Analiza przeżycia Survival Analysis
|
|
- Marian Lipiński
- 9 lat temu
- Przeglądów:
Transkrypt
1 Analiza przeżycia Survival Analysis 2013
2 Analiza przeżycia Doświadczenie dynamiczne - zwierzęta znikają lub pojawiają się w czasie doświadczenia Obserwowane zdarzenia: zachorowanie, wyzdrowienie, zejście, ciąża, Ważne jest nie tylko wystąpienie zdarzenia, ale również czas do momentu wystąpienia zdarzenia Dane są recenzowane
3 Dane cenzorowane (ucięte) Czas jest znany tylko dla niektórych osobników Dla innych czas jest nieznany: Zdarzenie nie zaszło podczas trwania obserwacji Zwierzę padło z innych przyczyn Farmer wycofał zgodę, itp
4 Dane cenzorowane (ucięte) A B C Osobnik Czas przeżycia Zdarzenie A 5 1 (śmierć) B 10 0 (ucięte) C 3 0 (ucięte)
5 Dane ucięte także z lewej strony Rzadziej spotykane Infekcja (czas nieznany) Test pozytywny Choroba
6 Cele analizy przeżycia Porównanie funkcji przeżycia/hazardu między grupami Opis przeżycia znanym rozkładem teoretycznym (np. Weibull) Opis relacji między przeżyciem a potencjalnymi zmiennymi objaśniającymi
7 Funkcja przeżycia Jakie jest prawdopodobieństwo, że osobnik przeżyje co najmniej 5 jednostek czasu (np. 5 dni)? P( T > t=4 ) T = czas śmierci (zdarzenia) Ogólnie: S( t ) = P( T > t)
8 Funkcja hazardu h(t) warunkowe prawdopodobieństwo zdarzenia (np. śmierci) w następnej jednostce czasu przypadające na jednostkę czasu h(t) = lim t 0 P( t T < (t+ t) T t ) / t
9 Przeżycie a hazard h(t) = -1 / S( t ) pierwsza pochodna S(t) Komputer łatwo przelicza między funkcjami
10 Estymator Kaplana-Meiera Uwzględnia cenzorowane dane Najpopularniejszy S(0)=1 Przedział (dzień) Zwierząt na początku (n) Śmierć (d) Utrata z innych powodów , ,9913 S(t) , ,7435
11 Estymator Kaplana-Meiera
12 Cele analizy przeżycia Porównanie funkcji przeżycia/hazardu między grupami Opis przeżycia znanym rozkładem teoretycznym (np. Weibulla) Opis relacji między przeżyciem a potencjalnymi zmiennymi objaśniającymi
13 Typowe przebiegi funkcji hazardu Ryzyko upadku po infekcji (lognormal) Ryzyko wybrakowania (rosnący Weibull) h(t) Ryzyko kulawizyny na skutek stresu Ryzyko upadku po operacji (malejący Weibull) t
14 Rozkład Weibulla S( t ) = exp( - ( a t ) p ) h( t ) = a p ( a t ) p-1 a = parametr skali p = parametr kształtu a i p muszą być oszacowane z danych Może przypominać rozkład wykładniczy lub normalny
15
16 Kaplan-Meier oraz Weibull
17 Cele analizy przeżycia Porównanie funkcji przeżycia/hazardu między grupami Opis przeżycia znanym rozkładem teoretycznym (np. Weibull) Opis relacji między przeżyciem a potencjalnymi zmiennymi objaśniającymi
18 Modelowanie funkcji hazardu rozkładem wykładniczym h( t, x ) = h 0 ( t ) exp( β 1 x β k x k ) h 0 to zerowa linia hazardu (gdy każdy x=0) Model regresji wykładniczej: h 0 = 1 (mniej elastyczny) Regresja Weibulla: h 0 ( t ) = a p ( a t ) p-1 Model proporcjonalnych hazardów Coksa: nie ma potrzeby definicji h 0 (bardzo praktyczne)
19 Model proporcjonalnych hazardów Coksa Hazard ratio = HR = h( t, x=1 ) / h( t, x=0 ) = exp( β 1 x 1 ) Nie trzeba estymować parametrów funkcji zerowej Ale warunek: HR musi być stałe w czasie, sprawdź rysując dla każdej grupy ln[-ln(s(t))]) względem ln(t), przebiegi powinny być równoległe David Cox, ur. 1924
20 HR=1: czynnik nie ma znaczenia HR>1: czynnik pozytywnie powiązany z chorobą HR<1: czynnik negatywnie skorelowany z chorobą
21 Analiza przeżycia w R install.packages( survival ) library( survival )
22 Porównywane grupy Czas zdarzenia lub cenzury (np. dni) Zdarzenie tak=1, nie=0 sex time event
23 Dane ucięte także z lewej strony Czas pozytywnego testu (np. wiek) Czas zdarzenia lub cenzury (np. dni) sex time time2 event
24 read.table... attach... survfit( Surv( time, event ) ~ sex ) -> fit plot( fit ) summary( fit ) summary( fit )$surv -> s summary( fit )$time -> t plot( log(t), log( -log(s) ) ) coxph( formula = Surv( time, event) ~ sex )
25 Zadanie 1 Badano skuteczność szczepionki porównując grupę kontrolną (grupa=0) z zaszczepioną (grupa=1). Dane o poszczególnych osobnikach zebrano w pliku szczepionka.txt. (a) Narysuj wykres Kaplana-Meiera prezentujący prawdopodobieństwa przeżycia w czasie dla obu grup. (b) Zbadaj wpływ szczepienia modelem proporcjonalnych hazardów Coksa
Analiza przeżycia Survival Analysis
Analiza przeżycia Survival Analysis 2016 Analiza przeżycia Analiza takich zdarzeń jak zachorowanie, wyzdrowienie, zejście, ciąża, Ważne jest nie tylko wystąpienie zdarzenia, ale również czas do momentu
Analiza przeżycia. Wprowadzenie
Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia
Analiza przeżycia. Czym zajmuje się analiza przeżycia? Jest to analiza czasu trwania, zaprojektowana do analizy tzw.
ANALIZA PRZEŻYCIA Analiza przeżycia Czym zajmuje się analiza przeżycia? Jest to analiza czasu trwania, zaprojektowana do analizy tzw. danych uciętych Obserwacja jest nazywana uciętą jeżeli zdarzenie jeszcze
Analiza przeżycia. Czym zajmuje się analiza przeżycia?
ANALIZA PRZEŻYCIA Analiza przeżycia Czym zajmuje się analiza przeżycia? http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/ Analiza przeżycia Jest to inaczej analiza czasu trwania
Uogólniony model liniowy
Uogólniony model liniowy Ogólny model liniowy y = Xb + e Każda obserwacja ma rozkład normalny Każda obserwacja ma tą samą wariancję Dane nienormalne Rozkład binomialny np. liczba chorych krów w stadzie
Mgr inż. Kasietczuk Magdalena. Wydział Geodezji Górniczej i Inżynierii Środowiska Katedra Kształtowania i Ochrony Środowiska
Akademia Górniczo Hutnicza im. S. Staszica w Krakowie Pakiet SURVIVAL w R Mgr inż. Kasietczuk Magdalena Wydział Geodezji Górniczej i Inżynierii Środowiska Katedra Kształtowania i Ochrony Środowiska Kraków,
Modele długości trwania
Modele długości trwania Pierwotne zastosowania: przemysłowe (trwałość produktów) aktuarialne (długość trwania życia) Zastosowania ekonomiczne: długości bezrobocia długości czasu między zakupami dóbr trwałego
WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno
WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:
STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH
STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH WYKŠAD 1 13 pa¹dziernik 2014 1 / 49 Plan wykªadu 1. Analizy prze»ycia na przykªadach 2. Podstawowe idee statystyki matematycznej wykorzystywane w analizie
Podstawy statystycznego modelowania danych Analiza prze»ycia
Podstawy statystycznego modelowania danych Analiza prze»ycia Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1. Wprowadzenie 2. Hazard rate
Model Cox a. Testowanie założeń o proporcjonalnym hazardzie.
Model Cox a. Testowanie założeń o proporcjonalnym hazardzie. Seminarium - Statystyka w medycynie Model Cox a.. Plan 1 Wstęp Model Cox a - przypomnienie 2 Założenie proporcjonalnego hazardu 3 Metoda wizualna
Badania obserwacyjne 1
Badania obserwacyjne 1 Chorobowość Chorobowość (ang. prevalence rate) liczba chorych w danej chwili na konkretną chorobę w określonej grupie mieszkańców (np. na 100 tys. mieszkańców). Współczynnik ten
W4 Eksperyment niezawodnościowy
W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i
Wprowadzenie do estymacji rozkładów w SAS.
Wprowadzenie do estymacji rozkładów w SAS Henryk.Maciejewski@pwr.wroc.pl 1 Plan Empiryczne modele niezawodności Estymacja parametryczna rozkładów zmiennych losowych Estymacja nieparametryczna Empiryczne
Analiza długości okresu bezrobocia według przyczyny wyrejestrowania na przykładzie Powiatowego Urzędu Pracy w Szczecinie
Beata Bieszk-Stolorz * Iwona Markowicz ** Analiza długości okresu bezrobocia według przyczyny wyrejestrowania na przykładzie Powiatowego Urzędu Pracy w Szczecinie Wstęp Celem artykułu jest zbadanie wpływu
Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH
Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład
Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:
Zadanie. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Pr Pr ( = k) ( N = k ) N = + k, k =,,,... Jeśli wiemy, że szkód wynosi: k= Pr( N = k) =, to prawdopodobieństwo,
Krzywe przeżycia - testowanie różnic
5 listopada 2008 Podstawowe pojęcia Przypomnienie Cel testowania Badamy np.: przeżywalność pacjentów po operacji; długość trwania małżeństwa. T zmienna losowa oznaczająca czas do interesującego nas zdarzenia
Mikroekonometria 14. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 14 Mikołaj Czajkowski Wiktor Budziński Symulacje Analogicznie jak w przypadku ciągłej zmiennej zależnej można wykorzystać metody Monte Carlo do analizy różnego rodzaju problemów w modelach
Matematyka ubezpieczeń majątkowych 1.10.2012 r.
Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna
Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:
Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:
PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV
Elektroenergetyczne linie napowietrzne i kablowe wysokich i najwyższych napięć PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV Wisła, 18-19 października 2017
Zapadalność (epidemiologia)
Chorobowość Chorobowość (ang. prevalence rate) liczba chorych w danej chwili na konkretną chorobę w określonej grupie mieszkańców (np. na 100 tys. mieszkańców). Współczynnik ten obejmuje zarówno osoby
Prawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Jak długo żyją spółki na polskiej giełdzie? Zastosowanie statystycznej analizy przeżycia do modelowania upadłości przedsiębiorstw
Jak długo żyją spółki na polskiej giełdzie? Zastosowanie statystycznej analizy przeżycia do modelowania upadłości przedsiębiorstw dr Karolina Borowiec-Mihilewicz Uniwersytet Ekonomiczny we Wrocławiu Zastosowania
Stanisław Cichocki Natalia Nehrebecka. Wykład 7
Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Metody statystyki medycznej stosowane w badaniach klinicznych
Metody statystyki medycznej stosowane w badaniach klinicznych Statistics for clinical research & post-marketing surveillance część III Program szkolenia część III Model regresji liniowej Współczynnik korelacji
Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
Zawansowane modele wyborów dyskretnych
Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów
Metody oceny ryzyka operacyjnego
Instytut Matematyki i Informatyki Wrocław, 10 VII 2009 Bazylejski Komitet Nadzoru Bankowego Umowa Kapitałowa - 1988 Opracowanie najlepszych praktyk rynkowych w zakresie zarządzania ryzykiem Nowa Umowa
"Wsparcie procesu decyzyjnego dla metodyk zwinnych w procesie testowania z wykorzystaniem modeli z obszaru teorii niezawodności."
"Wsparcie procesu decyzyjnego dla metodyk zwinnych w procesie testowania z wykorzystaniem modeli z obszaru teorii niezawodności." Click to edit Master subtitle style Krzysztof Senczyna Agenda 1. Software
STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych
STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące
18. Obliczyć. 9. Obliczyć iloczyn macierzy i. 10. Transponować macierz. 11. Transponować macierz. A następnie podać wymiar powstałej macierzy.
1 Czy iloczyn macierzy, które nie są kwadratowe może być macierzą kwadratową? Podaj przykład 2 Czy każde dwie macierze jednostkowe są równe? Podaj przykład 3 Czy mnożenie macierzy przez macierz jednostkową
EGZAMIN DYPLOMOWY, część II, Biomatematyka
Biomatematyka Niech a będzie recesywnym płciowo skojarzonym genem i załóżmy, że proces selekcji uniemożliwia kojarzenie się osobników płci męskiej o genotypie aa. Przyjmijmy, że genotypy AA, Aa i aa występują
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
MODELOWANIE CZASU TRWANIA MODEL PROPORCJONALNEGO HAZARDU COXA
MODELOWANIE CZASU TRWANIA MODEL PROPORCJONALNEGO HAZARDU COXA Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. W wielu zastosowaniach analiza czasu trwania pewnego zjawiska jest interesującym przedmiotem
Mikroekonometria 3. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 3 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
MODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
W3 - Niezawodność elementu nienaprawialnego
W3 - Niezawodność elementu nienaprawialnego Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Niezawodność elementu nienaprawialnego 1. Model niezawodności elementu nienaprawialnego
Regresja nieparametryczna series estimator
Regresja nieparametryczna series estimator 1 Literatura Bruce Hansen (2018) Econometrics, rozdział 18 2 Regresja nieparametryczna Dwie główne metody estymacji Estymatory jądrowe Series estimators (estymatory
1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.
Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.
Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 12 Mikołaj Czajkowski Wiktor Budziński Dane panelowe Co jeśli mamy do dyspozycji dane panelowe? Kilka obserwacji od tych samych respondentów, w różnych punktach czasu (np. ankieta realizowana
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Analiza przeżycia, teoria i przykład zastosowania w badaniu długości życia pacjentek z rakiem piersi
Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Aleksandra Urbaniec Nr albumu: 220775 Analiza przeżycia, teoria i przykład zastosowania w badaniu długości życia pacjentek z rakiem piersi
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Statystyka I. Regresja dla zmiennej jakościowej - wykład dodatkowy (nieobowiązkowy)
Statystyka I Regresja dla zmiennej jakościowej - wykład dodatkowy (nieobowiązkowy) 1 Zmienne jakościowe qzmienne jakościowe niemierzalne kategorie: np. pracujący / bezrobotny qzmienna binarna Y=0,1 qczasami
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:
Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )
Analiza niepewności pomiarów
Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej
S T R E S Z C Z E N I E
STRESZCZENIE Cel pracy: Celem pracy jest ocena wyników leczenia napromienianiem chorych z rozpoznaniem raka szyjki macicy w Świętokrzyskim Centrum Onkologii, porównanie wyników leczenia chorych napromienianych
METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie
METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem
Niezawodność diagnostyka systemów laboratorium. Ćwiczenie 2
dr inż. Jacek Jarnicki doc. PWr Niezawodność diagnostyka systemów laboratorium Ćwiczenie 2 1. Treść ćwiczenia Generowanie realizacji zmiennych losowych i prezentacja graficzna wyników losowania. Symulacja
Tablice trwania życia
ROZDZIAŁ 3 Tablice trwania życia 1 Przyszły czas życia Osobę, która ukończyła x lat życia, będziemy nazywać x-latkiem i oznaczać symbolem x Jej przyszły czas życia, tzn od chwili x do chwili śmierci, będziemy
NIEZALEŻNOŚĆ i ZALEŻNOŚĆ między cechami Test chi-kwadrat, OR, RR
NIEZALEŻNOŚĆ i ZALEŻNOŚĆ między cechami Test chi-kwadrat, OR, RR M Zalewska Zakład Profilaktyki ZagrożeńŚrodowiskowych i Alergologii Analiza niezależności zmiennych jakościowych (test niezależności Chi-kwadrat)
Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski
Funkcje charakteryzujące proces eksploatacji Dr inż. Robert Jakubowski Niezawodność Niezawodność Rprawdopodobieństwo, że w przedziale czasu od do t cechy funkcjonalne statku powietrznego Ubędą się mieścić
Statystyka w przykładach
w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
METODY ANALIZY PRZEŻYCIA W OCENIE RYZYKA UTRATY KLIENTA NA RYNKU USŁUG BANKOWYCH
Robert Skikiewicz Uniwersytet Ekonomiczny w Poznaniu METODY ANALIZY PRZEŻYCIA W OCENIE RYZYKA UTRATY KLIENTA NA RYNKU USŁUG BANKOWYCH Wprowadzenie Czas korzystania przez klienta z usług danego banku uzależniony
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Regresja liniowa Korelacja Modelowanie Analiza modelu Wnioskowanie Korelacja 3 Korelacja R: charakteryzuje
Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VII: Regresja logistyczna
1 Laboratorium VII: Regresja logistyczna Spis treści Laboratorium VII: Regresja logistyczna... 1 Wiadomości ogólne... 2 1. Wstęp teoretyczny.... 2 1.1. Wprowadzenie.... 2 2. Regresja logistyczna w STATISTICE...
Zastosowanie modeli hazardu do szacowania długości czasu pozostawania bez pracy w Niemczech i w Polsce. 2. Wybór i opis właściwej metody analizy
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6-8 września 2005 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Szkoła Główna Gospodarstwa Wiejskiego
Quick Launch Manual:
egresja Odds atio Quick Launch Manual: regresja logistyczna i odds ratio Uniwesytet Warszawski, Matematyka 28.10.2009 Plan prezentacji egresja Odds atio 1 2 egresja egresja logistyczna 3 Odds atio 4 5
Własności porządkowe w modelu proporcjonalnych szans
Własności porządkowe w modelu proporcjonalnych szans Wisła, 8 grudnia 2009 Oznaczenia Wprowadzenie Oznaczenia Porządki stochastyczne Klasy rozkładów czasu życia X F, Y G zmienne losowe o gęstościach f
Statystyczna analiza awarii pojazdów samochodowych. Failure analysis of cars
Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 1/15/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.1.1 ROMAN RUMIANOWSKI Statystyczna analiza awarii pojazdów
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia 1 Cele (na dzisiaj): Zrozumieć w jaki sposób można wyznaczyć przysz ly czas życia osoby w wieku x. Zrozumieć parametry
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
MODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 3: WYZNACZANIE ROZKŁADU CZASU PRZYSZŁEGO ŻYCIA 1 Hipoteza jednorodnej populacji Rozważmy pewną populację osób w różnym wieku i załóżmy, że każda z tych osób
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Wycena papierów wartościowych - instrumenty pochodne
Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,
Opis zakładanych efektów kształcenia na studiach podyplomowych WIEDZA
Opis zakładanych efektów kształcenia na studiach podyplomowych Nazwa studiów: BIOSTATYSTYKA PRAKTYCZNE ASPEKTY STATYSTYKI W BADANIACH MEDYCZNYCH Typ studiów: doskonalące Symbol Efekty kształcenia dla studiów
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ
ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYCZNA ANALIZA DANYCH Nazwa w języku angielskim STATISTICAL DATA ANALYSIS Kierunek studiów (jeśli dotyczy):
STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH
STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH WYKŠAD 4 03 listopad 2014 1 / 47 Plan wykªadu 1. Testowanie zaªo»e«o proporcjonalnym hazardzie w modelu Cox'a 2. Wybór zmiennych do modelu Cox'a 3. Meta analiza
1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.
Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *
JAK DŁUGO ŻYJĄ SPÓŁKI NA POLSKIEJ GIEŁDZIE? ZASTOSOWANIE STATYSTYCZNEJ ANALIZY PRZEŻYCIA DO MODELOWANIA UPADŁOŚCI PRZEDSIĘBIORSTW
JAK DŁUGO ŻYJĄ SPÓŁKI NA POLSKIEJ GIEŁDZIE? ZASTOSOWANIE STATYSTYCZNEJ ANALIZY PRZEŻYCIA DO MODELOWANIA UPADŁOŚCI PRZEDSIĘBIORSTW Karolina Borowiec-Mihilewicz, Uniwersytet Ekonomiczny we Wrocławiu Wprowadzenie
STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
Ubezpieczenia majątkowe
Funkcje użyteczności a składki Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych 2016/2017 Funkcja użyteczności Niech ω wielkość majątku decydenta wyrażona w j.p., u (ω) stopień
Uogolnione modele liniowe
Uogolnione modele liniowe Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Uogolnione modele liniowe grudzien 2013 1 / 17 (generalized linear model - glm) Zakładamy,
Wykład 12: Tablice wielodzielcze
Wykład 12: Tablice wielodzielcze Drosophila melanogaster Krzyżówka wsteczna (CcNn i ccnn) Kolor oczu czerwone fioletowe Rozmiar skrzydła normalne 39 11 mniejsze 18 32 Zródło:http://pl.wikipedia.org/wiki/Plik:Drosophila_melanogaster1.jpg
Badanie zależności zmiennych kolumnowej i wierszowej:
Wykład : Tablice wielodzielcze Zródło:http://pl.wikipedia.org/wiki/Plik:Drosophila_melanogaster.jpg Drosophila melanogaster Krzyżówka wsteczna (CcNn i ccnn) Kolor oczu czerwone fioletowe Rozmiar skrzydła
Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka
Analiza współzależności zjawisk dr Marta Kuc-Czarnecka Wprowadzenie Prawidłowości statystyczne mają swoje przyczyny, w związku z tym dla poznania całokształtu badanego zjawiska potrzebna jest analiza z
OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp
tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE
PAKIETY STATYSTYCZNE
. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X
Zadanie. Mamy dany ciąg liczb q, q,..., q n z przedziału 0,, oraz ciąg m, m,..., m n liczb dodatnich. Rozważmy dwie zmienne losowe: o X X X... X n, gdzie X i ma złożony rozkład dwumianowy o parametrach,q
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 3 Generacja realizacji zmiennych losowych Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia: Generowanie
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne