"Wsparcie procesu decyzyjnego dla metodyk zwinnych w procesie testowania z wykorzystaniem modeli z obszaru teorii niezawodności."

Wielkość: px
Rozpocząć pokaz od strony:

Download ""Wsparcie procesu decyzyjnego dla metodyk zwinnych w procesie testowania z wykorzystaniem modeli z obszaru teorii niezawodności.""

Transkrypt

1 "Wsparcie procesu decyzyjnego dla metodyk zwinnych w procesie testowania z wykorzystaniem modeli z obszaru teorii niezawodności." Click to edit Master subtitle style Krzysztof Senczyna

2 Agenda 1. Software Testing 2. Software Reliability 3. Opis metody estymacji MTTF 4. Podsumowanie 5. Dyskusja

3 Software testing Software testing celem jest wyszukiwanie błędów, nie jest możliwe do udowodnienia że, dany produkt IT ma zero błędów jest fault free. Problem udowodnienia statusu fault free jest problemem spełnialności, który jest rozstrzygalny definitywnie jeżeli można sprawdzić True/False wszystkie przypadki, których jest 2N (gdzie N to liczba zmiennych w programie ). Problem NP zupełny złożoność wykładnicza

4 Software testing Modele w procesie testowania programowania : Waterfall V-model Model spiralny Agile /SCRUM

5 Software testing Waterfall

6 Software testing V-model

7 Software testing Model spiralny

8 Software testing Agile/Scrum

9 Software Reliability błąd powstaje w trakcie procesu projektowania, tworzenia SW w wielu rozmaitych fazach tego procesu ( error, fault, failure). różni się od HW reliability dotyczy bardziej wierności w odwzorowaniu i przenoszeniu projektu w domenę IT. zużycie SW nie posiada fazy zużycia ( ageing ), nie męczy się, autostart/upgrade czasem pomaga a czasem nie pomaga powrócić do pierwotnego/lepszego stanu działania. czynniki środowiskowe uruchomieniowe mają wpływ na wynik pracy SW szacowanie wartości SR nie jest możliwe z użyciem typowego rozumowania np.: teorii z obszaru fizyki, należy budować modele a potem je weryfikować. modele szacowania SW Reliability są ciągle w powijakach, jest to ciągle obszar otwarty na tworzenie nowych rozwiązań. All models are wrong, but some are useful George Edward Pelham Box Professor of Statistics at the University of Wisconsin.

10 Rozkład Weibulla ciągły rozkład prawdopodobieństwa często stosowany w analizie przeżycia do modelowania sytuacji, gdy prawdopodobieństwo śmierci/awarii zmienia się w czasie. 10

11 Software Reliability

12 Software Reliability

13 Opis metody estymacji MTTF Model jest użyteczny dla kombinacji struktury: HW+SW, Klient jest zainteresowany szacowaniem wartości parametrów MTTF i jest być może skłonny wydzielić budżet na badania w tej dziedzinie. Projekt jest na etapie ¾ ważne staje się optymalne szacowanie momentu zamknięcia. Istnieje niezależna metoda szacująca wartości MTTF dla kilku pierwszych cykli iteracyjnych.

14 Opis metody estymacji MTTF Cykl Weibull /GOF MTTF (estymacja/mod el) 0.1?

15 Opis metody estymacji MTTF Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 P redic t 12 Weibull TTF TTF Weibull / GOF (Goodness of Fit)

16 Opis metody estymacji MTTF Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 P redic t Weibull f(x) = 1,#NANx 12TTF linowa nie pasuje R² = 1,#NAN 10 8 TTF Weibull

17 Opis metody estymacji MTTF Przykładowe obliczenia Funkcja regresji dla tego przykładu ma postać: Y= 7976 x x +752 Zakładając, że celem jest osiągniecie czasu MTTF większego niż 350 Po rozwiązaniu równania kwadratowego: 7976 x x +752 =350 GOF 350=0.11

18 Opis metody estymacji MTTF Interpretacja wyniku : GOF 350=0.11 jest taka że: jeżeli z wyników testowania w następnym cyklu lub kolejnym następnym wartość GOF będzie niższa od 0,11 to możemy przypuszczać, że MTTF będzie wyższe niż 350.

19 Podsumowanie zakres stosowania ustabilizowana wersja HW+SW, projekt w fazie ¾. warunkiem stosowania jest posiadanie metody wyznaczania wartości MTTF dla pierwszych cyklów trudne jest oszacowanie błędu metody, jest to możliwe min: przez porównanie z wynikami realnymi na późniejszym etapie rozwoju produktu

20 Dyskusja Wnioski/Uwagi /Propozycje Dziękuję za udział i poświęconą uwagę Krzysztof Senczyna krzysen@poczta.onet.pl

Programowanie zespołowe

Programowanie zespołowe Programowanie zespołowe Laboratorium 4 - modele tworzenia oprogramowania, manifest Agile i wstęp do Scruma mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 14 marca 2017 1 / 21 mgr inż. Krzysztof

Bardziej szczegółowo

SYSTEMY INFORMATYCZNE ćwiczenia praktyczne

SYSTEMY INFORMATYCZNE ćwiczenia praktyczne SYSTEMY INFORMATYCZNE ćwiczenia praktyczne 12.03.2019 Piotr Łukasik p. 373 email: plukasik@agh.edu.pl / lukasik.pio@gmail.com www.lukasikpiotr.com Zakres tematyczny implementacji projektu informatycznego

Bardziej szczegółowo

Agile Project Management

Agile Project Management Charles G. Cobb, pmp Zrozumieć Agile Project Management Równowaga kontroli i elastyczności przekład: Witold Sikorski APN Promise Warszawa 2012 Spis treści Wstęp...vii Kto powinien przeczytać tę książkę?...

Bardziej szczegółowo

Statystyczna analiza awarii pojazdów samochodowych. Failure analysis of cars

Statystyczna analiza awarii pojazdów samochodowych. Failure analysis of cars Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 1/15/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.1.1 ROMAN RUMIANOWSKI Statystyczna analiza awarii pojazdów

Bardziej szczegółowo

Analiza przeżycia Survival Analysis

Analiza przeżycia Survival Analysis Analiza przeżycia Survival Analysis 2013 Analiza przeżycia Doświadczenie dynamiczne - zwierzęta znikają lub pojawiają się w czasie doświadczenia Obserwowane zdarzenia: zachorowanie, wyzdrowienie, zejście,

Bardziej szczegółowo

Wstęp do zarządzania projektami

Wstęp do zarządzania projektami Wstęp do zarządzania projektami Definicja projektu Projekt to tymczasowe przedsięwzięcie podejmowane w celu wytworzenia unikalnego wyrobu, dostarczenia unikalnej usługi lub uzyskania unikalnego rezultatu.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1 Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki

Bardziej szczegółowo

MODELE CYKLU ŻYCIA OPROGRAMOWANIA (1) Model kaskadowy (często stosowany w praktyce do projektów o niewielkiej złożonoś

MODELE CYKLU ŻYCIA OPROGRAMOWANIA (1) Model kaskadowy (często stosowany w praktyce do projektów o niewielkiej złożonoś OPROGRAMOWANIA (1) Model kaskadowy (często stosowany w praktyce do projektów o niewielkiej złożonoś (często stosowany w praktyce do projektów o niewielkiej złożoności) wymagania specyfikowanie kodowanie

Bardziej szczegółowo

Jak patrzymy na testy czyli Jak punkt widzenia zależy od punktu siedzenia. Click Piotr Kałuski to edit Master subtitle style

Jak patrzymy na testy czyli Jak punkt widzenia zależy od punktu siedzenia. Click Piotr Kałuski to edit Master subtitle style Jak patrzymy na testy czyli Jak punkt widzenia zależy od punktu siedzenia Click Piotr Kałuski to edit Master subtitle style Punkty widzenia Zespół Testów Manager Projektu Użytkownik końcowy Zespół Testów

Bardziej szczegółowo

Wstęp do zarządzania projektami

Wstęp do zarządzania projektami Wstęp do zarządzania projektami Definicja projektu Projekt to tymczasowe przedsięwzięcie podejmowane w celu wytworzenia unikalnego wyrobu, dostarczenia unikalnej usługi lub uzyskania unikalnego rezultatu.

