadali pogodę: Prognoza pogody: Jutro jest 60%-owa szansa, że nie będzie padać deszcz! Czekamy do południa, wychodzimy z domu i stwierdzamy, że pada. Wtedy Ø prawdopodobieństwo, że pada - 40% kolapsuje do 100%, Ø prawdopodobieństwo, że nie pada - 60% kolapsuje do 0%, Ø nikt nie jest zdziwiony takim stanem rzeczy, Ø Jeżeli ψ odpowiada jakiemuś fizycznemu procesowi to problem, Ø problemu nie ma, gdy ψ opisuje tylko naszą wiedzę o procesie. Przyjrzyjmy się bliżej procesowi pomiaru nieskończony regres (powrót to pierwotnej formy)

11 Gdy będziemy bardziej dokładnie przyglądać się pomiarowi to, gdyby o nim decydowała ewolucja unitarna układu, pomiar nigdy by nie nastąpił. Jakie zrobiliśmy uproszczenia? v Stan atomu nie wygląda tak prosto, jest to skomplikowany stan splatany, v Powinniśmy rozpatrywać układ: wszystkie atomy w kliszy + foton ψ (α (α p p = ψ ψ (α p p p + + ψ α α p w w + ψ ψ w w α w ) ) N ψ w ) 1 0 ψ (inne atomy) ψ (inne atomy) 0 0 ψ (inne atomy) ν ν N ν Rozpatrzymy prostszą sytuację: rezygnujemy z pomiaru lokalizacji fotonu, zajmiemy się jego energią. Możemy wtedy rozpatrywać jeden atom. Załóżmy, że foton może mieć dużą energię (i może atom zjonizować), lub małą (wtedy atom pozostanie w stanie podstawowym). Wtedy stan układu ma postać:

12 ψ = α ω ϕ + β mała neutr ω dużu ϕ zjonizowany W tej nowej sytuacji niewiele to zmieniło; nadal układ jest w stanie czystym i nie widać redukcji pakietu falowego. Aby się zorientować jaka jest energia fotonu, patrzymy czy atom jest zjonizowany. Umieszczamy go w zewnętrznym polu elektrycznym gdy zostaje odchylony to był zjonizowany a więc foton miał dużą energię. ψ = α ω ϕ χ + β ω mała neutr nieodchyla się dużu ϕ zjonizowany χ odchyla się To nic nie pomogło, otrzymaliśmy dodatkowo bardziej splątany stan, nic nie wskazuje na redukcję pakietu. Możemy tak robić dalej i próbować np. złapać odchylony atom w detektorze D ψ = α ω ϕ χ D + β ω mała dużua ϕ neutr zjonizowany nieodchyla się χ odchyla się zla D nie zla

13 I tak możemy coraz dalej. Mamy nieskończony regres. Nie ma miejsca na pomiar. Aby przerwać ten nieskończony regres musimy więc wprowadzić postulat projekcji na stan mierzony. Doświadczenie nas uczy, że zawsze zaobserwujemy atom albo zaobserwujemy jego brak. Tak więc sztucznie wprowadzamy założenie: Ewolucja unitarna --- Redukcja ---- Ewolucja unitarna (Cały stan splątany zamieniony w jeden składnik) Albo pierwszy z prawdopodobieństwem, albo drugi z prawdopodobieństwem. W obydwu tych przypadkach detektor pozostaje w dobrze zdefiniowanym stanie i wynik pomiaru jest ewidentny. β Redukcja stanu nie odpowiada żadnemu rzeczywistemu procesowi fizycznemu. Jest to czysty matematyczny zabieg zrobiony po to aby być w zgodzie z doświadczeniem. α

14 Brak zrozumienia procesu pomiaru to kłopotliwy punkt mechaniki kwantowej. Staje się on tym bardziej kłopotliwy, bo w pewnych sytuacjach redukcja stanu będzie konieczna a innym razem zbędna. Aby to zbadać, rozpatrzymy trzy sytuacje. W dwóch pierwszych redukcja pakietu nie będzie potrzebna. W trzecim nie dokonamy pomiaru bez postulatu redukcji. Jak produkowany jest foton? 3 Foton z duża energią 1 Foton z mała energią I. Przygotowujemy układ w stanie 3 lub w stanie Gdy mała energia fotonu (stan ): ψ = ω mała ϕ neutr χ nieodchyla się D zla

15 Gdy energia fotonu duża: ψ = ω dużua ϕ zjonizowany χ odchyla się D nie zla II. W 0% atomy są w stanie a w 80% w stanie 3. Wtedy nasz stan po pomiarze będzie opisany operatorem statystycznym: ρ = 0.ψ ψ + ψ ψ i 0. 8 i bez redukcji pakietu falowego otrzymamy wynik 0% fotonów ma małą energię a 80% dużą, bowiem po pomiarze na wskutek unitarnej ewolucji układ jest w stanie 3 3 ρ = 0.ψ ψ ψ mała mała duż ψ duż W obydwu rozpatrywanych przypadkach pomiar w mechanice kwantowej nie jest sprzeczny z naszym postrzeganiem rzeczywistości. III. Przygotowujemy zbiór atomów w stanie czystym:

16 ψ = + 0. ψ ψ 0. 8 Nieskończony regres nie może zostać przerwany bowiem otrzymamy czysty stan końcowy: ψ = 0. ψ ψ kon mała Sytuacja jest bardzo niezadowalająca. Aby dokonać pomiaru, raz musimy zgodzić się na redukcję pakietu falowego, a innym razem nie jest to potrzebne. Nie musimy, w sytuacji gdy przygotowujemy układ w stanie, który jest stanem własnym aparatury pomiarowej. A także gdy układ opisany jest mieszaniną statystyczną. W każdym innym przypadku redukcja jest konieczna. Pokażemy jeszcze inne dziwne własności pomiaru kwantowego, wskazujące na jego aktywną rolę i kreowanie rzeczywistości. I. W niektórych przypadkach pomiar może grać taką samą rolę jak dekoherencja 3 duz

17 Rozpatrzymy pojemnik z cząstkami o spinie ½ w stanie czystym Początkowa superpozycja SG +z -z SG Końcowa superpozycja Nie wykonujemy pomiaru rzutu spinu Mierzymy rzut spinu Detektor Początkowa superpozycja SG +z SG Końcowa mieszanina -z Detektor Widzieliśmy, że taką samą rolę odgrywa dekoherencja Aparatura pomiarowa zamieniła superpozycję w mieszaninę statystyczną

18 II. Jaki jest stan fotonu, który powstał z rozpadu atomu? Będzie to drugi przykład pokazujący aktywną rolę pomiaru (pomiar kreuje rzeczywistość). Atom zostaje wzbudzony i emituje foton, Okazuje się, że na pytanie o stan fotonu nie ma czasami jednoznacznej odpowiedzi, Stan fotonu może zależeć od rodzaju pomiaru tego stanu, I ten wpływ może mieć miejsce nawet wtedy, gdy stan fotonu jest mierzony znacznie później po jego powstaniu. Załóżmy, że rozpadające się atomy mają dwa blisko odległe stany podstawowe a ωh ωg h g E.T. Jaynes, Quantum beats w Foudations of Radiation Theory and Quantum Electrodynamics, New York, Plenum Press,1980.

19 Stany pola elekromagnetycznego 1 ψ = h h + Stany atomów po emisji fotonu ( ϕ ω ϕ ω ) g g Splatany stan atomów i pola Mierzymy stan atomu a dokładniej ich energie, otrzymamy możliwe dwie wartości: Eg Eh Po pomiarze wiemy w jakim stanie jest nasz układ: ψ = ϕ ω albo ψ g = ϕg g h h h ω Stąd dokładnie wiemy jaką energię mają fotony: ωh ωg

20 Ale możemy także w inny sposób mierzyć energię atomów, określamy nowe stany: 1 ϕ + = g + 1 ω + = ( ω g + ω h Wtedy stan atomu może być także zapisany w sposób: ψ ) 1 = ( ϕ+ ω+ + ϕ ω Joynes w Quantum beats opisuje w jaki sposób mierzyć nowe stany atomów: ( oświetlamy atomy pulsowym promieniowaniem elekromagnetycznym o określonym natężeniu i czasie trwania). Okazuje się, że gdy przed oświetleniem atom był w jednym z nowych stanów + lub - to później będzie: ϕ+ ( ϕ ϕ ) ϕ g h ϕ ω ϕ = = 1 1 ) ( ϕ ϕ ) ( ω g ω h ϕh g h )

21 Następnie aparatura mierzy energie atomów w tradycyjny sposób, jak poprzednio. Gdy zmierzymy, że atom ma energię to oznacza, że przed pomiarem splątany układ (atom + foton) był w stanie: E g E g ϕ + ω + I podobnie: E h ϕ ω Widzimy więc, że przy takim sposobie pomiaru otrzymamy fotony, w stanach z nieokreśloną energią. Poza tym pomiar stanu atomu mógł się odbyć w dużym odstępie czasu od wysłania fotonu.

22 III. Kwantowy efekt Zenona Efekt psa stróża, Obserwowany garnek nigdy nie wykipi Najpierw pojawił się w kontekście rozpadów niestabilnych cząstek. Gdy przygotujemy atomy w stanach wzbudzonych a następnie będziemy ciągle patrzeć czy się już rozpadły, to przedłużymy ich czas życia. Gdy zwiększamy liczbę obserwacji to atomy nie rozpadają się wcale. Paradoks Zenona Zenon z Elei ( p.n.e.) Achilles nigdy nie dogoni żółwia W Mechanice Kwantowej mamy podobną sytuację B.Misra & E.C.G. Sudarshan, The Zeno s paradoks in quantum mechanics, J.Math. Phys., 18(1977)756 Przeprowadzono eksperyment w odwrotną stronę wzbudzając atomy laserowym światłem.

23 Chociaż MK nie przewiduje momentu, w którym nastąpi przeskok to wiemy, że po czasie przejście takie nastąpi z pewnością. T wz W opisanym eksperymencie pokazano, że prawdopodobieństwo przejścia zmniejsza się gdy obserwujemy czy przejście takie już nastąpiło. Czemu tak się dzieje? Wzbudzany atom jest w stanie: ψ + α = αp ψ p w ψ w P wz αp α w W chwili t = 0 α ψ = ψ p p = 1, αw = 0 czas Po pewnym małym czasie, prawdopodobieństwo, że atom się wzbudzi trochę wzrośnie i tym samym zmaleje szansa, że atom pozostaje w stanie podstawowym. Tak będzie gdy nie podglądamy czy atom się wzbudził.

24 Gdy wykonujemy pomiar i otrzymujemy, że atom jest ciągle w stanie podstawowym, następuje kolaps funkcji falowej: ψ + α = α ψ p p w ψ w ψ p Wróciliśmy więc do stanu początkowego. Zegar się zresetował (t 0), zaczynamy go liczyć od początku. Gdy później dokonamy pomiaru i atom był w stanie wzbudzonym: ψ = α ψ + α ψ ψ p w p w w Wtedy pomiar każe atomom się rozpaść. Ale ta sytuacja nie bardzo ma szansę nastąpić gdy od początku wykonujemy pomiary. W konsekwencji atomy pozostają w stanie podstawowym, ich czas życia wydłuża się.

25 Prawdopodobieństwo, że układ się nie rozpadnie (nie obserwując): Zadanie: Sprawdzić tę relację Rozpatrzmy N pomiarów w interwale czasu (0,t), wtedy: W przypadku dużej częstości pomiarów:

26 Gdy mamy natomiast klasyczny rozpad zadany formułą wykładniczą: Nie czuje powtarzających się obserwacji gdyż: W opisywanym doświadczeniu badano jony berylu. Wykres obok podaje prawdopodobieństwo, że po czasie nasz układ będzie w stanie wzbudzonym. Widać wyraźnie, że wynik zależy od liczby obserwacji n i dobrze się zgadza z teoretycznymi przewidywaniami. T wz Należy jednak wspomnieć, że taka interpretacja wyników jest jedną z możliwych 9 B +

27 Próby rozwiązania problemu pomiaru Zawsze próbując interpretować pomiar jako unitarną ewolucję układu przechodzimy do makroskopowego detektora. Ale wiemy już, że każdy makroskopowy obiekt podlega dekoherencji. Przypomnijmy, że q Otoczenie, w którym umieszczony jest nasz makroskopowy detektor podlega stale nieregularnym fluktuacjom, q Jeśli makroskopowy detektor jest w stanie czystym będącym superpozycją, to każdy stan tej superpozycji będzie w różny sposób oddziaływać z otoczeniem, będzie mieć w szczególności różną energię oddziaływania, q Dlatego czasowa ewolucja każdego składnika superpozycji stale i nieregularnie fluktuuje, q A taka sytuacja, jak wiemy, nie różni się niczym od mieszaniny stanów. W naszych dotychczasowych rozważaniach traktowaliśmy detektor jako obiekt kwantowy. Zjawisko dekoherencji uświadamia nam, że jest to niewłaściwe podejście. Może uwzględnienie tego błędu rozwiąże problem pomiaru?

28 Mieszacz obiekt makroskopowy, opisuje wszystkie niedokładności rzeczywistego eksperymentu Idealny detektor dokonuje właściwego pomiaru, nie podlega wpływowi otoczenia Wchodzący stan kwantowy Mieszacz Idealny detektor Stan wyjściowy Makroskopowy detektor Mieszacz tu odbywa się całe oddziaływanie z otoczeniem, i wewnątrz samego detektora. Nie wiemy jak się to odbywa, i nie można tych procesów włączyć w kwantowo-mechaniczne zachowanie detektora. Procesy tu zachodzące można traktować jako nieznane i niekontrolowane perturbacje.

29 Początkowy stan czysty dociera do detektora jako stan mieszany: ψ = i α n n,i A n,i = a n,i n n k ρ = α 1 k i α 1 k k α 1,i 1,i + α i 1 k k i α k α,i,i +... = i k = β 1 ρ 1 + β ρ +... = β n ρ n n k β n = α n k ρ n = i k α n i α n k n,i n,i β n = 1 n Trρ n = 1 Trρ = 1

30 Jak to wszystko pracuje? Na wejściu mamy układ w dowolnym stanie, który podlega pomiarowi (stan własny aparatury, mieszanina statystyczna lub koherentna superpozycja jak np. w przypadku poprzednio opisanym atom emituje foton) Foton wchodzi do mieszacza, na skutek dekoherencji każdy stan kwantowy staje się mieszaniną statystyczną. Gdy układ był już w stanie mieszanym rola mieszacza nie jest potrzebna. Gdy układ był w stanie czystym przechodzi w stan mieszany. W tej sytuacji to co dociera do idealnego detektora już jest mieszanką statystyczną. Wtedy, jak wiemy, założenie o redukcji pakietu falowego nie jest potrzebne. Tak więc zawsze układ dociera do idealnego detektora w stanie mieszanym. Czyli założenie o redukcji pakietu falowego nie jest potrzebne. Na skutek dekoherencji, to co mierzymy zawsze już opisane jest mieszanką statystyczną.

31 Niestety taka opinia nie jest powszechna. Okazuje się, że są sytuacje gdzie dekoherencja nie jest w stanie wymazać całą kwantową informację. W przytoczonej pracy pokazano, że czasami na skutek dekoherencji układ nie gubi całej kwantowej koherencji. W tej sytuacji dekoherencja nie rozwiązuje problemy pomiaru. Postulat redukcji stanu dalej musiałby istnieć. Sprawa pozostaje otwarta W rzeczywistym świecie bardzo trudno teoretycznie opisać dekoherencję. Nie można więc także jednoznacznie stwierdzić, że rozwiązuje ona problem pomiaru. To jest powodem braku ogólnej zgody na takie rozwiązanie i poszukiwań innych alternatywnych odpowiedzi.

32 Ale tą sytuację znamy. To tak jakbyśmy przygotowali układ w stanie własnym obserwabli, którą za chwilę mierzymy

33 Tutaj także mamy sytuację jak w makroświecie. Nie wiemy czy atom jest w stanie wzbudzonym czy podstawowym, ale z taką niewiedzą bardzo często się spotykamy w naszym makroskopowym świecie.

