UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI"

Transkrypt

1 UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI LABORATORIUM TECHNOLOGIA SYSTEMÓW INFORMATYCZNYCH W BIOTECHNOLOGII Pakiet R: Cz. II Strona 1 z 7

2 OBIEKTY Faktory (factors) Faktor jest specjalną strukturą, przechowującą oprócz danych informacje o powtórzeniach takich samych wartości oraz o zbiorze unikalnych wartości ciągu elementów. Faktor można utworzyć poprzez zdefiniowanie wektora z wartościami i następnie przekonwertowanie go do faktora za pomocą funkcji factor(): > settings = c("high", "Medium", "Low") > settings = factor(settings) > settings [1] High Medium Low Levels: High Low Medium Zestawienie ilości poszczególnych wartości możemy uzyskać przy użyciu funkcji table() np.: > table(settings) settings High Low Medium Funkcja cut pozwala pogrupować dane wektora w przedziały np.: > liczby = c(1,2,3,4,5,6,7,8,9,10) > cut(liczby, c(0,3,6,10)) [1] (0,3] (0,3] (0,3] (3,6] (3,6] (3,6] (6,10] (6,10] (6,10] (6,10] Levels: (0,3] (3,6] (6,10] Macierze (matrices) / Tablice (arrays) Tablica jest wektorem, zawierającym dodatkowe dane określające uporządkowanie elementów. Najprostszą i najczęściej stosowaną formą jest tablica dwuwymiarowa (macierz), jednak istnieje możliwość stosowania dowolnej liczby wymiarów. Tablice są bardzo wygodnym narzędziem do przechowywania informacji, gdyż niezależnie od uporządkowania elementów w wiersze i kolumny, cała tabela jest dostępna pod postacią jednolitego wektora. Indeksowanie tablic odbywa się podobnie do wektorów; w nawiasie kwadratowym podajemy współrzędne indeksowanego elementu. W razie pominięcia współrzędnej wynikiem indeksowania jest cały rząd lub kolumna. Jeśli pomijamy współrzędną w indeksie, należy pamiętać o pozostawieniu przecinka. Strona 2 z 7

3 Tablice można stworzyć z istniejącego już wektora, poprzez przypisanie wymiarów do funkcji dim() wywołanej na wektorze. Innymi, bardziej naturalnymi funkcjami tworzącymi tablice są matrix() i array(). > tbl=1:20 > dim(tbl)=c(4,5) #wektor staje się tablicą o wymiarach 4,5 > tbl [,1] [,2] [,3] [,4] [,5] [1,] [2,] [3,] [4,] Istnieje możliwość zmiany wymiarów istniejącej już tablicy bez żadnych ograniczeń (z wyjątkiem wymogu, aby iloczyn wymiarów był równy ilości elementów). > dim(tbl) #wyświetlenie wymiarów [1] 4 5 > dim(tbl) = c(2,10) #zmiana wymiarów tablicy > tbl [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] [2,] Jeśli parametrem w nawiasie kwadratowym (indeksem) jest tablica o dwóch kolumnach, rezultatem jest wektor zawierający dane z tabeli o współrzędnych zamieszczonych w poszczególnych wierszach indeksu (wiersz w pierwszym, kolumna w drugim). W ten sposób można się jednorazowo odnosić do całej serii elementów tabeli, niezależnie od ich układu. Funkcje cbind() i rbind() formują tablice z podanych wektorów, poprzez umieszczenie ich rzędami lub kolumnami w nowo tworzonej tabeli. W ten sposób można serie danych łatwo scalić w tabele. Odwrotnie, każdą tabelę można prosto przekształcić na wektor, stosując funkcję as.vector(). Listy (lists) Lista jest uporządkowanym zbiorem elementów różnego typu. Każdy z nich może posiadać również nazwę, przez którą można się do niego odwołać w dalszych operacjach. Do tworzenia list służy funkcja list(). Jeśli wywołamy ją z listą liczb, otrzymamy listę jednoelementowych wektorów: > s = list(1,2) Strona 3 z 7

4 > s [[1]] [1] 1 [[2]] [1] 2 Jeśli chcemy odwołać się do konkretnego elementu listy i znamy jego numer, to można listę indeksować, jednak indeks należy podać w podwójnych nawiasach kwadratowych. W powyższym przypadku s[[1]] to pierwszy element listy, czyli jednoelementowy wektor z jedynką. Jeśli elementem listy jest wektor wieloelementowy lub tablica, można oczywiście odwoływać się dalej, podając jeszcze jeden indeks, tym razem w pojedynczym nawiasie, np. s[[2]][1]. Każdy z elementów listy może mieć określoną nazwę i takie nazwane listy spotyka się w praktyce najczęściej. Wtedy też można się odnosić do konkretnych elementów poprzez sprzężenie nazwy listy z nazwą elementu znakiem dolara $. Nie musimy pamiętać, który z kolei element nas interesuje, wystarczy znać jego nazwę. Upraszcza to znacznie odwołania do poszczególnych zmiennych listy. > s = list(wekt=c(1,2,3),skal=2,tabl=array(data=1:4,dim=c(2,2))) > s $wekt [1] $skal [1] 2 $tabl [,1] [,2] [1,] 1 3 [2,] 2 4 Nazwy elementów listy można skracać do takiej długości, która wystarcza do jednoznacznej ich identyfikacji. Istnieje również możliwość łączenia list funkcją c(), np. lista3 = c(lista1,lista2). Ramki (data frames) Ramka to specyficzna struktura środowiska R. Najprościej można określić ją jako macierz, w której poszczególne kolumny mogą zawierać wartości różnego rodzaju. Do utworzenia takiej struktury służy funkcja data.frame(). Można również przekształcić inne struktury na ten typ funkcją as.data.frame(). Aby zaadresować wybraną kolumnę ramki używa się operatora $ z nazwą kolumny. > x = rep(3,4) > y = rep(5,4) Strona 4 z 7

5 > xy = data.frame(x,y) > xy x y #utworzenie nowego wektora q poprzez wybranie kolumny x z ramki xy > q = xy$x > q [1] Dodawanie kolumn lub wierszy uzyskuje się wykorzystując funkcje cbind() i rbind(). Pakiet R pozwala na łatwe ładowanie danych z zewnętrznych plików. Każdą tabelę zawartą w pliku tekstowym (utworzoną np. w Excelu poprzez opcję export) można załadować funkcją read.table(). Opcja header w funkcji read.table() oznacza, że plik tekstowy zawiera w pierwszym wierszu nazwy kolumn. Jedną z najważniejszych właściwości obiektów typu lista i ramka jest możliwość ich przyłączenia (attach). Jeśli mamy listę lub ramkę o nazwie lista, zawierającą elementy a i b, to po jej włączeniu, w środowisku zmienne te istnieją bezpośrednio i nie trzeba się odwoływać do nich za pośrednictwem ramki lub listy, aż do czasu jej odłączenia (detach). Sprawdzanie i zmiana typu danych W pakiecie R istnieje grupa funkcji is.typ, która umożliwia identyfikację typu i rodzaju danych. Z kolei grupa funkcji as.typ wykonuje zamianę istniejącego typu lub rodzaju danych na inny. Wynik konwersji należy przypisać do zmiennej, inaczej będzie on nietrwały. W przypadku nonsensownej zamiany danych, np. z typu tekstowego na liczbowy, program dokonuje konwersji do wartości NA (not available). Strona 5 z 7

6 Zad. 1. Katedra Informatyki Uniwersytetu Rzeszowskiego ZADANIA Proszę utworzyć wektor o nazwie wek zawierający następujące wartości w podanej kolejności: 1,2,2,3,3,3,4,4,4,4,5,5,5,5,5. Do utworzenia obiektu należy wykorzystać funkcję seq() i rep(). Zad. 2. Proszę utworzyć wektor o nazwie z o następujących elementach: 1,2,3,4,12,31,2,51,23,1,23,2341,23,512,32,312,123,21,3, a następnie: a) posortować elementy rosnąco wykorzystując funkcję operującą na wektorach; b) wybrać elementy od 3-go do 7-go; c) zmienić wartość trzeciego elementu z 3 na 7 i wyświetlić cały wektor; d) podać długość wektora z (liczbę elementów); e) utworzyć wektor z100 zawierający tylko te elementy wektora z, których wartości są większe od 100. Zad. 3. Obliczyć dla wektorów: wek1 (o wartościach: 0,0.5,1,,4,4.5,5) i wek2 (o wartościach od -10 do 10 z krokiem równym 2): a) średnie, b) mediany, c) odchylenia standardowe, d) sumy, e) iloczyny elementów, f) wartości zwracane przez funkcje: - pmin, - pmax, - cummin, - cummax diff. Zad. 4. Proszę utworzyć stuelementowe wektory logiczne wl1 (co szósty element ma wartość TRUE, reszta FALSE) i wl2 (co 9-y element ma wartość TRUE, reszta FALSE). a) Ile elementów ma wartość TRUE? Strona 6 z 7

7 b) Podaj indeksy elementów o wartości TRUE dla połączonych wektorów? c) Jakie wartości będzie posiadał wektor wl3 stanowiący sumę wl1 i wl2? Podaj interpretację wyników. Zad. 5. Proszę utworzyć macierz o nazwie matrix zawierającą liczby od 1 do 7, w 3 kolumnach. Zad. 6. Proszę utworzyć listę o nazwie mylist zawierającą następujące elementy: - Liczbę 5; - Wektor w o elementach: 10, 9, 8, 7, 6, 5; - Tekst seven ; - Macierz mat o wymiarach: 2 x 2 zawierającą liczby całkowite: 2, 3, 1, 5 (w 2 wierszach i 2 kolumnach). Zad. 7. Proszę utworzyć ramkę o nazwie comparativegenomesize zawierającą 3 wektory: - wektor pierwszy o nazwie organizm z elementami: "Human", "Mouse", "Fruit Fly", "Roundworm", "Yeast"; - wektor drugi o nazwie genomesizebp z elementami: , , , , ; - wektor trzeci o nazwie estgenecount z elementami: 30000, 30000, 13061, 19099, Jako nazwy kolumn ramki należy zastosować nazwy wektorów. UWAGA! Całą sesję należy zapisać w pliku o nazwie identyfikującej użytkownika w swoim folderze. Utworzone powyżej obiekty będą wykorzystywane na następnych zajęciach! Lokalizację zapisywanych plików określamy poleceniem Change dir z menu Plik. Obraz przestrzeni roboczej zapisujemy komendą: > save.image(file= nazwa_użytkownika.rdata ) Strona 7 z 7

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Wprowadzenie do pakietu R Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Co i dlaczego...? 2 Przechowywanie

Bardziej szczegółowo

Statystyczne systemy uczące

Statystyczne systemy uczące Statystyczne systemy uczące Tomasz Górecki Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza W ciągu ćwiczeń zostaną przeprowadzone 2 kolokwia. Na każdym znichbędziedozdobycia25punktów.od25punktówbędzie

Bardziej szczegółowo

Pakiety Matematyczne - R Zestaw 1.

Pakiety Matematyczne - R Zestaw 1. Pakiety Matematyczne - R Zestaw 1. Zadania z kasynem pochodzą ze strony datacamp.com Instalacja pakietu R Strona główna projektu: http://www.r-project.org/ Instalacja: http://r.meteo.uni.wroc.pl/ (jedno

Bardziej szczegółowo

Niezwykłe tablice Poznane typy danych pozwalają przechowywać pojedyncze liczby. Dzięki tablicom zgromadzimy wiele wartości w jednym miejscu.

Niezwykłe tablice Poznane typy danych pozwalają przechowywać pojedyncze liczby. Dzięki tablicom zgromadzimy wiele wartości w jednym miejscu. Część XIX C++ w Każda poznana do tej pory zmienna może przechowywać jedną liczbę. Jeśli zaczniemy pisać bardziej rozbudowane programy, okaże się to niewystarczające. Warto więc poznać zmienne, które mogą

Bardziej szczegółowo

Wprowadzenie do programu Mathcad 15 cz. 1

Wprowadzenie do programu Mathcad 15 cz. 1 Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Instalacja Pakietu R

Instalacja Pakietu R Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego: Download R for Windows opcja: install R for the first time opcja: Download R 3.3.3 for Windows uruchomienie R-3.3.3-win MAGDA

Bardziej szczegółowo

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem

Bardziej szczegółowo

Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Wprowadzenie do Pakietu R dla kierunku Zootechnika Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego:

Bardziej szczegółowo

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup Baltie 3 Podręcznik do nauki programowania dla klas I III gimnazjum Tadeusz Sołtys, Bohumír Soukup Czytanie klawisza lub przycisku myszy Czytaj klawisz lub przycisk myszy - czekaj na naciśnięcie Polecenie

Bardziej szczegółowo

MATLAB - laboratorium nr 1 wektory i macierze

MATLAB - laboratorium nr 1 wektory i macierze MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji

Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki Podstawy Informatyki i algorytmizacji wykład 1 dr inż. Maria Lachowicz Wprowadzenie Dlaczego arkusz

Bardziej szczegółowo

Przykład 4. (Tabela z Danymi Arkusz: Tabele Przestawne 1 ) (Przykład 2 wykonany Arkusz: Tabele Przestawne 5 )

Przykład 4. (Tabela z Danymi Arkusz: Tabele Przestawne 1 ) (Przykład 2 wykonany Arkusz: Tabele Przestawne 5 ) Przykład 4. (Tabela z Danymi Arkusz: Tabele Przestawne 1 ) (Przykład 2 wykonany Arkusz: Tabele Przestawne 5 ) W tym przykładzie będziemy kontynuować pracę na tabeli przestawnej utworzonej w przykładzie

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Podstawy Programowania C++

Podstawy Programowania C++ Wykład 3 - podstawowe konstrukcje Instytut Automatyki i Robotyki Warszawa, 2014 Wstęp Plan wykładu Struktura programu, instrukcja przypisania, podstawowe typy danych, zapis i odczyt danych, wyrażenia:

Bardziej szczegółowo

PROGRAMOWANIE W PYTHONIE ALGORYTMY TABLICOWE A LISTY

PROGRAMOWANIE W PYTHONIE ALGORYTMY TABLICOWE A LISTY Informatyka w Edukacji, XV UMK Toruń, 2018 PROGRAMOWANIE W PYTHONIE ALGORYTMY TABLICOWE A LISTY Grażyna Szabłowicz-Zawadzka http://metodycy.torun.pl/ m.informatyka@metodycy.torun.pl 1. Lista typ sekwencyjny

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO

Bardziej szczegółowo

Diary przydatne polecenie. Korzystanie z funkcji wbudowanych i systemu pomocy on-line. Najczęstsze typy plików. diary nazwa_pliku

Diary przydatne polecenie. Korzystanie z funkcji wbudowanych i systemu pomocy on-line. Najczęstsze typy plików. diary nazwa_pliku Diary przydatne polecenie diary nazwa_pliku Polecenie to powoduje, że od tego momentu sesja MATLAB-a, tj. polecenia i teksty wysyłane na ekran (nie dotyczy grafiki) będą zapisywane w pliku o podanej nazwie.

Bardziej szczegółowo

Arkusz kalkulacyjny Excel

Arkusz kalkulacyjny Excel Arkusz kalkulacyjny Excel Ćwiczenie 1. Sumy pośrednie (częściowe). POMOC DO ĆWICZENIA Dzięki funkcji sum pośrednich (częściowych) nie jest konieczne ręczne wprowadzanie odpowiednich formuł. Dzięki nim

Bardziej szczegółowo

Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych

Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Wszystko proszę zapisywać komendą diary do pliku o nazwie: imie_ nazwisko 1. Definiowanie macierzy i odwoływanie się do elementów:

Bardziej szczegółowo

Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011

Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Załóżmy, że uprawiamy jogging i chcemy monitorować swoje postępy. W tym celu napiszemy program, który zlicza, ile czasu

Bardziej szczegółowo

UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI

UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI LABORATORIUM TECHNOLOGIA SYSTEMÓW INFORMATYCZNYCH W BIOTECHNOLOGII Aplikacja bazodanowa: Cz. II Rzeszów, 2010 Strona 1 z 11 APLIKACJA BAZODANOWA MICROSOFT ACCESS

Bardziej szczegółowo

Plan Ćwiczeń. 3) znajdowanie i zmiana kartoteki roboczej polecenia getwd(), setwd()

Plan Ćwiczeń. 3) znajdowanie i zmiana kartoteki roboczej polecenia getwd(), setwd() Plan Ćwiczeń 1) Format poleceń, umieszczanie komentarzy, korekty poleceń (w przypadku bardziej skomplikowanych poleceń warto pisać je w otwartym okienku edytora i kopiować do linii poleceń R). Sposób zapisu

Bardziej szczegółowo

Pakiety Matematyczne - R Zestaw 2.

Pakiety Matematyczne - R Zestaw 2. Pakiety Matematyczne - R Zestaw 2. Część przykładów pochodzi z helpa do R i z książki: R.Biecek, Przewodnik po pakiecie R, GIS 2014, strona www: http://www.biecek.pl, Instrukcje warunkowe Składnia instrukcji

Bardziej szczegółowo

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7. Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Wstęp do Programowania Lista 1

Wstęp do Programowania Lista 1 Wstęp do Programowania Lista 1 1 Wprowadzenie do środowiska MATLAB Zad. 1 Zapoznaj się z podstawowymi oknami dostępnymi w środowisku MATLAB: Command Window, Current Folder, Workspace i Command History.

Bardziej szczegółowo

2. Tablice. Tablice jednowymiarowe - wektory. Algorytmy i Struktury Danych

2. Tablice. Tablice jednowymiarowe - wektory. Algorytmy i Struktury Danych 2. Tablice Tablica to struktura danych przechowująca elementy jednego typu (jednorodna). Dostęp do poszczególnych elementów składowych jest możliwy za pomocą indeksów. Rozróżniamy następujące typy tablic:

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Język skryptowy: Laboratorium 1. Wprowadzenie do języka Python

Język skryptowy: Laboratorium 1. Wprowadzenie do języka Python Język skryptowy: Laboratorium 1. Wprowadzenie do języka Python Język PYTHON Podstawowe informacje Python to język skryptowy, interpretowany - co oznacza, że piszemy skrypt, a następnie wykonujemy go za

Bardziej szczegółowo

-Instalacja R: -Instalacja RStudio:

-Instalacja R:   -Instalacja RStudio: Rachunek Prawdopodobieństwa i Statystyka lab 1. Kaja Chmielewska (Kaja.Chmielewska@cs.put.poznan.pl) 1. Krótko o R R jest wolnym (otwartym i darmowym), zaawansowanym środowiskiem oraz językiem programowania.

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

BIBLIOTEKA NUMPY, CZĘŚĆ 1

BIBLIOTEKA NUMPY, CZĘŚĆ 1 BIBLIOTEKA NUMPY, CZĘŚĆ 1 1. INSTALACJA BIBLIOTEKI NUMPY Aby móc skorzystać z biblioteki Numpy (i każdej innej zewnętrznej biblioteki) w swoim projekcie należy ją najpierw zainstalować w środowisku wirtualnym

Bardziej szczegółowo

Wymiar musi być wyrażeniem stałym typu całkowitego, tzn. takim, które może obliczyć kompilator. Przykłady:

Wymiar musi być wyrażeniem stałym typu całkowitego, tzn. takim, które może obliczyć kompilator. Przykłady: 5 Tablice Tablica jest zestawem obiektów (zmiennych) tego samego typu, do których można się odwołać za pomocą wspólnej nazwy. Obiekty składowe tablicy noszą nazwę elementów tablicy. Dostęp do nich jest

Bardziej szczegółowo

Wydział Zarządzania AGH. Katedra Informatyki Stosowanej. Pętle. Programowanie komputerowe

Wydział Zarządzania AGH. Katedra Informatyki Stosowanej. Pętle. Programowanie komputerowe Wydział Zarządzania AGH Katedra Informatyki Stosowanej Pętle 1 Program wykładu Pojęcie pętli Pętla FOR Pętla DO LOOP Pętle zagnieżdżone 2 Pojęcie pętli Suma lub iloczyn dowolnych n liczb wprowadzanych

Bardziej szczegółowo

Tablice. Jones Stygar na tropie zmiennych

Tablice. Jones Stygar na tropie zmiennych Tablice Jones Stygar na tropie zmiennych Czym jest tablica? Obecnie praktycznie wszystkie języki programowania obsługują tablice. W matematyce odpowiednikiem tablicy jednowymiarowej jest ciąg (lub wektor),

Bardziej szczegółowo

czyli Arkuszy / Układów na podstawie modelu

czyli Arkuszy / Układów na podstawie modelu Przygotowanie dokumentacji technicznej czyli Arkuszy / Układów na podstawie modelu Przygotowanie dokumentacji technicznej w AutoCAD 1 Wydruk rysunku z AutoCAD można przygotować na dwa sposoby 1. na zakładce

Bardziej szczegółowo

Po uruchomieniu programu nasza litera zostanie wyświetlona na ekranie

Po uruchomieniu programu nasza litera zostanie wyświetlona na ekranie Część X C++ Typ znakowy służy do reprezentacji pojedynczych znaków ASCII, czyli liter, cyfr, znaków przestankowych i innych specjalnych znaków widocznych na naszej klawiaturze (oraz wielu innych, których

Bardziej szczegółowo

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3 Matlab, zajęcia 3. Pętle c.d. Przypomnijmy sobie jak działa pętla for Możemy podać normalnie w Matlabie t=cputime; for i=1:20 v(i)=i; e=cputime-t UWAGA: Taka operacja jest bardzo czasochłonna i nieoptymalna

Bardziej szczegółowo

Informatyka w Zarządzaniu

Informatyka w Zarządzaniu F O R M U L A R Z E I F O R M A N T Y M S E X C E L Formanty formularza są prostsze w użyciu, gdyż nie wymagają pisania kodu w języku Visual Basic for Applications (VBA). Aby skorzystać z efektów działania

Bardziej szczegółowo

Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab

Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab Podstawy Automatyki ćwiczenia Cz.1 Środowisko Matlab Podstawową jednostką obliczeniową w programie Matlab jest macierz. Wektory i skalary mogą być tutaj rozpatrywane jako specjalne typy macierzy. Elementy

Bardziej szczegółowo

Warsztaty dla nauczycieli

Warsztaty dla nauczycieli WPROWADZENIE Wyprowadzanie danych: Wyprowadzanie na ekran komunikatów i wyników umożliwia instrukcja wyjścia funkcja print(). Argumentami funkcji (podanymi w nawiasach) mogą być teksty, wyrażenia arytmetyczne

Bardziej szczegółowo

1. Indeksy/indeksowanie : Do elementów wektora, list, macierzy czy ramek, można się odwołać na kilka sposobów.

1. Indeksy/indeksowanie : Do elementów wektora, list, macierzy czy ramek, można się odwołać na kilka sposobów. Rachunek Prawdopodobieństwa i Statystyka lab 2. Kaja Chmielewska ( Kaja.Chmielewska@cs.put.poznan.pl ) 1. Indeksy/indeksowanie : Do elementów wektora, list, macierzy czy ramek, można się odwołać na kilka

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

Dodatkowo klasa powinna mieć destruktor zwalniający pamięć.

Dodatkowo klasa powinna mieć destruktor zwalniający pamięć. Zadanie 1. Utworzyć klasę reprezentującą liczby wymierne. Obiekty klasy powinny przechowywać licznik i mianownik rozłożone na czynniki pierwsze. Klasa powinna mieć zdefiniowane operatory czterech podstawowych

Bardziej szczegółowo

Zadeklarowanie tablicy przypomina analogiczną operację dla zwykłych (skalarnych) zmiennych. Może zatem wyglądać na przykład tak:

Zadeklarowanie tablicy przypomina analogiczną operację dla zwykłych (skalarnych) zmiennych. Może zatem wyglądać na przykład tak: Tablice Tablice jednowymiarowe Jeżeli nasz zestaw danych składa się z wielu drobnych elementów tego samego rodzaju, jego najbardziej naturalnym ekwiwalentem w programowaniu będzie tablica. Tablica (ang.

Bardziej szczegółowo

Algebra macierzy

Algebra macierzy Algebra macierzy Definicja macierzy Macierze Macierze Macierze Działania na macierzach Działania na macierzach A + B = B + A (prawo przemienności dodawania) (A + B) + C = A + (B + C) (prawo łączności dodawania)

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

SZKOLENIE WPROWADZENIE DO R UNIWERSYTET SZCZECIŃSKI al. Papieża Jana Pawła II nr 22a Szczecin

SZKOLENIE WPROWADZENIE DO R UNIWERSYTET SZCZECIŃSKI al. Papieża Jana Pawła II nr 22a Szczecin SZKOLENIE WPROWADZENIE DO R UNIWERSYTET SZCZECIŃSKI al. Papieża Jana Pawła II nr 22a 70-453 Szczecin 2 Lp. Temat Numer części materiałów 1 Język R oraz środowisko RStudio 1 2 Składnia języka 3 3 Podstawowe

Bardziej szczegółowo

Programowanie dynamiczne

Programowanie dynamiczne Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem

Bardziej szczegółowo

SUM Edukacja Techniczno Informatyczna Języki i Systemy Programowania. Wykład 3. dr Artur Bartoszewski - WYKŁAD: Języki i Systemy Programowania,

SUM Edukacja Techniczno Informatyczna Języki i Systemy Programowania. Wykład 3. dr Artur Bartoszewski - WYKŁAD: Języki i Systemy Programowania, SUM Edukacja Techniczno Informatyczna Języki i Systemy Programowania Wykład 3 1 SUM Edukacja Techniczno Informatyczna Języki i Systemy Programowania Przykład Bingo 2 Treść przykładu Jak wygląda karta do

Bardziej szczegółowo

*W uproszczeniu: jest dziewięciu sędziów przyznających po dwie noty: za wartość techniczną i artystyczną (skala od 0.0 do 6.0)

*W uproszczeniu: jest dziewięciu sędziów przyznających po dwie noty: za wartość techniczną i artystyczną (skala od 0.0 do 6.0) Tablice Mamy napisać program obliczający średnią ocenę w łyżwiarstwie figurowym W uproszczeniu: jest dziewięciu sędziów przyznających po dwie noty: za wartość techniczną i artystyczną (skala od 0.0 do

Bardziej szczegółowo

Uwagi dotyczące notacji kodu! Moduły. Struktura modułu. Procedury. Opcje modułu (niektóre)

Uwagi dotyczące notacji kodu! Moduły. Struktura modułu. Procedury. Opcje modułu (niektóre) Uwagi dotyczące notacji kodu! Wyrazy drukiem prostym -- słowami języka VBA. Wyrazy drukiem pochyłym -- inne fragmenty kodu. Wyrazy w [nawiasach kwadratowych] opcjonalne fragmenty kodu (mogą być, ale nie

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Wykorzystanie programów komputerowych do obliczeń matematycznych

Wykorzystanie programów komputerowych do obliczeń matematycznych Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane

Bardziej szczegółowo

Podstawy programowania w R - część 1

Podstawy programowania w R - część 1 Podstawy programowania w R - część 1 Typy danych, podzbiory 1. Stwórz katalog na dysku (pierwsza litera imienia + nazwisko), który będzie Twoim Working Directory. "F:/inazwisko" 2. Uruchom RStudio. 3.

Bardziej szczegółowo

Podstawowe operacje na macierzach

Podstawowe operacje na macierzach Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.

Bardziej szczegółowo

TABLICA (ang. array) pojedyncza zmienna z wieloma komórkami, w których można zapamiętać wiele wartości tego samego typu danych.

TABLICA (ang. array) pojedyncza zmienna z wieloma komórkami, w których można zapamiętać wiele wartości tego samego typu danych. Złożone typy danych - TABLICE TABLICA (ang. array) pojedyncza zmienna z wieloma komórkami, w których można zapamiętać wiele wartości tego samego typu danych. * Może przechowywać dowolny typ danych, typ

Bardziej szczegółowo

Lekcja 7 Tablice. Definiowanie tablicy

Lekcja 7 Tablice. Definiowanie tablicy Paweł Gmys PHP lekcja 7 strona 1 Lekcja 7 Tablice Definiowanie tablicy Tablice są bardzo specyficznym typem zmiennych - są to, najprościej mówiąc, zmienne zawierające w sobie uporządkowany zbiór zmiennych.

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9

Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9 Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9 Tabele 9 Klucze 10 Relacje 11 Podstawowe zasady projektowania tabel 16 Rozdział 2. Praca z tabelami 25 Typy danych 25 Tworzenie tabel 29 Atrybuty kolumn

Bardziej szczegółowo

Metody numeryczne Laboratorium 2

Metody numeryczne Laboratorium 2 Metody numeryczne Laboratorium 2 1. Tworzenie i uruchamianie skryptów Środowisko MATLAB/GNU Octave daje nam możliwość tworzenia skryptów czyli zapisywania grup poleceń czy funkcji w osobnym pliku i uruchamiania

Bardziej szczegółowo

Matlab Składnia + podstawy programowania

Matlab Składnia + podstawy programowania Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe

Bardziej szczegółowo

Podstawy programowania, Poniedziałek , 8-10 Projekt, część 1

Podstawy programowania, Poniedziałek , 8-10 Projekt, część 1 Podstawy programowania, Poniedziałek 30.05.2016, 8-10 Projekt, część 1 1. Zadanie Projekt polega na stworzeniu logicznej gry komputerowej działającej w trybie tekstowym o nazwie Minefield. 2. Cele Celem

Bardziej szczegółowo

Ćwiczenie: JavaScript Cookies (3x45 minut)

Ćwiczenie: JavaScript Cookies (3x45 minut) Ćwiczenie: JavaScript Cookies (3x45 minut) Cookies niewielkie porcje danych tekstowych, które mogą być przesyłane między serwerem a przeglądarką. Przeglądarka przechowuje te dane przez określony czas.

Bardziej szczegółowo

Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students:

Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students: 1. Wczytywanie danych do programu R Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students: > students

Bardziej szczegółowo

Podstawowe operacje na macierzach, operacje we/wy

Podstawowe operacje na macierzach, operacje we/wy 26 listopad 2012 Podstawowe operacje na macierzach, operacje we/wy Slajd 1 Podstawowe operacje na macierzach, operacje we/wy Zakład Komputerowego Wspomagania Projektowania Semestr 1. 26 listopad 2012 Podstawowe

Bardziej szczegółowo

Informatyka klasa III Gimnazjum wymagania na poszczególne oceny

Informatyka klasa III Gimnazjum wymagania na poszczególne oceny Informatyka klasa III Gimnazjum wymagania na poszczególne oceny Algorytmika i programowanie Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, stosowanie podejścia algorytmicznego

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Zad. 3: Układ równań liniowych

Zad. 3: Układ równań liniowych 1 Cel ćwiczenia Zad. 3: Układ równań liniowych Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich

Bardziej szczegółowo

Wprowadzenie do Mathcada 1

Wprowadzenie do Mathcada 1 Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.

Bardziej szczegółowo

Rys.2.1. Drzewo modelu DOM [1]

Rys.2.1. Drzewo modelu DOM [1] 1. CEL ĆWICZENIA Celem ćwiczenia jest przedstawienie możliwości wykorzystania języka JavaScript do tworzenia interaktywnych aplikacji działających po stronie klienta. 2. MATERIAŁ NAUCZANIA 2.1. DOM model

Bardziej szczegółowo

WyŜsza Szkoła Zarządzania Ochroną Pracy MS EXCEL CZ.2

WyŜsza Szkoła Zarządzania Ochroną Pracy MS EXCEL CZ.2 - 1 - MS EXCEL CZ.2 FUNKCJE Program Excel zawiera ok. 200 funkcji, będących predefiniowanymi formułami, słuŝącymi do wykonywania określonych obliczeń. KaŜda funkcja składa się z nazwy funkcji, która określa

Bardziej szczegółowo

Ćwiczenie 1. Wprowadzenie do programu Octave

Ćwiczenie 1. Wprowadzenie do programu Octave Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 1. Wprowadzenie do programu Octave Mimo że program Octave został stworzony do

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

Wprowadzenie do środowiska

Wprowadzenie do środowiska Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz

Bardziej szczegółowo

Tabele przestawne tabelą przestawną. Sprzedawcy, Kwartały, Wartości. Dane/Raport tabeli przestawnej i wykresu przestawnego.

Tabele przestawne tabelą przestawną. Sprzedawcy, Kwartały, Wartości. Dane/Raport tabeli przestawnej i wykresu przestawnego. Tabele przestawne Niekiedy istnieje potrzeba dokonania podsumowania zawartości bazy danych w formie dodatkowej tabeli. Tabelę taką, podsumowującą wybrane pola bazy danych, nazywamy tabelą przestawną. Zasady

Bardziej szczegółowo

czyli Arkuszy / Układów na podstawie modelu w zakładce MODEL

czyli Arkuszy / Układów na podstawie modelu w zakładce MODEL Przygotowanie dokumentacji technicznej 2D czyli Arkuszy / Układów na podstawie modelu w zakładce MODEL Przygotowanie dokumentacji technicznej w AutoCAD 1 Wydruk rysunku z AutoCAD można przygotować na dwa

Bardziej szczegółowo

o nazwie: adresy.xls. Fragment danych źródłowych przestawiono na rysunku 1. Rysunek 1. Dane źródłowe - plik "adresy.xls"

o nazwie: adresy.xls. Fragment danych źródłowych przestawiono na rysunku 1. Rysunek 1. Dane źródłowe - plik adresy.xls Laboratorium 4 Strona 1 z 11 Spis treści: 1. Filtrowanie automatyczne z wykorzystaniem pakietu Microsoft Excel 2. Filtr zaawansowany w pakiecie Microsoft Excel 3. Mechanizm tworzenia sum pośrednich 4.

Bardziej szczegółowo

Z nowym bitem. Informatyka dla gimnazjum. Część II

Z nowym bitem. Informatyka dla gimnazjum. Część II Z nowym bitem. Informatyka dla gimnazjum. Część II Wymagania na poszczególne oceny szkolne Grażyna Koba Spis treści 1. Algorytmika i programowanie... 2 2. Obliczenia w arkuszu kalkulacyjnym... 4 3. Bazy

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Zajęcia wprowadzające. BHP stanowisk

Bardziej szczegółowo

Re +/- Im i lub Re +/- Im j

Re +/- Im i lub Re +/- Im j Rok akademicki 2018/2019, Pracownia nr 5 2/26 Operacje na macierzach Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia niestacjonarne I stopnia Rok akademicki 2018/2019

Bardziej szczegółowo

EXCEL TABELE PRZESTAWNE

EXCEL TABELE PRZESTAWNE EXCEL TABELE PRZESTAWNE ZADANIE 1. (3 punkty). Ze strony http://www.staff.amu.edu.pl/~izab/ pobierz plik o nazwie Tabela1.xlsx. Używając tabel przestawnych wykonaj następujące polecenia: a) Utwórz pierwszą

Bardziej szczegółowo

Język C, tablice i funkcje (laboratorium, EE1-DI)

Język C, tablice i funkcje (laboratorium, EE1-DI) Język C, tablice i funkcje (laboratorium, EE1-DI) Opracował: Tomasz Mączka (tmaczka@kia.prz.edu.pl) Wstęp (tablice) Tablica to uporządkowany ciąg elementów tego samego typu, zajmujących ciągły obszar pamięci.

Bardziej szczegółowo

Pętle. Dodał Administrator niedziela, 14 marzec :27

Pętle. Dodał Administrator niedziela, 14 marzec :27 Pętlami nazywamy konstrukcje języka, które pozwalają na wielokrotne wykonywanie powtarzających się instrukcji. Przykładowo, jeśli trzeba 10 razy wyświetlić na ekranie pewien napis, to można wykorzystać

Bardziej szczegółowo

Typy danych. 2. Dane liczbowe 2.1. Liczby całkowite ze znakiem i bez znaku: 32768, -165, ; 2.2. Liczby rzeczywiste stało i zmienno pozycyjne:

Typy danych. 2. Dane liczbowe 2.1. Liczby całkowite ze znakiem i bez znaku: 32768, -165, ; 2.2. Liczby rzeczywiste stało i zmienno pozycyjne: Strona 1 z 17 Typy danych 1. Dane tekstowe rozmaite słowa zapisane w różnych alfabetach: Rozwój metod badawczych pozwala na przesunięcie granicy poznawania otaczającego coraz dalej w głąb materii: 2. Dane

Bardziej szczegółowo

3. Opracować program kodowania/dekodowania pliku tekstowego. Algorytm kodowania:

3. Opracować program kodowania/dekodowania pliku tekstowego. Algorytm kodowania: Zadania-7 1. Opracować program prowadzący spis pracowników firmy (max.. 50 pracowników). Każdy pracownik opisany jest za pomocą struktury zawierającej nazwisko i pensję. Program realizuje następujące polecenia:

Bardziej szczegółowo

INFORMATYKA Z MERMIDONEM. Programowanie. Moduł 5 / Notatki

INFORMATYKA Z MERMIDONEM. Programowanie. Moduł 5 / Notatki INFORMATYKA Z MERMIDONEM Programowanie Moduł 5 / Notatki Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Realizator projektu: Opracowano w ramach projektu

Bardziej szczegółowo

Podstawy Pythona. Krzysztof Gdawiec. Instytut Informatyki Uniwersytet Śląski

Podstawy Pythona. Krzysztof Gdawiec. Instytut Informatyki Uniwersytet Śląski Podstawy Pythona Krzysztof Gdawiec Instytut Informatyki Uniwersytet Śląski Słownik jest typem mutowalnym. Każdy element to para: klucz wartość. W celu stworzenia słownika pary klucz wartość umieszczamy

Bardziej szczegółowo

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica 1. Zarządzanie danymi. Pierwszą czynnością w pracy z pakietem Statistica jest zazwyczaj wprowadzenie danych do arkusza. Oprócz możliwości

Bardziej szczegółowo

MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY

MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY Poszukiwanie znaczeń funkcji i skryptów funkcja help >> help % wypisuje linki do wszystkich plików pomocy >> help plot % wypisuje pomoc dotyczą funkcji plot Znaczenie

Bardziej szczegółowo

Laboratorium 3: Tablice, tablice znaków i funkcje operujące na ciągach znaków. dr inż. Arkadiusz Chrobot dr inż. Grzegorz Łukawski

Laboratorium 3: Tablice, tablice znaków i funkcje operujące na ciągach znaków. dr inż. Arkadiusz Chrobot dr inż. Grzegorz Łukawski Laboratorium 3: Tablice, tablice znaków i funkcje operujące na ciągach znaków dr inż. Arkadiusz Chrobot dr inż. Grzegorz Łukawski 7 kwietnia 2014 1. Wprowadzenie Pierwsza część instrukcji zawiera informacje

Bardziej szczegółowo

Temat 3 ćwiczenie 5. Bazy danych w R

Temat 3 ćwiczenie 5. Bazy danych w R Temat 3 ćwiczenie 5 Bazy danych w R Pliki, programy i foldery Co to jest plik? Co to jest program? Czy programy są plikami, czy nie? Co to jest skrypt? Czy skrypt jest programem, czy plikiem? Co to folder?

Bardziej szczegółowo

Ćwiczenie 1. Wprowadzenie do programu Octave

Ćwiczenie 1. Wprowadzenie do programu Octave Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 1. Wprowadzenie do programu Octave Mimo że program Octave został stworzony do

Bardziej szczegółowo

2. DZIAŁANIA NA WIELOMIANACH

2. DZIAŁANIA NA WIELOMIANACH WIELOMIANY 1. Stopieo wielomianu. Działania na wielomianach 2. Równość wielomianów. 3. Pierwiastek wielomianu. Rozkład wielomianu na czynniki 4. Równania wielomianowe. 1.STOPIEŃ WIELOMIANU Wielomian to

Bardziej szczegółowo