Bardziej szczegółowo

Analiza przeżycia Survival Analysis

Analiza przeżycia Survival Analysis Analiza przeżycia Survival Analysis 2016 Analiza przeżycia Analiza takich zdarzeń jak zachorowanie, wyzdrowienie, zejście, ciąża, Ważne jest nie tylko wystąpienie zdarzenia, ale również czas do momentu

Bardziej szczegółowo

Wykład 8. Testowanie w JEE 5.0 (1) Autor: Zofia Kruczkiewicz. Zofia Kruczkiewicz

Wykład 8. Testowanie w JEE 5.0 (1) Autor: Zofia Kruczkiewicz. Zofia Kruczkiewicz Wykład 8 Testowanie w JEE 5.0 (1) Autor: 1. Rola testowania w tworzeniu oprogramowania Kluczową rolę w powstawaniu oprogramowania stanowi proces usuwania błędów w kolejnych fazach rozwoju oprogramowania

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

Szybkość w biznesie. Zwinne testowanie oprogramowania (Agile) Mateusz Morawski (mateusz.morawski@hp.com) 14 kwietnia 2015

Szybkość w biznesie. Zwinne testowanie oprogramowania (Agile) Mateusz Morawski (mateusz.morawski@hp.com) 14 kwietnia 2015 Szybkość w biznesie Zwinne testowanie oprogramowania (Agile) Mateusz Morawski (mateusz.morawski@hp.com) 14 kwietnia 2015 Klient Wykonawca...wprowadzamy nowy typ przelewów do aplikacji internetowej. Dodam

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Wprowadzenie do estymacji rozkładów w SAS.

Wprowadzenie do estymacji rozkładów w SAS. Wprowadzenie do estymacji rozkładów w SAS Henryk.Maciejewski@pwr.wroc.pl 1 Plan Empiryczne modele niezawodności Estymacja parametryczna rozkładów zmiennych losowych Estymacja nieparametryczna Empiryczne

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Optymalizacja Automatycznych Testów Regresywnych

Optymalizacja Automatycznych Testów Regresywnych Optymalizacja Automatycznych Testów Regresywnych W Organizacji Transformującej do Agile Adam Marciszewski adam.marciszewski@tieto.com Agenda Kontekst projektu Typowe podejście Wyzwania Cel Założenia Opis

Bardziej szczegółowo

REQB POZIOM PODSTAWOWY PRZYKŁADOWY EGZAMIN

REQB POZIOM PODSTAWOWY PRZYKŁADOWY EGZAMIN REQB POZIOM PODSTAWOWY PRZYKŁADOWY EGZAMIN Podziękowania REQB Poziom Podstawowy Przykładowy Egzamin Dokument ten został stworzony przez główny zespół Grupy Roboczej REQB dla Poziomu Podstawowego. Tłumaczenie

Bardziej szczegółowo

Wykład VII. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Wytwarzanie oprogramowania Model tworzenia oprogramowania

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Ekonometryczne modele nieliniowe Wykład 10 Modele przełącznikowe Markowa Literatura P.H.Franses, D. van Dijk (2000) Non-linear time series models in empirical finance, Cambridge University Press. R. Breuning,

Bardziej szczegółowo

Oszacowanie kosztów i korzyści metod zwinnych. WARSZTAT III 24 września 2014 Bogdan Bereza @ victo.eu

Oszacowanie kosztów i korzyści metod zwinnych. WARSZTAT III 24 września 2014 Bogdan Bereza @ victo.eu Oszacowanie kosztów i korzyści metod zwinnych WARSZTAT III 24 września 2014 Bogdan Bereza @ victo.eu Będą wykłady i dyskusje 1. Jak mierzyć sprawność organizacji i procesów? Czy organizacja może być zwinna?

Bardziej szczegółowo

xx + x = 1, to y = Jeśli x = 0, to y = 0 Przykładowy układ Funkcja przykładowego układu Metody poszukiwania testów Porównanie tabel prawdy

xx + x = 1, to y = Jeśli x = 0, to y = 0 Przykładowy układ Funkcja przykładowego układu Metody poszukiwania testów Porównanie tabel prawdy Testowanie układów kombinacyjnych Przykładowy układ Wykrywanie błędów: 1. Sklejenie z 0 2. Sklejenie z 1 Testem danego uszkodzenia nazywa się takie wzbudzenie funkcji (wektor wejściowy), które daje błędną

Bardziej szczegółowo

Wojciech Skwirz

Wojciech Skwirz 1 Regularyzacja jako metoda doboru zmiennych objaśniających do modelu statystycznego. 2 Plan prezentacji 1. Wstęp 2. Część teoretyczna - Algorytm podziału i ograniczeń - Regularyzacja 3. Opis wyników badania

Bardziej szczegółowo

W4 Eksperyment niezawodnościowy

W4 Eksperyment niezawodnościowy W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i

Bardziej szczegółowo

Wstęp do zarządzania projektami

Wstęp do zarządzania projektami Wstęp do zarządzania projektami Definicja projektu Projekt to tymczasowe przedsięwzięcie podejmowane w celu wytworzenia unikalnego wyrobu, dostarczenia unikalnej usługi lub uzyskania unikalnego rezultatu.

Bardziej szczegółowo

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje

Bardziej szczegółowo

Projektowanie systemów informatycznych. wykład 6

Projektowanie systemów informatycznych. wykład 6 Projektowanie systemów informatycznych wykład 6 Iteracyjno-przyrostowy proces projektowania systemów Metodyka (ang. methodology) tworzenia systemów informatycznych (TSI) stanowi spójny, logicznie uporządkowany

Bardziej szczegółowo

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę

Bardziej szczegółowo

In ż ynieria oprogramowania wykład II Modele i fazy cyklu życia oprogramowania

In ż ynieria oprogramowania wykład II Modele i fazy cyklu życia oprogramowania In ż ynieria oprogramowania wykład II Modele i fazy cyklu życia oprogramowania prowadzący: dr inż. Krzysztof Bartecki www.k.bartecki.po.opole.pl Proces tworzenia oprogramowania jest zbiorem czynności i

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

SCRUM niełatwe wdrażanie metodyki w praktyce. Adam Krosny

SCRUM niełatwe wdrażanie metodyki w praktyce. Adam Krosny SCRUM niełatwe wdrażanie metodyki w praktyce Adam Krosny 1 Czym się zajmujemy Realizujemy projekty informatyczne średniej wielkości Ilość osób w projekcie 10-50 Architektura SOA, EBA Wiele komponentów

Bardziej szczegółowo

Tematy seminariów wg Roger S. Pressman, Praktyczne podejście do oprogramowania, WNT, Zofia Kruczkiewicz

Tematy seminariów wg Roger S. Pressman, Praktyczne podejście do oprogramowania, WNT, Zofia Kruczkiewicz Tematy seminariów wg Roger S. Pressman, Praktyczne podejście do oprogramowania, WNT, 2004 Zofia Kruczkiewicz 1. Przedstaw znaczenie oprogramowania we współczesnym świecie x 1 2. Jaki wpływ na ludzi, komunikację

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Wytwarzanie oprogramowania

Wytwarzanie oprogramowania AiPA 6 Wytwarzanie oprogramowania Proces tworzenia oprogramowania jest procesem przekształcenia wymagań w oprogramowanie zgodnie z metodyką, która określa KTO CO robi JAK i KIEDY. - Wymagania Proces tworzenia

Bardziej szczegółowo

Etapy życia oprogramowania

Etapy życia oprogramowania Modele cyklu życia projektu informatycznego Organizacja i Zarządzanie Projektem Informatycznym Jarosław Francik marzec 23 w prezentacji wykorzystano również materiały przygotowane przez Michała Kolano

Bardziej szczegółowo

Customer Attribution Models. czyli o wykorzystaniu machine learning w domu mediowym.

Customer Attribution Models. czyli o wykorzystaniu machine learning w domu mediowym. Customer Attribution Models czyli o wykorzystaniu machine learning w domu mediowym. Proces decyzyjny MAILING SEO SEM DISPLAY RETARGETING PRZEGRANI??? ZWYCIĘZCA!!! Modelowanie atrybucja > Słowo klucz: wpływ

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Etapy życia oprogramowania. Modele cyklu życia projektu. Etapy życia oprogramowania. Etapy życia oprogramowania

Etapy życia oprogramowania. Modele cyklu życia projektu. Etapy życia oprogramowania. Etapy życia oprogramowania Etapy życia oprogramowania Modele cyklu życia projektu informatycznego Organizacja i Zarządzanie Projektem Informatycznym Jarosław Francik marzec 23 Określenie wymagań Testowanie Pielęgnacja Faza strategiczna

Bardziej szczegółowo

ELEMENTÓW PODANYCH W PN-EN i PN-EN

ELEMENTÓW PODANYCH W PN-EN i PN-EN PORÓWNANIE METOD OCENY NIEUSZKADZALNOŚCI ELEMENTÓW PODANYCH W PN-EN 6508- i PN-EN 680-2 prof. dr inż. Tadeusz MISSALA Przemysłowy Instytut Automatyki i Pomiarów, 02-486 Warszawa Al. Jerozolimskie 202 tel.

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: STATYSTYKA W MODELACH NIEZAWODNOŚCI I ANALIZIE PRZEŻYCIA Nazwa w języku angielskim: STATISTICS IN RELIABILITY MODELS AND

Bardziej szczegółowo

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006 Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap

Bardziej szczegółowo

Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów

Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów Mateusz Szubel, Mariusz Filipowicz Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and

Bardziej szczegółowo

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:

Bardziej szczegółowo

Zarządzanie projektami. Porównanie podstawowych metodyk

Zarządzanie projektami. Porównanie podstawowych metodyk Zarządzanie projektami Porównanie podstawowych metodyk Porównanie podstawowych metodyk w zarządzaniu projektami PRINCE 2 PMBOK TENSTEP AGILE METODYKA PRINCE 2 Istota metodyki PRINCE 2 Project IN Controlled

Bardziej szczegółowo

MODEL RAYLEIGHA W ZWINNYCH METODYKACH WYTWARZANIA OPROGRAMOWANIA

MODEL RAYLEIGHA W ZWINNYCH METODYKACH WYTWARZANIA OPROGRAMOWANIA ROZDZIAŁ 99 MODEL RAYLEIGHA W ZWINNYCH METODYKACH WYTWARZANIA OPROGRAMOWANIA Model Rayleigha to narzędzie służące do estymacji liczby wykrywanych w systemie informatycznym defektów, w trakcie realizacji

Bardziej szczegółowo

MODELOWANIE KOSZTÓW USŁUG ZDROWOTNYCH PRZY

MODELOWANIE KOSZTÓW USŁUG ZDROWOTNYCH PRZY MODELOWANIE KOSZTÓW USŁUG ZDROWOTNYCH PRZY WYKORZYSTANIU METOD STATYSTYCZNYCH mgr Małgorzata Pelczar 6 Wprowadzenie Reforma służby zdrowia uwypukliła problem optymalnego ustalania kosztów usług zdrowotnych.

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Ćwiczenie 5 PROGNOZOWANIE

Ćwiczenie 5 PROGNOZOWANIE Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

Wykład 2. MIS-1-505-n Inżynieria oprogramowania Marzec 2014. Kazimierz Michalik Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie

Wykład 2. MIS-1-505-n Inżynieria oprogramowania Marzec 2014. Kazimierz Michalik Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie Wykład 2 MIS-1-505-n Inżynieria Marzec 2014 Kazimierz Michalik Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie 2.1 Agenda 1 2 3 4 5 6 2.2 Czynności w czasie produkcji. Inżynieria stara się zidentyfikować

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Cykle życia systemu informatycznego

Cykle życia systemu informatycznego Cykle życia systemu informatycznego Cykl życia systemu informatycznego - obejmuję on okres od zgłoszenia przez użytkownika potrzeby istnienia systemu aż do wycofania go z eksploatacji. Składa się z etapów

Bardziej szczegółowo

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

1 Wprowadzenie do algorytmiki

1 Wprowadzenie do algorytmiki Teoretyczne podstawy informatyki - ćwiczenia: Prowadzący: dr inż. Dariusz W Brzeziński 1 Wprowadzenie do algorytmiki 1.1 Algorytm 1. Skończony, uporządkowany ciąg precyzyjnie i zrozumiale opisanych czynności

Bardziej szczegółowo

Iwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ

Iwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ 1 Iwona Konarzewska Programowanie celowe - wprowadzenie Katedra Badań Operacyjnych UŁ 2 Programowanie celowe W praktycznych sytuacjach podejmowania decyzji często występuje kilka celów. Problem pojawia

Bardziej szczegółowo

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Autor: 1. Dobromił Serwa 2. Tytuł przedmiotu Sygnatura (będzie nadana, po akceptacji przez Senacką Komisję Programową) Wprowadzenie do teorii

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy

Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA

Bardziej szczegółowo

W3 - Niezawodność elementu nienaprawialnego

W3 - Niezawodność elementu nienaprawialnego W3 - Niezawodność elementu nienaprawialnego Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Niezawodność elementu nienaprawialnego 1. Model niezawodności elementu nienaprawialnego

Bardziej szczegółowo

Application Security Verification Standard. Wojciech Dworakowski, SecuRing

Application Security Verification Standard. Wojciech Dworakowski, SecuRing Application Security Verification Standard Wojciech Dworakowski, SecuRing login: Wojciech Dworakowski OWASP Poland Chapter Leader OWASP = Open Web Application Security Project Cel: Podnoszenie świadomości

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Metody wytwarzania oprogramowania. Metody wytwarzania oprogramowania 1/31

Metody wytwarzania oprogramowania. Metody wytwarzania oprogramowania 1/31 Metody wytwarzania oprogramowania Metody wytwarzania oprogramowania 1/31 Metody wytwarzania oprogramowania 2/31 Wprowadzenie Syndrom LOOP Late Późno Over budget Przekroczono budżet Overtime nadgodziny

Bardziej szczegółowo

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa

Bardziej szczegółowo

Testowanie i walidacja oprogramowania

Testowanie i walidacja oprogramowania i walidacja oprogramowania Inżynieria oprogramowania, sem.5 cz. 3 Rok akademicki 2010/2011 Dr inż. Wojciech Koziński Zarządzanie testami Cykl życia testów (proces) Planowanie Wykonanie Ocena Dokumentacja

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

Zarządzanie projektami. Wykład 2 Zarządzanie projektem

Zarządzanie projektami. Wykład 2 Zarządzanie projektem Zarządzanie projektami Wykład 2 Zarządzanie projektem Plan wykładu Definicja zarzadzania projektami Typy podejść do zarządzania projektami Cykl życia projektu/cykl zarządzania projektem Grupy procesów

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, Biomatematyka

EGZAMIN MAGISTERSKI, Biomatematyka Biomatematyka 91...... Zadanie 1. (8 punktów) Liczebność pewnej populacji jest opisana równaniem różniczkowym: dn = r N(α N)(N β), (1) dt w którym, N(t) oznacza liczebność populacji w chwili t, a r > 0

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

OGŁOSZENIE O ZAMÓWIENIU nr 1/2013 (POWYŻEJ 14 tys. EURO)

OGŁOSZENIE O ZAMÓWIENIU nr 1/2013 (POWYŻEJ 14 tys. EURO) Łódź, dn. 23.12.2013r. OGŁOSZENIE O ZAMÓWIENIU nr 1/2013 (POWYŻEJ 14 tys. EURO) 1. Zamawiający Firma i adres: PL Europa S.A. NIP: 725-195-02-28 Regon: 100381252 2. Tryb udzielenia zamówienia Zgodnie z

Bardziej szczegółowo

Program szkolenia: Wprowadzenie do Domain Driven Design dla biznesu (część 0)

Program szkolenia: Wprowadzenie do Domain Driven Design dla biznesu (część 0) Program szkolenia: Wprowadzenie do Domain Driven Design dla biznesu (część 0) Informacje: Nazwa: Wprowadzenie do Domain Driven Design dla biznesu (część 0) Kod: Kategoria: Grupa docelowa: Czas trwania:

Bardziej szczegółowo

2. Wprowadzenie do zagadnień obliczania zmian położenia środka ciężkości ciała oraz odzyskiwania energii podczas chodu fizjologicznego

2. Wprowadzenie do zagadnień obliczania zmian położenia środka ciężkości ciała oraz odzyskiwania energii podczas chodu fizjologicznego SPIS TREŚCI Wykaz stosowanych. skrótów Streszczenie. 1 Wstęp 2. Wprowadzenie do zagadnień obliczania zmian położenia środka ciężkości ciała oraz odzyskiwania energii podczas chodu fizjologicznego. i. sportowego..

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer. METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne

Bardziej szczegółowo

Przypadki bez przypadków. Jak dobierać scenariusze testowe.

Przypadki bez przypadków. Jak dobierać scenariusze testowe. Przypadki bez przypadków. Jak dobierać scenariusze testowe. Konferencja SQAM 2008 Warszawa, 29. kwietnia Wojciech Pająk 29 kwietnia 2008 Warszawa Zagadnienia prezentacji 1. Wprowadzenie 2. Definicje przypadków

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9 Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Analiza ekonomiczna w instytucjach publicznych analiza organizacji i projektów

Analiza ekonomiczna w instytucjach publicznych analiza organizacji i projektów Analiza ekonomiczna w instytucjach publicznych analiza organizacji i projektów dr Piotr Modzelewski Katedra Bankowości, Finansów i Rachunkowości Wydziału Nauk Ekonomicznych Uniwersytetu Warszawskiego Zajęcia

Bardziej szczegółowo

Ogólne określenie wymagań. Ogólny projekt. Budowa systemu. Ocena systemu. Nie. Tak. System poprawny. Wdrożenie. Określenie.

Ogólne określenie wymagań. Ogólny projekt. Budowa systemu. Ocena systemu. Nie. Tak. System poprawny. Wdrożenie. Określenie. Inżynieria I Andrzej Jaszkiewicz Kontakt Andrzej Jaszkiewicz p. 8, CW Berdychowo tel. 66 52 933 ajaszkiewicz@cs.put.poznan.pl Rynek 2008 Świat 304 miliardy $ (451 miliardów 2013F) Bez wytwarzanego na własne

Bardziej szczegółowo

Kontekstowe wskaźniki efektywności nauczania - warsztaty

Kontekstowe wskaźniki efektywności nauczania - warsztaty Kontekstowe wskaźniki efektywności nauczania - warsztaty Przygotowała: Aleksandra Jasińska (a.jasinska@ibe.edu.pl) wykorzystując materiały Zespołu EWD Czy dobrze uczymy? Metody oceny efektywności nauczania

Bardziej szczegółowo

Zarządzanie testowaniem wspierane narzędziem HP Quality Center

Zarządzanie testowaniem wspierane narzędziem HP Quality Center Zarządzanie testowaniem wspierane narzędziem HP Quality Center studium przypadku Mirek Piotr Szydłowski Ślęzak Warszawa, 17.05.2011 2008.09.25 WWW.CORRSE.COM Firma CORRSE Nasze zainteresowania zawodowe

Bardziej szczegółowo

Streszczenie: Zasady projektowania konstrukcji budowlanych z uwzględnieniem aspektów ich niezawodności wg Eurokodu PN-EN 1990

Streszczenie: Zasady projektowania konstrukcji budowlanych z uwzględnieniem aspektów ich niezawodności wg Eurokodu PN-EN 1990 Streszczenie: W artykule omówiono praktyczne podstawy projektowania konstrukcji budowlanych wedłu Eurokodu PN-EN 1990. Podano metody i procedury probabilistyczne analizy niezawodności konstrukcji. Podano

Bardziej szczegółowo

Wprowadzenie do metodyki SCRUM. mgr inż. Remigiusz Samborski Instytut Informatyki Politechnika Wrocławska

Wprowadzenie do metodyki SCRUM. mgr inż. Remigiusz Samborski Instytut Informatyki Politechnika Wrocławska Wprowadzenie do metodyki SCRUM mgr inż. Remigiusz Samborski Instytut Informatyki Politechnika Wrocławska SCRUM Scrum (skrót od scrummage) - metoda ponownego uruchomienia gry w rugby zwana również formacją

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy

Bardziej szczegółowo

Testujemy dedykowanymi zasobami (ang. agile testers)

Testujemy dedykowanymi zasobami (ang. agile testers) Testujemy dedykowanymi zasobami (ang. agile testers) - wspólne standupy; - ten sam manager; - duży przepływ informacji; - po pewnym czasie zanika asertywność; - pojawia się tendencja do nie zgłaszania

Bardziej szczegółowo

Agile Software Development. Zastosowanie metod Scrum i Kanban.

Agile Software Development. Zastosowanie metod Scrum i Kanban. Radosław Lont, CN, CNXDA Ericpol Telecom Sp. z o.o. radoslaw.lont@ericpol.com Tel.: 663441360 Agile Software Development. Zastosowanie metod Scrum i Kanban. Ericpol kilka słów o Polska firma informatyczna

Bardziej szczegółowo