Gry Komputerowe Interaktywna kamera FPP

Wielkość: px
Rozpocząć pokaz od strony:

Download "Gry Komputerowe Interaktywna kamera FPP"

Transkrypt

1 Gry Komputerowe Interaktywna kamera FPP Michał Chwesiuk Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 28 Marzec 2018 Michał Chwesiuk Laboratorium 2 28 Marzec / 11

2 v x [ ] v y P rojection v z = matrix v w w OpenGL [ ] V iew matrix [ ] Model matrix v x v y v z v w v x v y v z = [ GL P ROJECT ION ] [ GL MODELV IEW ] v y v z v w v w v x Michał Chwesiuk Laboratorium 2 28 Marzec / 11

3 up Atrybuty kamery : Pozycja (position) Punkt patrzenia (target) Wektor góry (up) direction position Michał Chwesiuk Laboratorium 2 28 Marzec / 11

4 Macierz transformacji widoku Macierz transformacji widoku glulookat(eye x, eye y, eye z, target x, target y, target z, up x, up y, up z) left x left y left z left x eye x left y eye y left z eye z up x up y up z up x eye x up y eye y up z eye z f x f y f z f x eye x f y eye y f z eye z Gdzie : f = eye target, left = up f eye - pozycja kamery target - punkt patrzenia kamery ( eye + dir) up - wektor góry kamery Michał Chwesiuk Laboratorium 2 28 Marzec / 11

5 Poruszanie kamerą pos + speed * dir pos + speed * rotated_dir pos pos - speed * rotated_dir pos - speed * dir pos - pozycja kamery dir - kierunek patrzenia kamery speed - prędkość przemieszczania kamery rotated dir - wektor prostopadły do kierunku patrzenia kamery dir Michał Chwesiuk Laboratorium 2 28 Marzec / 11

6 Y y r P O φ x X Najczęściej podczas opisywania punktu w przestrzeni dwuwymiarowej wykorzystujemy współrzędne kartezjańskie, które opisują punkt za pomocą dwóch zmiennych : X i Y. polegają na opisaniu tych współrzędnych za pomocą dwóch innych atrybutów : promień wodzący r - odległość punktu P od środka układu współrzędnych O amplituda punktu φ - kąt pomiędzy osią OX, a wektorem OP Michał Chwesiuk Laboratorium 2 28 Marzec / 11

7 punktów do układów Z układu kartezjańskiego do układu go r = X 2 + Y 2 φ = arctan( Y X ) Z układu go do układu kartezjańskiego X = r cos(φ) Y = r sin(φ) Michał Chwesiuk Laboratorium 2 28 Marzec / 11

8 Wejście za pomocą GLUT odbywa się za pomocą dwóch callbacków : glutkeyboardfunc(f) - wciśnięcie klawisza glutkeyboardupfunc(f) - puszczenie klawisza W GLUT występuje zjawisko repetycji wciśnięcia klawisza! Podczas jego trzymania odczytywane jest wieloktrone jego wciśnięcie. GLUT pozwala tylko na odczyt wydarzeń wciśnięcia i puszczenia klawisza, a nie na odczyt jego stanu. Rozwiązanie tego problemu leży po stronie programisty. Należy stworzyć tablice zmiennych typu bool. Ustawić wartosci elementów tablicy na true lub false w odpowienich funkcjach obsługi. Odwoływanie się do elementów tablicy za pomocą wartości kodów ASCII. Michał Chwesiuk Laboratorium 2 28 Marzec / 11

9 Tablica ASCII Michał Chwesiuk Laboratorium 2 28 Marzec / 11

10 Należy zwrócić uwagę na rozdzielone metody do Renderowania i Aktualizowania! Michał Chwesiuk Laboratorium 2 28 Marzec / 11

11 Wersja Podstawowa m na dzisiejszych zajęciach jest zaimplementowanie interaktywnej kamery FPP : Sterowanie kamerą w czterech kierunkach za pomocą do przódu, do tyłu i na boki Obracanie kierunku kamery wokół jednej osi za pomocą Mile widziana bezwładność - zamiast natychmiastowego zatrzymania się, zmniejszanie prędkości w czasie Wersja Rozszerzona Do poruszania kamerą należy dodać : Obracanie wokół dwóch osi (podpowiedź : Układ współrzędnych sferycznych) Sterowanie myszą - przydatne funkcje : glutwarppointer(x, y), glutpassivemotionfunc(f), glutsetcursor(glut CURSOR NONE) Michał Chwesiuk Laboratorium 2 28 Marzec / 11

Gry Komputerowe - laboratorium 2. Kamera FPP / TPP. mgr inż. Michał Chwesiuk 1/11. Szczecin, r

Gry Komputerowe - laboratorium 2. Kamera FPP / TPP. mgr inż. Michał Chwesiuk 1/11. Szczecin, r Gry Komputerowe - laboratorium 2 FPP / TPP mgr inż. Michał Chwesiuk 1/11 a model 2/11 Stwórz nową klasę Player a model Do stworzonej klasy Player w pliku player.h dodaj trzy pola (trzeba dodać #include

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

Podłączanie bibliotek Zapis danych do pliku graficznego Generowanie promienia pierwotnego Import sceny z pliku Algorytm ray tracingu

Podłączanie bibliotek Zapis danych do pliku graficznego Generowanie promienia pierwotnego Import sceny z pliku Algorytm ray tracingu Ray Tracer cz.1 Michał Chwesiuk Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 4 Kwiecień 2017 Michał Chwesiuk Ray Tracer cz.1 4 Kwiecień 2017 1/21 Plan zajęć laboratoryjnych

Bardziej szczegółowo

GRAFIKA CZASU RZECZYWISTEGO Interakcja, ruch kamery, oświetlenie.

GRAFIKA CZASU RZECZYWISTEGO Interakcja, ruch kamery, oświetlenie. Bartosz Bazyluk GRAFIKA CZASU RZECZYWISTEGO Interakcja, ruch kamery, oświetlenie. Grafika komputerowa i wizualizacja, Bioinformatyka S1, II Rok Kamera w OpenGL Aby opisać jednoznacznie położenie kamery,

Bardziej szczegółowo

Etap 1. Rysunek: Układy odniesienia

Etap 1. Rysunek: Układy odniesienia Wprowadzenie. Jaś i Małgosia kręcą się na karuzeli symetrycznej dwuramiennej. Siedzą na karuzeli zwróceni do siebie twarzami, symetrycznie względem osi obrotu karuzeli. Jaś ma dropsa, którego chce dać

Bardziej szczegółowo

Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38

Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38 Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu

Bardziej szczegółowo

2 Przygotował: mgr inż. Maciej Lasota

2 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 2 1/6 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Manipulowanie przestrzenią 2 Przygotował: mgr inż. Maciej Lasota 1) Manipulowanie przestrzenią Istnieją dwa typy układów współrzędnych:

Bardziej szczegółowo

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku

Bardziej szczegółowo

Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30

Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30 Wykład 4 mgr inż. 1/30 Synteza grafiki polega na stworzeniu obrazu w oparciu o jego opis. Synteza obrazu w grafice komputerowej polega na wykorzystaniu algorytmów komputerowych do uzyskania obrazu cyfrowego

Bardziej szczegółowo

BLENDER- Laboratorium 1 opracował Michał Zakrzewski, 2014 r. Interfejs i poruszanie się po programie oraz podstawy edycji bryły

BLENDER- Laboratorium 1 opracował Michał Zakrzewski, 2014 r. Interfejs i poruszanie się po programie oraz podstawy edycji bryły BLENDER- Laboratorium 1 opracował Michał Zakrzewski, 2014 r. Interfejs i poruszanie się po programie oraz podstawy edycji bryły Po uruchomieniu programu Blender zawsze ukaże się nam oto taki widok: Jak

Bardziej szczegółowo

Zaawansowana Grafika Komputerowa

Zaawansowana Grafika Komputerowa Zaawansowana Komputerowa Michał Chwesiuk Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 28 Luty 2017 Michał Chwesiuk Zaawansowana Komputerowa 28 Luty 2017 1/11 O mnie inż.

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Orientacja zewnętrzna pojedynczego zdjęcia

Orientacja zewnętrzna pojedynczego zdjęcia Orientacja zewnętrzna pojedynczego zdjęcia Proces opracowania fotogrametrycznego zdjęcia obejmuje: 1. Rekonstrukcję kształtu wiązki promieni rzutujących (orientacja wewnętrzna ck, x, y punktu głównego)

Bardziej szczegółowo

1 Wstęp teoretyczny. Temat: Manipulowanie przestrzenią. Grafika komputerowa 3D. Instrukcja laboratoryjna Układ współrzędnych

1 Wstęp teoretyczny. Temat: Manipulowanie przestrzenią. Grafika komputerowa 3D. Instrukcja laboratoryjna Układ współrzędnych Instrukcja laboratoryjna 9 Grafika komputerowa 3D Temat: Manipulowanie przestrzenią Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1 Układ

Bardziej szczegółowo

Gry Komputerowe Laboratorium 3. Organizacja obiektów sceny Kolizje obiektów. mgr inż. Michał Chwesiuk 1/20. Szczecin, r

Gry Komputerowe Laboratorium 3. Organizacja obiektów sceny Kolizje obiektów. mgr inż. Michał Chwesiuk 1/20. Szczecin, r Gry Komputerowe Laboratorium 3 Organizacja obiektów sceny obiektów mgr inż. Michał Chwesiuk 1/20 Diagram Klas 2/20 Stwórz nową klasę GameObject. Klasa ta będzie klasą abstrakcyjną, z niej będą dziedziczyć

Bardziej szczegółowo

Gry Komputerowe Laboratorium 4. Teksturowanie Kolizje obiektów z otoczeniem. mgr inż. Michał Chwesiuk 1/29. Szczecin, r

Gry Komputerowe Laboratorium 4. Teksturowanie Kolizje obiektów z otoczeniem. mgr inż. Michał Chwesiuk 1/29. Szczecin, r Gry Komputerowe Laboratorium 4 Teksturowanie Kolizje obiektów z otoczeniem mgr inż. Michał Chwesiuk 1/29 Klasa Stwórzmy najpierw klasę TextureManager, która będzie obsługiwała tekstury w projekcie. 2/29

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Grafika Komputerowa, Informatyka, I Rok

Grafika Komputerowa, Informatyka, I Rok KAMERA W SCENIE 3D Pojęcie kamery. Implementacja interaktywnej kamery FPP. Test i bufor głębokości. Grafika Komputerowa, Informatyka, I Rok Kamera Jest to wirtualny koncept opisujący sposób oglądania sceny

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW

Bardziej szczegółowo

Przekształcenia geometryczne w grafice komputerowej. Marek Badura

Przekształcenia geometryczne w grafice komputerowej. Marek Badura Przekształcenia geometryczne w grafice komputerowej Marek Badura PRZEKSZTAŁCENIA GEOMETRYCZNE W GRAFICE KOMPUTEROWEJ Przedstawimy podstawowe przekształcenia geometryczne na płaszczyźnie R 2 (przestrzeń

Bardziej szczegółowo

rectan.co.uk 1. Szkic projektu Strona:1

rectan.co.uk 1. Szkic projektu Strona:1 Zadanie: Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności 1. Szkic projektu * Rozwiązanie zadania * Oznaczenia: A [cm²] - pole powierzchni figury

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr ohdan ieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D. Resnick,

Bardziej szczegółowo

Wizualizacja płomienia

Wizualizacja płomienia Politechnika Wrocławska Instytut Informatyki Automatyki i Robotyki Wizualizacja danych sensorycznych Wizualizacja płomienia Autor: Weronika Matlakiewicz Opiekun projektu: dr inż. Bogdan Kreczmer 4 czerwca

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Przetwarzanie i Kompresja Obrazów. Przekształcenia geometryczne

Przetwarzanie i Kompresja Obrazów. Przekształcenia geometryczne Przetwarzanie i Kompresja Obrazów. geometryczne Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk 1 kwietnia

Bardziej szczegółowo

Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych

Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych Scenariusz lekcji Ozobot w klasie: Spacer losowy po układzie współrzędnych Opracowanie scenariusza: Richard Born Adaptacja scenariusza na język polski: mgr Piotr Szlagor Tematyka: Informatyka, Matematyka,

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,

Bardziej szczegółowo

Gry Komputerowe - laboratorium 0

Gry Komputerowe - laboratorium 0 Gry Komputerowe - laboratorium 0 Michał Chwesiuk Zachodniopomorski Uniwersytet Technologiczny w ie Wydział Informatyki 28 Luty 2018 Michał Chwesiuk Laboratorium 0 28 Luty 2018 1/ 18 O mnie mgr inż. Michał

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

Systemy wirtualnej rzeczywistości. Komponenty i serwisy

Systemy wirtualnej rzeczywistości. Komponenty i serwisy Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Systemy wirtualnej rzeczywistości Laboratorium Komponenty i serwisy Wstęp: W trzeciej części przedstawione zostaną podstawowe techniki

Bardziej szczegółowo

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Układy współrzędnych GUW, LUW Polecenie LUW

Układy współrzędnych GUW, LUW Polecenie LUW Układy współrzędnych GUW, LUW Polecenie LUW 1 Układy współrzędnych w AutoCAD Rysowanie i opis (2D) współrzędnych kartezjańskich: x, y współrzędnych biegunowych: r

Bardziej szczegółowo

Rzutowanie DOROTA SMORAWA

Rzutowanie DOROTA SMORAWA Rzutowanie DOROTA SMORAWA Rzutowanie Rzutowanie jest operacja polegająca na tym, aby odpowiednie piksele na płaskim ekranie były wyświetlane w taki sposób, by sprawiać wrażenie trójwymiarowej głębi (przestrzeni

Bardziej szczegółowo

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/

Bardziej szczegółowo

Mobilne Aplikacje Multimedialne

Mobilne Aplikacje Multimedialne Mobilne Aplikacje Multimedialne Rozszerzona rzeczywistość (AR, Augmented Reality) w Systemie Android Cz.1 Krzysztof Bruniecki Podstawy Algebra liniowa, operacje na wektorach, macierzach, iloczyn skalarny

Bardziej szczegółowo

Ruch prostoliniowy. zmienny. dr inż. Romuald Kędzierski

Ruch prostoliniowy. zmienny. dr inż. Romuald Kędzierski Ruch prostoliniowy zmienny dr inż. Romuald Kędzierski Przypomnienie Szybkość średnia Wielkość skalarna definiowana, jako iloraz przebytej drogi i czasu, w którym ta droga została przebyta. Uwaga: Szybkość

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

1. Okna modułów Dane i Wyniki można przemieszczać po ekranie, jeśli nie jest wciśnięty przycisk Maksymalizacji

1. Okna modułów Dane i Wyniki można przemieszczać po ekranie, jeśli nie jest wciśnięty przycisk Maksymalizacji Luty 2010 1. Okna modułów Dane i Wyniki można przemieszczać po ekranie, jeśli nie jest wciśnięty przycisk Maksymalizacji 2. Po ustawieniu w menu Konfiguracja dwóch monitorów można mieć obraz o połówkowej

Bardziej szczegółowo

Grafika komputerowa i wizualizacja. dr Wojciech Pałubicki

Grafika komputerowa i wizualizacja. dr Wojciech Pałubicki Grafika komputerowa i wizualizacja dr Wojciech Pałubicki Grafika komputerowa Obrazy wygenerowane za pomocy komputera Na tych zajęciach skupiamy się na obrazach wygenerowanych ze scen 3D do interaktywnych

Bardziej szczegółowo

Krzywe stożkowe Lekcja VI: Parabola

Krzywe stożkowe Lekcja VI: Parabola Krzywe stożkowe Lekcja VI: Parabola Wydział Matematyki Politechniki Wrocławskiej Czym jest parabola? Parabola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem β = α (gdzie α

Bardziej szczegółowo

Misja#3. Robimy film animowany.

Misja#3. Robimy film animowany. Po dzisiejszej lekcji będziesz: tworzyć programy animujące obiekty na ekranie komputera określać położenie i orientację obiektu w kartezjańskim układzie współrzędnych Zauważ że... Ludzkie oko charakteryzuje

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

1 Temat: Vertex Shader

1 Temat: Vertex Shader Instrukcja Architektura procesorów graficznych 1 Temat: Vertex Shader Przygotował: mgr inż. Tomasz Michno 1 Wstęp 1.1 Czym jest shader Shader jest programem (zazwyczaj krótkim), wykonywanym przez kartę

Bardziej szczegółowo

Zad. 5: Rotacje 3D. 1 Cel ćwiczenia. 2 Program zajęć. 3 Opis zadania programowego

Zad. 5: Rotacje 3D. 1 Cel ćwiczenia. 2 Program zajęć. 3 Opis zadania programowego Zad. 5: Rotacje 3D 1 Cel ćwiczenia Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas. Praktyczne zweryfikowanie wcześniejszej konstrukcji programu. Jeśli

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem

Bardziej szczegółowo

Podstawy programowania, Poniedziałek , 8-10 Projekt, część 1

Podstawy programowania, Poniedziałek , 8-10 Projekt, część 1 Podstawy programowania, Poniedziałek 30.05.2016, 8-10 Projekt, część 1 1. Zadanie Projekt polega na stworzeniu logicznej gry komputerowej działającej w trybie tekstowym o nazwie Minefield. 2. Cele Celem

Bardziej szczegółowo

Prosta i płaszczyzna w przestrzeni

Prosta i płaszczyzna w przestrzeni Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego

Bardziej szczegółowo

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej

Bardziej szczegółowo

WIZUALIZACJA I STEROWANIE ROBOTEM

WIZUALIZACJA I STEROWANIE ROBOTEM Maciej Wochal, Opiekun koła: Dr inż. Dawid Cekus Politechnika Częstochowska, Wydział Inżynierii Mechanicznej i Informatyki, Instytut Mechaniki i Podstaw Konstrukcji Maszyn, Koło Naukowe Komputerowego Projektowania

Bardziej szczegółowo

Podstawy robotyki wykład III. Kinematyka manipulatora

Podstawy robotyki wykład III. Kinematyka manipulatora Podstawy robotyki Wykład III sztywnego Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Manipulator typu PUMA ogniwo 2 ogniwo 3 ogniwo 1 PUMA układy

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Chemiateoretyczna. Monika Musiał. Elementy teorii grup

Chemiateoretyczna. Monika Musiał. Elementy teorii grup Chemiateoretyczna Monika Musiał Elementy teorii grup Grup a G nazywamy zbiór elementów {A,B,C,...} o nastȩpuja cych własnościach: zdefiniowane jest działanie przyporza dkowuja ce każdej parze elementów

Bardziej szczegółowo

142 Egzamin maturalny. Informatyka. Poziom rozszerzony. Zbiór zadań

142 Egzamin maturalny. Informatyka. Poziom rozszerzony. Zbiór zadań 142 Egzamin maturalny. Informatyka. Poziom rozszerzony. Zbiór zadań Napisz program rozwiązujący poniższe zadania. Do oceny oddaj plik tekstowy epodpis_wynik.txt, zawierający odpowiedzi, oraz plik (pliki)

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

Korzystanie z czujników w sterowaniu robotem Lego NXT

Korzystanie z czujników w sterowaniu robotem Lego NXT Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Sterowania Robotów Korzystanie z czujników w sterowaniu robotem Lego NXT Uwagi wstępne 1. Wszystkie przykłady i zadania

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

OpenGL : Oświetlenie. mgr inż. Michał Chwesiuk mgr inż. Tomasz Sergej inż. Patryk Piotrowski. Szczecin, r 1/23

OpenGL : Oświetlenie. mgr inż. Michał Chwesiuk mgr inż. Tomasz Sergej inż. Patryk Piotrowski. Szczecin, r 1/23 OpenGL : mgr inż. Michał Chwesiuk mgr inż. Tomasz Sergej inż. Patryk Piotrowski 1/23 Folder z plikami zewnętrznymi (resources) Po odpaleniu przykładowego projektu, nie uruchomi się on poprawnie. Powodem

Bardziej szczegółowo

Organizacja zajęć. Wprowadzenie do programu AutoCAD

Organizacja zajęć. Wprowadzenie do programu AutoCAD Komputerowe wspomaganie projektowania Wykład 1 Organizacja zajęć. Wprowadzenie do programu AutoCAD dr inż. Igor Garnik www.zie.pg.gda.pl/grafin Prowadzący zajęcia Wykłady i laboratoria dr inż. Igor Garnik

Bardziej szczegółowo

Instrukcja programowania wieratko-frezarki BFKO, sterowanej odcinkowo (Sinumerik 802C)

Instrukcja programowania wieratko-frezarki BFKO, sterowanej odcinkowo (Sinumerik 802C) Instrukcja programowania wieratko-frezarki BFKO, sterowanej odcinkowo (Sinumerik 802C) Stan na dzień Gliwice 10.12.2002 1.Przestrzeń robocza maszyny Rys. Układ współrzędnych Maksymalne przemieszczenia

Bardziej szczegółowo

Przekształcenia geometryczne. Dorota Smorawa

Przekształcenia geometryczne. Dorota Smorawa Przekształcenia geometryczne Dorota Smorawa Przekształcenia geometryczne Na poprzednich laboratoriach już dowiedzieliśmy się, na czym polegają podstawowe przekształcenia geometryczne. Trzy podstawowe przekształcenia

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

OpenGL Światło (cieniowanie)

OpenGL Światło (cieniowanie) OpenGL Światło (cieniowanie) 1. Oświetlenie włączanie/wyłączanie glenable(gl_lighting); - włączenie mechanizmu oświetlenia gldisable(gl_lighting); - wyłączenie mechanizmu oświetlenia glenable(gl_light0);

Bardziej szczegółowo

PL B1. Sposób prostopadłego ustawienia osi wrzeciona do kierunku ruchu posuwowego podczas frezowania. POLITECHNIKA POZNAŃSKA, Poznań, PL

PL B1. Sposób prostopadłego ustawienia osi wrzeciona do kierunku ruchu posuwowego podczas frezowania. POLITECHNIKA POZNAŃSKA, Poznań, PL PL 222915 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 222915 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 401901 (22) Data zgłoszenia: 05.12.2012 (51) Int.Cl.

Bardziej szczegółowo

Klasyfikacja konturów w znaczników w z wykorzystaniem miary zmienności na obrazie z sonaru sektorowego

Klasyfikacja konturów w znaczników w z wykorzystaniem miary zmienności na obrazie z sonaru sektorowego Klasyfikacja konturów w znaczników w z wykorzystaniem miary zmienności na obrazie z sonaru sektorowego Mariusz Borawski, Anna Łatuszyńska Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń laboratoryjnych

Materiały pomocnicze do ćwiczeń laboratoryjnych Materiały pomocnicze do ćwiczeń laboratoryjnych Badanie napędów elektrycznych z luzownikami w robocie Kawasaki FA006E wersja próbna Literatura uzupełniająca do ćwiczenia: 1. Cegielski P. Elementy programowania

Bardziej szczegółowo

GRAFIKA CZASU RZECZYWISTEGO Wprowadzenie do OpenGL

GRAFIKA CZASU RZECZYWISTEGO Wprowadzenie do OpenGL GRAFIKA CZASU RZECZYWISTEGO Wprowadzenie do OpenGL Grafika komputerowa i wizualizacja, Bioinformatyka S1, II Rok OpenGL Open Graphics Library Jest to API pozwalające na renderowanie grafiki w czasie rzeczywistym,

Bardziej szczegółowo

VECTORy-01 wymaga zasilania napięciem 12-42V DC 200mA. Zasilanie oraz sygnały sterujące należy podłączyć do złącza zgodnie z załączonym schematem

VECTORy-01 wymaga zasilania napięciem 12-42V DC 200mA. Zasilanie oraz sygnały sterujące należy podłączyć do złącza zgodnie z załączonym schematem CNC-WAP www.cncwap.pl VECTORy-01 Rejestrator VECTORy-01 jest urządzeniem pomiarowym i rejestracyjnym Opracowanym przez CNC-WAP Wojciech Ogarek, przeznaczonym do współpracy z obrabiarkami cnc sterowanymi

Bardziej szczegółowo

W. Guzicki Zadanie 21 z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie 21 z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie 21 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 21. krąg o środku S = (3, 2) leży wewnątrz okręgu o równaniu (x 6) 2 + (y 8) 2 = 100 i jest do niego styczny. Wyznacz równanie

Bardziej szczegółowo

Rysunek 1: Okno timeline wykorzystywane do tworzenia animacji.

Rysunek 1: Okno timeline wykorzystywane do tworzenia animacji. Ćwiczenie 5 - Tworzenie animacji Podczas tworzenia prostej animacji wykorzystywać będziemy okno Timeline domyślnie ustawione na dole okna Blendera (Rys. 1). Proces tworzenia animacji polega na stworzeniu

Bardziej szczegółowo

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój

Bardziej szczegółowo

Gry Komputerowe Laboratorium 1. Zajęcia organizacyjne Animacja z uwzględnieniem czasu. mgr inż. Michał Chwesiuk 1/22. Szczecin,

Gry Komputerowe Laboratorium 1. Zajęcia organizacyjne Animacja z uwzględnieniem czasu. mgr inż. Michał Chwesiuk 1/22. Szczecin, Gry Komputerowe Laboratorium 1 Zajęcia organizacyjne mgr inż. Michał Chwesiuk 1/22 projektowych Zajęcia projektowe składają się zajęć (plus jedno zajęcie godzinne). Zajęcia polegają na programowania grafiki

Bardziej szczegółowo

Podstawy fotogrametrii i teledetekcji

Podstawy fotogrametrii i teledetekcji Podstawy fotogrametrii i teledetekcji Józef Woźniak Zakład Geodezji i Geoinformatyki Wrocław, 2013 Fotogrametria analityczna Metody pozyskiwania danych przestrzennych Plan prezentacji bezpośrednie pomiary

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Zajęcia wprowadzające. BHP stanowisk

Bardziej szczegółowo

UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI

UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI LABORATORIUM TECHNOLOGIA SYSTEMÓW INFORMATYCZNYCH W BIOTECHNOLOGII Pakiet R: Cz. II Strona 1 z 7 OBIEKTY Faktory (factors) Faktor jest specjalną strukturą, przechowującą

Bardziej szczegółowo

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach: Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu

Bardziej szczegółowo

Laboratorium 1. Część I. Podstawy biblioteki graficznej OpenGL.

Laboratorium 1. Część I. Podstawy biblioteki graficznej OpenGL. Laboratorium 1 Część I Podstawy biblioteki graficznej OpenGL. I. Konfiguracja środowiska 1. Ściągamy bibliotekę freeglut i rozpakujemy do głównego folderu dysku systemowego np. C:\freeglut 2. Uruchamiamy

Bardziej szczegółowo

Programowanie w Scratch robot mbot

Programowanie w Scratch robot mbot Programowanie w Scratch robot mbot SPOTKANIE 1 - CZYM JEST ALGORYTM CO DAJE PROGRAMOWANIE ROBOT MBOT PODSTAWOWE POLECENIA ROBOTA ZADANIA Czym jest algorytm Co daje programowanie PROGRAMOWANIE UCZY LOGICZNEGO

Bardziej szczegółowo

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Zadanie 1 (7 pkt) Cząstka o masie m i prędkości v skierowanej horyzontalnie wpada przez bocznąściankę

Bardziej szczegółowo

IRONCAD IRONCAD Skróty klawiaturowe

IRONCAD IRONCAD Skróty klawiaturowe IRONCAD IRONCAD 2016 Skróty klawiaturowe Spis treści 1. Klawisze zmiany interfejsu... 2 2. Klawisze funkcyjne pliku/edycji... 2 3. Klawisze funkcyjne/ przypisania dla kamer... 2 a. Klawisze zmiany kamer...

Bardziej szczegółowo

Bartosz Bazyluk SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok

Bartosz Bazyluk SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok Synteza grafiki 3D Pod pojęciem syntezy grafiki rozumiemy stworzenie grafiki

Bardziej szczegółowo

IRONCAD. TriBall IRONCAD Narzędzie pozycjonujące

IRONCAD. TriBall IRONCAD Narzędzie pozycjonujące IRONCAD IRONCAD 2016 TriBall o Narzędzie pozycjonujące Spis treści 1. Narzędzie TriBall... 2 2. Aktywacja narzędzia TriBall... 2 3. Specyfika narzędzia TriBall... 4 3.1 Kula centralna... 4 3.2 Kule wewnętrzne...

Bardziej szczegółowo

Manipulatory i roboty mobilne AR S1 semestr 5

Manipulatory i roboty mobilne AR S1 semestr 5 Manipulatory i roboty mobilne AR S semestr 5 Konrad Słodowicz MN: Zadanie proste kinematyki manipulatora szeregowego - DOF Położenie manipulatora opisać można dwojako w przestrzeni kartezjańskiej lub zmiennych

Bardziej szczegółowo

Obrót wokół początku układu współrzędnych o kąt φ można wyrazić w postaci macierzowej następująco

Obrót wokół początku układu współrzędnych o kąt φ można wyrazić w postaci macierzowej następująco Transformacje na płaszczyźnie Przesunięcie Przesunięcie (translacja) obrazu realizowana jest przez dodanie stałej do każdej współrzędnej, co w postaci macierzowej można przedstawić równaniem y'] = [ x

Bardziej szczegółowo

POWŁOKI GEOMETRIA POWIERZCHNI

POWŁOKI GEOMETRIA POWIERZCHNI Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydzia Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Maria Radwańska Tematyka wykładu

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej

Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Mechanika Robotów Wojciech Lisowski 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Mechanika Robotów KRiM, WIMIR, AGH

Bardziej szczegółowo

Maszyny technologiczne. dr inż. Michał Dolata

Maszyny technologiczne. dr inż. Michał Dolata Maszyny technologiczne 2019 dr inż. Michał Dolata www.mdolata.zut.edu.pl Układ konstrukcyjny obrabiarki 2 Układ konstrukcyjny tworzą podstawowe wzajemnie współdziałające podzespoły maszyny rozmieszczone

Bardziej szczegółowo

Ćwiczenie nr 2 - Rysowanie precyzyjne

Ćwiczenie nr 2 - Rysowanie precyzyjne Ćwiczenie nr 2 - Rysowanie precyzyjne Materiały do kursu Skrypt CAD AutoCAD 2D strony: 37-46. Wprowadzenie Projektowanie wymaga budowania modelu geometrycznego zgodnie z określonymi wymiarami, a to narzuca

Bardziej szczegółowo

Systemy wirtualnej rzeczywistości. Podstawy grafiki 3D

Systemy wirtualnej rzeczywistości. Podstawy grafiki 3D Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Systemy wirtualnej rzeczywistości Laboratorium Podstawy grafiki 3D Wstęp: W drugiej części przedstawione zostaną podstawowe mechanizmy

Bardziej szczegółowo