34 Dziękuję za uwagę 34

o pomiarze i o dekoherencji

o pomiarze i o dekoherencji o pomiarze i o dekoherencji Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW pomiar dekoherencja pomiar kolaps nieoznaczoność paradoksy dekoherencja Przykładowy

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Wykłady z Mechaniki Kwantowej

Wykłady z Mechaniki Kwantowej Wykłady z Mechaniki Kwantowej Mechanika Kwantowa, Relatywistyczna Mechanika Kwantowa Wykład dla doktorantów (2017) Wykład 3 Fakty nie są najważniejsze. Zresztą, aby je poznać, nie trzeba studiować na

Bardziej szczegółowo

h 2 h p Mechanika falowa podstawy pˆ 2

h 2 h p Mechanika falowa podstawy pˆ 2 Mechanika falowa podstawy Hipoteza de Broglie a Zarówno promieniowanie jak i cząstki materialne posiadają naturę dwoistą korpuskularno-falową. Z każdą mikrocząstką można związać pewien proces falowy pierwotnie

Bardziej szczegółowo

Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?

Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo? Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej Klasyczny

Bardziej szczegółowo

interpretacje mechaniki kwantowej fotony i splątanie

interpretacje mechaniki kwantowej fotony i splątanie mechaniki kwantowej fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Twierdzenie o nieklonowaniu Jak sklonować stan kwantowy? klonowanie

Bardziej szczegółowo

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów

Bardziej szczegółowo

Paradoksy mechaniki kwantowej

Paradoksy mechaniki kwantowej Wykład XX Paradoksy mechaniki kwantowej Chociaż przewidywania mechaniki kwantowej są w doskonałej zgodności z eksperymentem, interpretacyjna strona teorii budzi poważne spory. Przebieg zjawisk w świecie

Bardziej szczegółowo

Miary splątania kwantowego

Miary splątania kwantowego kwantowego Michał Kotowski michal.kotowski1@gmail.com K MISMaP, Uniwersystet Warszawski Studenckie Koło Fizyki UW (SKFiz UW) 24 kwietnia 2010 kwantowego Spis treści 1 2 Stany czyste i mieszane Matematyczny

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Model Bohra budowy atomu wodoru - opis matematyczny

Model Bohra budowy atomu wodoru - opis matematyczny Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe

Bardziej szczegółowo

Postulaty interpretacyjne mechaniki kwantowej Wykład 6

Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 19 września 2014 Karol Kołodziej Postulaty interpretacyjne mechaniki

Bardziej szczegółowo

Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana

Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana Wszechświat Cząstek Elementarnych dla Humanistów Aleksander Filip Żarnecki Wykład ogólnouniwersytecki 27 listopada 2018 A.F.Żarnecki WCE Wykład 8 27 listopada 2018 1 / 28 1 Budowa materii (przypomnienie)

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW

fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW wektory pojedyncze fotony paradoks EPR Wielkości wektorowe w fizyce punkt zaczepienia

Bardziej szczegółowo

Seminarium: Efekty kwantowe w informatyce

Seminarium: Efekty kwantowe w informatyce Seminarium: Efekty kwantowe w informatyce Aleksander Mądry Sprawy organizacyjne Spotykamy się w piątki o 12:15 w sali 105. Sprawy organizacyjne Spotykamy się w piątki o 12:15 w sali 105. Każdy kto będzie

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 9 Janusz Andrzejewski Albert Einstein ur. 14 marca 1879 w Ulm, Niemcy, zm. 18 kwietnia 1955 w Princeton, USA) niemiecki fizyk żydowskiego pochodzenia, jeden z największych fizyków-teoretyków

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

Atomy mają moment pędu

Atomy mają moment pędu Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

Historia. Zasada Działania

Historia. Zasada Działania Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia

Bardziej szczegółowo

Postulaty mechaniki kwantowej

Postulaty mechaniki kwantowej 3.10.2004 11. Postulaty mechaniki kwantowej 120 Rozdział 11 Postulaty mechaniki kwantowej Mechanika kwantowa, jak zresztą każda teoria fizyczna, bazuje na kilku postulatach, które przyjmujemy "na wiarę".

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

Efekt fotoelektryczny

Efekt fotoelektryczny Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej

Bardziej szczegółowo

Cząstki elementarne i ich oddziaływania III

Cząstki elementarne i ich oddziaływania III Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania

Bardziej szczegółowo

Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak

Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka 13 listopada 2007 Plan wystapienia 1 Informatyka Kwantowa podstawy 2 Opis problemu (przeszukiwanie zbioru) 3 Intuicyjna

Bardziej szczegółowo

Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana

Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 21 listopada 2017 A.F.Żarnecki WCE Wykład

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Protokół teleportacji kwantowej

Protokół teleportacji kwantowej Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 9 stycznia 008 Teleportacja kwantowa 1993 Propozycja teoretyczna protokołu teleportacji

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

Dualizm korpuskularno falowy

Dualizm korpuskularno falowy Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p

Bardziej szczegółowo

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski VIII. TELEPORTACJA KWANTOWA Janusz Adamowski 1 1 Wprowadzenie Teleportacja kwantowa polega na przesyłaniu stanów cząstek kwantowych na odległość od nadawcy do odbiorcy. Przesyłane stany nie są znane nadawcy

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania

Bardziej szczegółowo

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega

Bardziej szczegółowo

Efekt Halla i konforemna teoria pola

Efekt Halla i konforemna teoria pola Efekt Halla i konforemna teoria pola 19.01.2012 / Seminarium UJ O czym będziemy mówić? Efekt Halla Wstępne informacje Klasycznie i kwantowo Rozwiazanie Laughlina Mini wprowadzenie Laughlin w Dalsza perspektywa

Bardziej szczegółowo

Ćwiczenie LP2. Jacek Grela, Łukasz Marciniak 25 października 2009

Ćwiczenie LP2. Jacek Grela, Łukasz Marciniak 25 października 2009 Ćwiczenie LP2 Jacek Grela, Łukasz Marciniak 25 października 2009 1 Wstęp teoretyczny 1.1 Energetyczna zdolność rozdzielcza Energetyczna zdolność rozdzielcza to wielkość opisująca dokładność detekcji energii

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

Wykłady z Mechaniki Kwantowej

Wykłady z Mechaniki Kwantowej Wykłady z Mechaniki Kwantowej Mechanika Kwantowa, Relatywistyczna Mechanika Kwantowa Wykład dla doktorantów (2017) Wykład 7 Jesteśmy uczniami w szkole natury i kształtujemy nasze pojęcia z lekcji na lekcję.

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017

Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 B l i ż e j N a u k i Kwantowe stany splątane Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 Co to jest fizyka? Kopnij piłkę! Co to jest fizyka? Kopnij piłkę! Kup lody i poczekaj

Bardziej szczegółowo

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 30 30 Zał. nr do ZW 33/01 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim Podstawy fizyki kwantowej Nazwa w języku angielskim Fundamental of Quantum Physics Kierunek studiów (jeśli

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac

Bardziej szczegółowo

Wykład 13 Mechanika Kwantowa

Wykład 13 Mechanika Kwantowa Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne

Bardziej szczegółowo

Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest:

Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Zasada nieoznaczoności Heisenberga Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Pewnych wielkości fizycznych nie moŝna zmierzyć równocześnie z dowolną dokładnością. Iloczyn

Bardziej szczegółowo

W5. Komputer kwantowy

W5. Komputer kwantowy W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Pokazy Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Zjawisko fotoelektryczne Zjawisko fotoelektryczne polega na tym, że w wyniku

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych. Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy

Bardziej szczegółowo

(U.14) Oddziaływanie z polem elektromagnetycznym

(U.14) Oddziaływanie z polem elektromagnetycznym 3.10.2004 35. U.14 Oddziaływanie z polem elektromagnetycznym 131 Rozdział 35 U.14 Oddziaływanie z polem elektromagnetycznym 35.1 Niezmienniczość ze względu na W rozdziale 16 wspominaliśmy jedynie o podstawowych

Bardziej szczegółowo

V. RÓWNANIA MECHANIKI KWANTOWEJ

V. RÓWNANIA MECHANIKI KWANTOWEJ V. RÓWNANIA MECHANIKI KWANTOWEJ 1 1 Postulaty mechaniki kwantowej Istota teorii kwantowej może być sformułowana za pomocą postulatów, których spełnienie postulujemy i których nie można wyprowadzić z żadnych

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć

Bardziej szczegółowo

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE

Bardziej szczegółowo

WYZNACZANIE ZAWARTOŚCI POTASU

WYZNACZANIE ZAWARTOŚCI POTASU POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW obowiązuje w r. akad. 2017 / 2018 WYZNACZANIE ZAWARTOŚCI POTASU W STAŁEJ PRÓBCE SOLI Opiekun ćwiczenia: Miejsce ćwiczenia:

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Informatyka kwantowa. Karol Bartkiewicz

Informatyka kwantowa. Karol Bartkiewicz Informatyka kwantowa Karol Bartkiewicz Informacja = Wielkość fizyczna Jednostka informacji: Zasada Landauera: I A =log 2 k B T ln 2 1 P A R. Landauer, Fundamental Physical Limitations of the Computational

Bardziej szczegółowo

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii Fizyka Wydział Zarządzania i Ekonomii Kontakt z prowadzącym zajęcia dr Paweł Możejko 1e GG Konsultacje poniedziałek 9:00-10:00 paw@mif.pg.gda.pl Rok akademicki 2013/2014 Program Wykładu Mechanika Kinematyka

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

III.1 Ruch względny. III.1 Obserwacja położenia z dwóch różnych układów odniesienia. Pchnięcia (boosts) i obroty.metoda radarowa. Wykres Minkowskiego

III.1 Ruch względny. III.1 Obserwacja położenia z dwóch różnych układów odniesienia. Pchnięcia (boosts) i obroty.metoda radarowa. Wykres Minkowskiego III.1 Ruch względny III.1 Obserwacja położenia z dwóch różnych układów odniesienia. Pchnięcia (boosts) i obroty.metoda radarowa. Wykres Minkowskiego Jan Królikowski Fizyka IBC 1 III.1 Obserwacja położenia

Bardziej szczegółowo

Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15

Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 =============================================== =========================

Bardziej szczegółowo

Wielcy rewolucjoniści nauki

Wielcy rewolucjoniści nauki Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy

Bardziej szczegółowo

Kinematyka relatywistyczna

Kinematyka relatywistyczna Kinematyka relatywistyczna Fizyka I (B+C) Wykład VI: Prędkość światła historia pomiarów doświadczenie Michelsona-Morleya prędkość graniczna Teoria względności Einsteina Dylatacja czasu Prędkość światła

Bardziej szczegółowo

Radosław Chrapkiewicz, Piotr Migdał (SKFiz UW) Optyczny wzmacniacz parametryczny jako źródło splątanych par fotonów

Radosław Chrapkiewicz, Piotr Migdał (SKFiz UW) Optyczny wzmacniacz parametryczny jako źródło splątanych par fotonów Optyczny wzmacniacz parametryczny jako źródło splątanych par fotonów Radosław Chrapkiewicz, Piotr Migdał (SKFiz UW) VII OSKNF 8 XI 2008 Plan Po co nam optyka kwantowa? Czerwony + Czerwony = Niebieski?

Bardziej szczegółowo

Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego

Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU Janusz Adamowski 1 1 Przestrzeń Hilberta Do opisu stanów kwantowych używamy przestrzeni Hilberta. Przestrzenią Hilberta H nazywamy przestrzeń wektorową

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Rozmycie pasma spektralnego

Rozmycie pasma spektralnego Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości

Bardziej szczegółowo

Wstęp do algorytmiki kwantowej

Wstęp do algorytmiki kwantowej Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Komputer kwantowy - co to właściwie jest? Komputer kwantowy Komputer, którego zasada działania nie może zostać wyjaśniona bez użycia formalizmu mechaniki

Bardziej szczegółowo

WFiIS. Wstęp teoretyczny:

WFiIS. Wstęp teoretyczny: WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Elementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 1923) De Broglie zaproponował, że każdy

Bardziej szczegółowo

= A. A - liczba elementów zbioru A. Lucjan Kowalski

= A. A - liczba elementów zbioru A. Lucjan Kowalski Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA. Nauczyciel przedmiotu: Marzena Kozłowska

Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA. Nauczyciel przedmiotu: Marzena Kozłowska Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA Nauczyciel przedmiotu: Marzena Kozłowska Szczegółowe wymagania edukacyjne zostały sporządzone z wykorzystaniem

Bardziej szczegółowo

Mechanika kwantowa Schrödingera

Mechanika kwantowa Schrödingera Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny

Bardziej szczegółowo