Analiza przeżycia. Wprowadzenie
|
|
- Marcin Kot
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia wywodzi się wprawdzie z badań medycznych(na co wskazuje nazwa), lecz znajduje również zastosowanie w innych badaniach. Charakterystyczne dla analizy przeżycia są tzw. dane cenzorowane(oznaczamynp.70 + )inaczejucięte,októrych wiadomo, że zdarzenie nie nastąpiło aż do momentu zakończenia obserwacji(np. pacjenci wypisani ze szpitala). Głównym obiektem badawczym jest tzw. funkcja przeżycia S(t), która określa prawdopodobieństwo, że osoba przeżyje dłużej niż pewien przyjęty czas t, czyli S(t) = P(T > t), gdzie T jest zmienną losową określającą czas życia.
2 Wprowadzenie Średni czas przeżycia zdefiniowany jest jako µ = 0 S(t)dt. Natomiastmedianaczasuprzeżyciazdefiniowanajestjakoczas t 0,5 taki,że S(t 0,5 ) =0,5.Mającnarysowanyestymatorfunkcji przeżycia możemy otrzymać estymator mediany rysując poziomą linię na wysokości 0,5, na przecięciu otrzymamy oszacowanie mediany.
3 Estymator Kaplana-Meiera Najpopularniejszym estymatorem funkcji przeżycia jest estymator Kaplana-Meiera postaci: Ŝ(t) = t i t n i d i n i, gdzie n i jestliczbąobiektów,któradożyłamomentu t i,natomiast d i jestliczbąśmierciwmomencie t i.ważnąjegozaletąjest uwzględnianie obserwacji cenzorowanych.
4 Estymator Kaplana-Meiera przykład Znane są czasy przeżycia(w dniach) dla 16 pacjentów, którzy przeszlizabiegusunięciaguzamózgu:28,49,54,80,80,102 +, 120,120 +,120 +,167,200,200,200 +,340,500, Znajdziemy dla tych danych estymator KM funkcji przeżycia. Załóżmy wpierw, że nie ma danych cenzorowanych. n t i n i d i d i i n i Ŝ(t) ,9375 0, ,9333 0, ,9286 0, ,8462 0, ,9091 0, ,7000 0, ,8571 0, ,5000 0, ,6667 0, ,0000 0,0000
5 Estymator Kaplana-Meiera przykład Z kolei jeśli uwzględnijmy, że cześć obserwacji była cenzorowana. n t i n i d i d i i n i Ŝ(t) ,9375 0, ,9333 0, ,9286 0, ,8462 0, ,9000 0, ,8571 0, ,6667 0, ,6667 0, ,5000 0,1179
6 w R została zaimplementowana w pakiecie survival. Wpierw należy zawsze oznakować, które dane są cenzorowane, polega to na konstrukcji wektora 0-1, gdzie 0 oznacza, że obserwacja jest ucięta. Odpowiednie funkcje to Surv(konstrukcja odpowiedniego obiektu), survfit(konstrukcja estymatora).
7 Model Coksa Estymator KM pozwala na graficzną prezentację krzywej przeżycia oraz porównanie takich krzywych dla kilku populacji. Nie jest jednak możliwe za jego pomocą opisanie zależności funkcji przeżycia od innych zmiennych objaśniających. Wydawać by się mogło, że do tego zagadnienia powinniśmy zastosować poznane już modele regresji wielokrotnej. Nie jest to jednak możliwe z dwóch powodów: czas przeżycia przeważnie nie ma rozkładu normalnego oraz występuje problem wykorzystania obserwacji cenzorowanych. Najpopularniejszym modelem regresji wykorzystywanym w tm przypadku jest model Coksa. Zdefiniujmy wpierw funkcję hazardu: h(t) = f(t) S(t), gdzie f(t) jest funkcją gęstości. Jest to prawdopodobieństwo śmierci w chwili t przy założeniu, że tej chwili dożyła.
8 Model Coksa Model hazardu Coksa ma postać: h(t) = h 0 (t)e Xβ, gdzie h 0 (t)jestzerowąliniąhazardu(hazard,gdywszystkie zmienne niezależne są równe zero). W modelu tym nie zakładamy nic o postaci funkcji hazardu(takie założenie można wprowadzić uzyskując modele parametryczne). Jeśli założymy, że elementy wektora parametrów nie zależą od czasu, to mamy do czynienia z modelem proporcjonalnych hazardów Coksa.
9 Model Coksa Oprócz modelu proporcjonalnych hazardów Coksa, można również wykorzystać nieco inne podejście. Mianowicie zakłada się, że zmienna losowa T ma pewien zadany rozkład. Najczęściej wykorzystywane są rozkłady: Weibulla, wykładniczy, logarytmiczno-normalny oraz normalny. Prowadzi to do modelu: logt = β x +σε, gdziezmiennelosowelogtoraz εmajązadanerozkłady,aσjest tzw. skalą. W R do oceny parametrów takich modeli służy funkcja survreg z pakietu survival. Jej składnia jest analogiczna do wcześniej omawianych funkcji analizy przeżycia z wyjątkiem specyfikacji rozkładu prawdopodobieństwa. Służy do tego parametr dist.
10 Przykład wyznaczanie funkcji przeżycia i hazardu Rozkład wykładniczy Gęstość: f(x) = λe λx I [0, ) (x), Dystrybuanta: F(x) =1 e λx, Funkcjaprzeżycia: S(x) = e λx, Funkcja hazardu: h(x) = λ, Średniczasprzeżycia: µ = 1 λ, Medianaczasuprzeżycia: Me = ln2 λ Rozkład Weibulla Gęstość: f(x) = kxk 1 exp{ ( x λ k λ )k }I [0, ) (x), Dystrybuanta: F(x) =1 exp{ ( x λ )k }, Funkcjaprzeżycia: S(x) =exp{ ( x λ )k }, Funkcjahazardu: h(x) = k x k 1. λ k
Analiza przeżycia Survival Analysis
Analiza przeżycia Survival Analysis 2013 Analiza przeżycia Doświadczenie dynamiczne - zwierzęta znikają lub pojawiają się w czasie doświadczenia Obserwowane zdarzenia: zachorowanie, wyzdrowienie, zejście,
Analiza przeżycia Survival Analysis
Analiza przeżycia Survival Analysis 2016 Analiza przeżycia Analiza takich zdarzeń jak zachorowanie, wyzdrowienie, zejście, ciąża, Ważne jest nie tylko wystąpienie zdarzenia, ale również czas do momentu
Analiza przeżycia. Czym zajmuje się analiza przeżycia?
ANALIZA PRZEŻYCIA Analiza przeżycia Czym zajmuje się analiza przeżycia? http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/ Analiza przeżycia Jest to inaczej analiza czasu trwania
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Mgr inż. Kasietczuk Magdalena. Wydział Geodezji Górniczej i Inżynierii Środowiska Katedra Kształtowania i Ochrony Środowiska
Akademia Górniczo Hutnicza im. S. Staszica w Krakowie Pakiet SURVIVAL w R Mgr inż. Kasietczuk Magdalena Wydział Geodezji Górniczej i Inżynierii Środowiska Katedra Kształtowania i Ochrony Środowiska Kraków,
Zawansowane modele wyborów dyskretnych
Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów
Analiza przeżycia. Czym zajmuje się analiza przeżycia? Jest to analiza czasu trwania, zaprojektowana do analizy tzw.
ANALIZA PRZEŻYCIA Analiza przeżycia Czym zajmuje się analiza przeżycia? Jest to analiza czasu trwania, zaprojektowana do analizy tzw. danych uciętych Obserwacja jest nazywana uciętą jeżeli zdarzenie jeszcze
W4 Eksperyment niezawodnościowy
W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i
Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)
MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.
METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie
METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.
Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Prawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań
Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Matematyka ubezpieczeń majątkowych 1.10.2012 r.
Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna
Statystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:
Zadanie. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Pr Pr ( = k) ( N = k ) N = + k, k =,,,... Jeśli wiemy, że szkód wynosi: k= Pr( N = k) =, to prawdopodobieństwo,
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu
Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór
WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.
Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja
Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014
Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje
W3 - Niezawodność elementu nienaprawialnego
W3 - Niezawodność elementu nienaprawialnego Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Niezawodność elementu nienaprawialnego 1. Model niezawodności elementu nienaprawialnego
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Uogolnione modele liniowe
Uogolnione modele liniowe Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Uogolnione modele liniowe grudzien 2013 1 / 17 (generalized linear model - glm) Zakładamy,
Modele długości trwania
Modele długości trwania Pierwotne zastosowania: przemysłowe (trwałość produktów) aktuarialne (długość trwania życia) Zastosowania ekonomiczne: długości bezrobocia długości czasu między zakupami dóbr trwałego
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
3 Ubezpieczenia na życie
3 Ubezpieczenia na życie O ile nie jest powiedziane inaczej, w poniższych zadaniach zakładamy HJP. 3.1. Zadania 7.1-7.26 z Miśkiewicz-Nawrocka, Zeug-Żebro, Zbiór zadań z matematyki finansowej. 3.2. Mając
Zadanie 1. są niezależne i mają rozkład z atomami: ( ),
Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:
1 Elementy teorii przeżywalności
1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek
STATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 10 14 grudnia 2009 PARAMETRY POŁOŻENIA Przypomnienie: Model statystyczny pomiaru: wynik pomiaru X = µ + ε 1. ε jest zmienną losową 2. E(ε) = 0 pomiar nieobciążony, pomiar
Estymacja przedziałowa. Przedział ufności
Estymacja przedziałowa Przedział ufności Estymacja przedziałowa jest to szacowanie wartości danego parametru populacji, ρ za pomocą tak zwanego przedziału ufności. Przedziałem ufności nazywamy taki przedział
Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 12 Mikołaj Czajkowski Wiktor Budziński Dane panelowe Co jeśli mamy do dyspozycji dane panelowe? Kilka obserwacji od tych samych respondentów, w różnych punktach czasu (np. ankieta realizowana
1. Przyszła długość życia x-latka
Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
Analiza niepewności pomiarów
Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej
Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:
Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:
Regresja i Korelacja
Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja
Detekcja rozkładów o ciężkich ogonach
Detekcja rozkładów o ciężkich ogonach J. Śmiarowska, P. Jamer Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska 24 kwietnia 2012 J. Śmiarowska, P. Jamer (Politechnika Warszawska) Detekcja
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
1 Elementy teorii przeżywalności
1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek
1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach.
Wykład 3 Generatory liczb losowych o dowolnych rozkładach.. Metoda odwracania Niech X oznacza zmienna losowa o dystrybuancie F. Oznaczmy F (t) = inf (x : t F (x)). Uwaga Zauważmy, że t [0, ] : F ( F (t)
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.medexp3.dta przygotuj model regresji kwantylowej 1. Przygotuj model regresji kwantylowej w którym logarytm wydatków
Agata Boratyńska Statystyka aktuarialna... 1
Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH
Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład
Tablice trwania życia
ROZDZIAŁ 3 Tablice trwania życia 1 Przyszły czas życia Osobę, która ukończyła x lat życia, będziemy nazywać x-latkiem i oznaczać symbolem x Jej przyszły czas życia, tzn od chwili x do chwili śmierci, będziemy
Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju
Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
UPORZĄDKOWANIE STOCHASTYCZNE ESTYMATORÓW ŚREDNIEGO CZASU ŻYCIA. Piotr Nowak Uniwersytet Wrocławski
UPORZĄDKOWANIE STOCHASTYCZNE ESTYMATORÓW ŚREDNIEGO CZASU ŻYCIA Piotr Nowak Uniwersytet Wrocławski Wprowadzenie X = (X 1,..., X n ) próba z rozkładu wykładniczego Ex(θ). f (x; θ) = 1 θ e x/θ, x > 0, θ >
WYKŁAD 8 ANALIZA REGRESJI
WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Wprowadzenie do estymacji rozkładów w SAS.
Wprowadzenie do estymacji rozkładów w SAS Henryk.Maciejewski@pwr.wroc.pl 1 Plan Empiryczne modele niezawodności Estymacja parametryczna rozkładów zmiennych losowych Estymacja nieparametryczna Empiryczne
Mikroekonometria 14. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 14 Mikołaj Czajkowski Wiktor Budziński Symulacje Analogicznie jak w przypadku ciągłej zmiennej zależnej można wykorzystać metody Monte Carlo do analizy różnego rodzaju problemów w modelach
N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:
Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Matematyka ubezpieczeń majątkowych 6.04.2009 r.
Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba
Prawdopodobieństwo i statystyka r.
Prawdopodobieństwo i statystyka 9.06.999 r. Zadanie. Rzucamy pięcioma kośćmi do gry. Następnie rzucamy ponownie tymi kośćmi, na których nie wypadły szóstki. W trzeciej rundzie rzucamy tymi kośćmi, na których
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW Rachunek prawdopodobieństwa (probabilitis - prawdopodobny) zajmuje się badaniami pewnych prawidłowości (regularności) zachodzących przy wykonywaniu doświadczeń
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 3 Generacja realizacji zmiennych losowych Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia: Generowanie
Zmienne losowe zadania na sprawdzian
Zmienne losowe zadania na sprawdzian Zad. 1. Podane poniżej dane dotyczą zawartości suchej masy (w %) i sosu (w %) w 24 konserwach ze śledzia w pomidorach: Zawartość suchej masy: 12,0 13,0 14,5 14,0 12,0
Przykłady do zadania 8.1 : 0 dla x 1, c x 4/3 dla x > 1. (b) Czy można dobrać stałą c tak, aby funkcja f(x) = była gęstością pewnego
Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 8: Zmienne losowe typu ciągłego. Gęstość prawdopodobieństwa. Rozkład
ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW
ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura
Statystyczna analiza danych
Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie
MODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 3: WYZNACZANIE ROZKŁADU CZASU PRZYSZŁEGO ŻYCIA 1 Hipoteza jednorodnej populacji Rozważmy pewną populację osób w różnym wieku i załóżmy, że każda z tych osób
Podstawy statystycznego modelowania danych Analiza prze»ycia
Podstawy statystycznego modelowania danych Analiza prze»ycia Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1. Wprowadzenie 2. Hazard rate
STATYSTYKA
Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym
Regresja linearyzowalna
1 z 5 2007-05-09 23:22 Medycyna Praktyczna - portal dla lekarzy Regresja linearyzowalna mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie Data utworzenia:
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie
O ŚREDNIEJ STATYSTYCZNEJ
O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Jak długo żyją spółki na polskiej giełdzie? Zastosowanie statystycznej analizy przeżycia do modelowania upadłości przedsiębiorstw
Jak długo żyją spółki na polskiej giełdzie? Zastosowanie statystycznej analizy przeżycia do modelowania upadłości przedsiębiorstw dr Karolina Borowiec-Mihilewicz Uniwersytet Ekonomiczny we Wrocławiu Zastosowania
EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,0,3,3) jest optymalnym rozwiązaniem zagadnienia programowania liniowego: Zminimalizować 8x 1 +5x 2 +3x 3 +4x 4, przy ograniczeniach
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Statystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki
Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Statystyka, Ekonometria
Statystyka, Ekonometria Wykład dla Geodezji i Kartografii 11 kwietnia 2011 () Statystyka, Ekonometria 11 kwietnia 2011 1 / 31 LITERATURA J. Hozer, S.Kokot, W. Kuźmiński metody analizy statystycznej w wycenie
istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy
MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze
g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.
TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
MODELOWANIE CZASU TRWANIA MODEL PROPORCJONALNEGO HAZARDU COXA
MODELOWANIE CZASU TRWANIA MODEL PROPORCJONALNEGO HAZARDU COXA Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. W wielu zastosowaniach analiza czasu trwania pewnego zjawiska jest interesującym przedmiotem
Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez
Analiza regresji - weryfikacja założeń
Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.
Rozkłady zmiennych losowych
Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli