SPRAWDZIANY DO KLASY III

Wielkość: px
Rozpocząć pokaz od strony:

Download "SPRAWDZIANY DO KLASY III"

Transkrypt

1 Zad.1 a) Która proporcja jest prawdziwa? B SPRAWDZIANY DO KLASY III PODOBIEŃSTWO i JEDNOKŁADNOŚĆ Kl. III Grupa I D A. A C E AB AC AB BD AB AC AB CE = B. = C. = D. = AD AE CE AC BD AE AC BD b) W oparciu o powyższy rysunek uzupełnij proporcje: BC = c) Jeżeli AB=4, BD=6, AC=, to ile wynosi CE? AC Zad. Oblicz korzystając z rysunku jaka jest wysokość drzewa? 0m,5m 10m Zad. Prostokąt ABCD ma wymiary 4cm x,5cm. Jakie wymiary ma prostokąt podobny do prostokąta ABCD w skali k=4? Zad.4 Który z trójkątów jest podobny do trójkąta oznaczonego X? X Zad.5 Który rysunek przedstawia parę figur jednokładnych? A B C

2 Zad.6 Jaką liczbą musi być x,abytrójkąty były podobne? 4 x Zad.7 Narysowane poniżej czworokąty są podobne: a) W jakiej skali większy czworokąt jest podobny do mniejszego b) Oblicz brakujące boki c) Ile będzie wynosić pole większego czworokąta, jeżeli pole mniejszego wynosi 10 j? Zad.8 Oblicz obwody narysowanych poniżej trójkątów: Zad.9 Podstawy trapezu ABCD mają długość AB=10cm i CD=5cm. Przekątne tego trapezu przecinają się w punkcie E. a) Jaka jest skala jednokładności przekształcającej trójkąt ABE na trójkąt CDE? b) Przekątne trapezu mają długość 9cm i 1cm.Oblicz obwody trójkątów ABE i CDE Zad.10* Droga prowadzi przez tunel, który ma przekrój w kształcie półkola. Po obu stronach drogi znajdują się chodniki o szerokości 1m. Samochód wjeżdżający do tunelu blisko krawężnika może mieć maksymalnie m wysokości. Jaką szerokość ma tunel? PODOBIEŃSTWO i JEDNOKŁADNOŚĆ Kl. III

3 Grupa II Zad.1 a) Która proporcja jest prawdziwa? E F O G H A. OE GH OE OH FH EG EG OE = B. = C. = D. = OG EF OF OG OH OG FH EF b) W oparciu o powyższy rysunek uzupełnij proporcje: OE = c) Jeżeli OE=8, OG=4, GH=6, to ile wynosi EF? OG Zad. Oblicz korzystając z rysunku jaka jest wysokość drzewa? 0m 1,5m 10m Zad. Prostokąt ABCD ma wymiary 6cm x,5cm. Jakie wymiary ma prostokąt podobny do prostokąta ABCD w skali k=? Zad.4 Który z prostokątów jest podobny do prostokąta oznaczonego X? X Zad.5 Który rysunek przedstawia parę figur jednokładnych? A B C Zad.6 Jaką liczbą musi być x,abytrójkąty były podobne? x

4 Zad.7 Narysowane poniżej czworokąty są podobne: a)w jakiej skali mniejszy czworokąt jest podobny do większego b)oblicz brakujące boki c)ile będzie wynosić pole mniejszego czworokąta, jeżeli pole większego wynosi 100 j? Zad.8 Oblicz obwody narysowanych poniżej trójkątów: 5 1 Zad.9 Podstawy trapezu ABCD mają długość AB=1cm i CD=cm. Przekątne tego trapezu przecinają się w punkcie E. a) Jaka jest skala jednokładności przekształcającej trójkąt CDE na trójkąt ABE? b) Przekątne trapezu mają długość 10cm i 15cm.Oblicz obwody trójkątów ABE i CDE Zad.10* Droga prowadzi przez tunel, który ma przekrój w kształcie półkola. Po obu stronach drogi znajdują się chodniki o szerokości 1m. Samochód wjeżdżający do tunelu blisko krawężnika może mieć maksymalnie m wysokości. Jaką szerokość ma tunel? LICZBY I WYRAŻENIA KL.III Grupa 1

5 Zad.1Liczbą odwrotną do 1 1 jest: A.-1 1 B. C. - D. Zad = A.0,(6) B.0,6 C. 0,()6 D.0,66... Zad. 80% z 0zł, to: A.4zł B.6zł C. 7zł D.8zł Zad.4 (a+4) = A.a +16 B a -16 C. a +8a+16 D. a +4a+16 Zad.5 Przybliżeniem dziesiętnym liczby,471 z dokładnością do części setnych jest: A.,4 B.,1 C.,5 D.,7 Zad.6 Zapisem liczby 0,0001 w notacji wykładniczej jest: A B.0, C.1, 10-4 D.1, 10 4 Zad.7Rozwiązaniem równania (x+4)=6 jest liczba: A.x= B. x=0 C. x= -1 D. x=1 + y = 7 Zad.8 Układ równań: spełnia para liczb: x y = A.x=5 y= B. x=4 y=6 C. x= y=4 D. x=1 y=6 Zad.9Z podanych liczb największa jest: A.1,() B.( ) -1 4 C. 1 D.(1,) 4 5 Zad.10Która z podanych równości jest fałszywa? I =6 II =5 III + = 5 IV 7 = 14 V 1+5 (-1)=-17 A.I i IV B.II i IV C.II,III i V D.I i V Zad.11Trzecia część różnicy liczb a i b,to: A.a-b B. (a -b) C. 1 (a - b) D. a b: Zad.1 Którą nierówność spełniają wszystkie liczby z zaznaczonego zbioru: A.x> B.x< C.x D.x Zad.1Liczba x jest o 5 większa od liczby y. Liczba razy większa od y jest o 1 mniejsza od x.który układ odpowiada tym informacjom?: = 5y = y = y = y + 5 A. B. C. D. y = x + 1 y = x + 1 y = x 1 y = x 1 Zad.14a) Oprocentowanie wkładów pieniężnych w skali rocznej wynosi 10%.Po każdym roku oszczędzania bank dopisuje należne odsetki. Jeżeli wpłata do banku wynosi 500zł, to ile będą wynosić odsetki po dwóch latach?

6 b) Jaką kwotę należy wpłacić do banku na 0%, aby odsetki po roku były równe 00zł? c) Na jaki procent w skali rocznej wpłacono 4800zł, jeżeli po roku otrzymano 70zł więcej (odsetki).? Zad.15 Rozwiąż: a) równanie : 4(x +)=x+7 b) nierówność (a ) <9a +8 + y = c) układ równań: x y = 9 d) oblicz: 0 1 = 4 Zad.16 Kupiłem batoniki i czekolady i dostałem 9,60 zł reszty z 0 zł. Obliczyłem, żeza całą resztę mogę jeszcze kupić batoniki i czekolady. Ile kosztował batonik, a ile czekolada? Zad.17 (na 6!) Na świadectwie Jurka jest 1 ocen. Jurek ma jedną 6,pozostałe oceny to trójki, czwórki i piątki. Piątek jest trzy razy więcej niż trójek i o trzy więcej niż czwórek. Średnia ocen Jurka wynosi 4,5. Ile trójek, ile czwórek i ile piątek jest na świadectwie Jurka.? LICZBY I WYRAŻENIA KL.III Grupa

7 Zad.1Liczbą odwrotną do 1 jest: A. - 1 B. 5 C. - 5 D. 5 Zad. 11 = A.0,(7) B.0,7 C. 0,()7 D.0,77... Zad. 70% z 0zł, to: A.1zł B.7zł C. 7zł D.5zł Zad.4 (a -) = A.a +9 B a -9 C. a -6a+9 D. a +a+9 Zad.5 Przybliżeniem dziesiętnym liczby,571 z dokładnością do części setnych jest: A.,6 B.,1 C.,5 D.,7 Zad.6 Zapisem liczby 0, w notacji wykładniczej jest: A B.0, C.1, D.1, Zad.7Rozwiązaniem równania (x+)=8 jest liczba: A.x= B. x=0 C. x= -1 D. x=1 + y = 6 Zad.8 Układ równań: spełnia para liczb: x y = 0 A.x=5 y=1 B. x=4 y= C. x= y=4 D. x= y=6 Zad.9 Z podanych liczb największa jest: 10 A.1,(1) B.( ) C D.(1,1) 5 Zad.10Która z podanych równości jest fałszywa? I 4 =8 II 4 =6 III + 5= 7 IV 7 = 1 V 1+5 (-1)=8 A.I i IV B.II i IV C.II,III D.II,III i V Zad.11Trzecia część sumy liczb a i b,to: A.a+b B. (a +b) C. 1 a+b D.(a+b): Zad.1 Którą nierówność spełniają wszystkie liczby z zaznaczonego zbioru: A.x> B.x< C.x D.x Zad.1Liczba x jest 5 razy większa od liczby y. Liczba razy większa od y jest o 1 większa od x.który układ odpowiada tym informacjom?: = 5y = y = y = y + 5 A. B. C. D. y = x + 1 y = x + 1 y = x 1 y = x 1

8 Zad.14a) Oprocentowanie wkładów pieniężnych w skali rocznej wynosi 10%.Po każdym roku oszczędzania bank dopisuje należne odsetki. Jeżeli wpłata do banku wynosi 600zł, to ile będą wynosić odsetki po dwóch latach? b) Jaką kwotę należy wpłacić do banku na 0%, aby odsetki po roku były równe 400zł? c) Na jaki procent w skali rocznej wpłacono 4800zł, jeżeli po roku otrzymano 864zł więcej (odsetki).? Zad.15 Rozwiąż: a) równanie : 5(x +)=4x+7 b) nierówność (4a ) < 16a +6 4x + y = c) układ równań: x y = 5 5 d) oblicz: 0 1 = 16 Zad.16 Kupiłem zeszyty i pióra i dostałem,40zł reszty z 50 zł. Obliczyłem, żezacałą resztę mogę jeszcze kupić zeszyty i pióra. Ile kosztował zeszyt, a ile pióro? Zad.17 (na 6!) Na świadectwie Kasi jest 14 ocen.kasia ma trzy szóstki,pozostałe oceny to trójki, czwórki i piątki.trójek jest dwa razy więcej niż czwórekiojedną mniej niż piątek. Średnia ocen Kasi wynosi 4,5. Ile trójek, ile czwórek i ile piątek jest na świadectwie Kasi.?

9 KARTA ODPOWIEDZI KOD UCZNIA: ZAD.1. ZAD.. ZAD.. ZAD.4. ZAD.5. ZAD.6. ZAD.7. ZAD.8. ZAD.9. ZAD.10. ZAD.11. ZAD.1. ZAD.1.

SEMESTRALNE BADANIE WYNIKÓW NAUCZANIA MATEMATYKI W KLASACH III. Kartoteka testu. Nr zad Czynność ucznia Kategoria celów

SEMESTRALNE BADANIE WYNIKÓW NAUCZANIA MATEMATYKI W KLASACH III. Kartoteka testu. Nr zad Czynność ucznia Kategoria celów SEMESTRALNE BADANIE WYNIKÓW NAUCZANIA MATEMATYKI W KLASACH III Kartoteka testu Nr zad Czynność ucznia Kategoria celów Poziom wymagań Porównuje liczby wymierne i wskazuje prawidłową odpowiedź B P Oblicza

Bardziej szczegółowo

Klasówka gr. A str. 1/3

Klasówka gr. A str. 1/3 Klasówka gr. A str. 1/3 1. Boki trójkąta ABC mają długości 9 cm, 7cm, 8 cm. Boki trójkąta podobnego A B C w skali 1 2 mają długości: A. 18 cm, 14 cm, 16 cm B. 4 1 2 cm, 3 1 2 cm, 4 cm C. 4 1 2 cm, 7 cm,

Bardziej szczegółowo

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8 Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=

Bardziej szczegółowo

KURS MATURA PODSTAWOWA

KURS MATURA PODSTAWOWA KURS MATURA PODSTAWOWA LEKCJA Liczby rzeczywiste ZADANIE DOMOWE www.etrapez.pl Strona Część : TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie Ile liczb całkowitych należy do przedziału,

Bardziej szczegółowo

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru? Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5.

Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5. Matematyka Zadanie 1. Oblicz liczby Zadanie. Oblicz Zadanie 3. Wykaż, że liczba jest podzielna przez Zadanie 4. Wykaż, że liczba 30 0 jest podzielna przez 5. Zadanie 5. n 1 Uzasadnij, że prawdziwa jest

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2

Bardziej szczegółowo

KURS MATURA PODSTAWOWA Część 2

KURS MATURA PODSTAWOWA Część 2 KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:

Bardziej szczegółowo

Obwody i pola figur -klasa 4

Obwody i pola figur -klasa 4 Obwody i pola figur -klasa 4 str. 1/6...... imię i nazwisko lp. w dzienniku...... klasa data 1. Przyjmij za jednostkę. Zapisz, jakie pole ma narysowana figura. Pole =.......................... 2. Jakie

Bardziej szczegółowo

I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Arkusz II. Luty 2014. Liczba punktów 30, czas pracy 90min

I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Arkusz II. Luty 2014. Liczba punktów 30, czas pracy 90min I Ty możesz zostać Pitagorasem Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów Arkusz II Luty 2014 Liczba punktów 30, czas pracy 90min mgr Iwona Tlałka Zadanie 1. (0 1) I Ty możesz zostać Pitagorasem

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015 13 STYCZNIA 2015 1. Test konkursowy zawiera 23 zadania. Są to zadania zamknięte i otwarte.

Bardziej szczegółowo

I POLA FIGUR zadania łatwe i średnie

I POLA FIGUR zadania łatwe i średnie I POLA FIGUR zadania łatwe i średnie EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. W trójkącie boki mają długości a = 9 cm i b = 6 cm. Wysokość poprowadzona na bok a ma długość 4 cm. Jaką długość

Bardziej szczegółowo

KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział:

KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: KL. I ZAD. 1 2 3 0,5 x 3 5 Oblicz x : 1, 2 7 3 1 1,4 : 2 20 4 ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: 2 2 kg i jeszcze 2 razy po swojej masy. Ile waży złowiona

Bardziej szczegółowo

LICZBY I DZIAŁANIA PROCENTY FIGURY GEOMETRYCZNE

LICZBY I DZIAŁANIA PROCENTY FIGURY GEOMETRYCZNE SPIS TREŚCI LICZBY I DZIAŁANIA 1. Liczby............................................................. 7 2. Rozwinięcia dziesiętne liczb wymiernych......................... 9 3. Zaokrąglanie liczb. Szacowanie

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

ZADANIA PRZED EGZAMINEM KLASA I LICEUM

ZADANIA PRZED EGZAMINEM KLASA I LICEUM ZADANIA PRZED EGZAMINEM KLASA I LICEUM + 7. Równanie = 0 : + A. ma tylko jedno rozwiązanie równe 7 B. ma tylko jedno rozwiązania równe 7 C. ma tylko jedno rozwiązanie równe D. nie ma rozwiązań.. Do przedziału,

Bardziej szczegółowo

Odbicie lustrzane, oś symetrii

Odbicie lustrzane, oś symetrii Odbicie lustrzane, oś symetrii 1. Określ, czy poniższe figury są swoimi lustrzanymi odbiciami. Jeśli nie, odpowiedź uzasadnij. 2. Dokończ rysunki, tak aby dorysowana część była odbiciem lustrzanym. 3.

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 4 5 6 7 8 9 10 11 1 1 14 B B C A D D A B C A B D C C Nr zad Odp. 15

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

LXI Olimpiada Matematyczna

LXI Olimpiada Matematyczna 1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA KLASY IV

KONKURS MATEMATYCZNY DLA KLASY IV DLA KLASY IV Zadanie 1. Wartość wyrażenia ( 2 ) : + (100 : 4 +2 6)= wynosi: a)1 b) c) 2 d) 41 Zadanie 2. Klientka płaci banknotem 100- złotowym za 2 kostki masła po zł, 6 jajek po 40 gr., bułek po 1zł,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Zestaw wybranych zadań z Konkursu Matematycznego im. ks. dra F. Jakóbczyka organizowanego przez XXI LO w Lublinie w latach

Zestaw wybranych zadań z Konkursu Matematycznego im. ks. dra F. Jakóbczyka organizowanego przez XXI LO w Lublinie w latach Zestaw wybranych zadań z Konkursu Matematycznego im. ks. dra F. Jakóbczyka organizowanego przez XXI LO w Lublinie w latach 999-00 Zaprezentowany poniżej wybór zadań pochodzi z lat 999-00. Nie wszystkie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria 1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona

Bardziej szczegółowo

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 2 czerwca 2017

Bardziej szczegółowo

Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja B. Stopnie: bdobry (5) dobry (4) (2) 20 1 3 5 7 3 1. chłopcy 15 3 5 3 2 2

Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja B. Stopnie: bdobry (5) dobry (4) (2) 20 1 3 5 7 3 1. chłopcy 15 3 5 3 2 2 Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja B Zadanie. ( pkt.) W baku samochodu Fiat Uno mieści się 40 l benzyny. Samochód ten spala przeciętnie 5, l benzyny na 00 km. Czy trzeba będzie

Bardziej szczegółowo

Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów

Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje

Bardziej szczegółowo

POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII

POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII Zad.1 Rozwiąż trójkąt prostokątny: a) a 4, 0 b) b 8, c 1 POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII Zad. Oblicz wartość wyrażenia cos 0 cos 45 cos0 cos 45. Zad.4 Wyznacz długości przyprostokątnych trójkąta

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 17 MARCA 2012 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Który z zaznaczonych

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

MATURA Przygotowanie do matury z matematyki

MATURA Przygotowanie do matury z matematyki MATURA 2012 Przygotowanie do matury z matematyki Część VII: Planimetria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś

Bardziej szczegółowo

LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS VII ETAP III

LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS VII ETAP III LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS VII ETAP III Zad.1 Podstawy trójkąta i równoległoboku mają tę samą długość. Wysokość trójkąta jest równa 10 cm. aką długość ma wysokość równoległoboku, jeżeli pola obu

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 017 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7

Bardziej szczegółowo

Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)

Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI LISTOPAD 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI LISTOPAD 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI

PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI Czas pracy 120 minut Za rozwiązanie wszystkich zadań można otrzymać łącznie 40 punktów Informacja do zadań 1-3. Diagram przedstawia wyniki sprawdzianu z matematyki

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2015/2016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 14 stron.

Bardziej szczegółowo

MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku

MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 200 / 20 ETAP SZKOLNY - 7 października 200 roku. Przed Tobą zestaw 20 zadań konkursowych. 2. Na ich rozwiązanie masz 90 minut.

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

XV WOJEWÓDZKI KONKURS Z MATEMATYKI XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP

Bardziej szczegółowo

NUMER PESEL ZDAJĄCEGO. 1. Sprawdź, czy zestaw egzaminacyjny zawiera wszystkie strony. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi.

NUMER PESEL ZDAJĄCEGO. 1. Sprawdź, czy zestaw egzaminacyjny zawiera wszystkie strony. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. WPISUJE ZDAJĄCY KOD dysleksja NUMER PESEL ZDAJĄCEGO PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy zestaw egzaminacyjny zawiera wszystkie strony. Ewentualny brak stron lub inne

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

V Międzyszkolny Konkurs Matematyczny

V Międzyszkolny Konkurs Matematyczny V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie

Bardziej szczegółowo

Praca klasowa nr 2 - figury geometryczne (klasa 6)

Praca klasowa nr 2 - figury geometryczne (klasa 6) Praca klasowa nr 2 - figury geometryczne (klasa 6) MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Dany jest równoległobok ABCD. Narysuj za pomocą linijki i ekierki odcinek BF prostopadły do odcinka

Bardziej szczegółowo

Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony

Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:

Bardziej szczegółowo

I POLA FIGUR zadania średnie i trudne

I POLA FIGUR zadania średnie i trudne I POLA FIGUR zadania średnie i trudne EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Uzasadnij, że w dowolnym trapezie dwusieczne kątów leżących przy jednym ramieniu są prostopadłe. 2. Działka

Bardziej szczegółowo

WPISUJE UCZEŃ GRUDZIEŃ Czas pracy: 90 minut PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA

WPISUJE UCZEŃ GRUDZIEŃ Czas pracy: 90 minut PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania 1..).

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14

Bardziej szczegółowo

Zestaw zawiera zadania z wcześniejszych diagnoz. Zadania zaczerpnięto z dostępnych zbiorów zadao różnych wydawnictw oraz arkuszy maturalnych CKE.

Zestaw zawiera zadania z wcześniejszych diagnoz. Zadania zaczerpnięto z dostępnych zbiorów zadao różnych wydawnictw oraz arkuszy maturalnych CKE. Zestaw zawiera zadania z wcześniejszych diagnoz. Zadania zaczerpnięto z dostępnych zbiorów zadao różnych wydawnictw oraz arkuszy maturalnych CKE. Zadania zamknięte. Zebrano plony z części pola, która jest

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 183264 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dziedzina funkcji

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a

Bardziej szczegółowo

Test na koniec nauki w klasie trzeciej gimnazjum

Test na koniec nauki w klasie trzeciej gimnazjum 3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa II

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa II 1 MATEMATYKA - poziom rozszerzony klasa II CZERWIEC 2015 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 17). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2015/2016 13 STYCZNIA 2016 R. 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut KOD UCZNIA MATEMATYKA 5 LUTY 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-33). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin..

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2018 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 2 3 4 5 6 7 8 9 10 11 12 B D C A B B A B A C D A Nr zad Odp. 13 14 15

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 24 MARCA 2012 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) Która równość jest fałszywa? Wybierz odpowiedź spośród

Bardziej szczegółowo

( Wynik podaj w postaci ułamka nieskracalnego.

( Wynik podaj w postaci ułamka nieskracalnego. Przykładowe zadania przygotowujące do egzaminu rocznego z matematyki - klasa Część I Zad. Oblicz: 8 a) : 5 5 5 5 c) : 6,5,8 9 : 0,6,5, : 0, b) d) f) 9 : :, 5 0 5 5 0,6 6 : 0, 5 0, 0,0 5 7 :,5 6 0, 5 0,

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2018 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3 Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 13 KWIETNIA 013 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Liczba 3 ( 1 8) 1

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 4 MARCA 201 CZAS PRACY: 10 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych liczb

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Marzec 2017 we współpracy z 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Zadanie 2 Średnia arytmetyczna liczb: ; A) 9 B) ; x jest równa 3. Zatem x wynosi: C) 3 D) 8

Zadanie 2 Średnia arytmetyczna liczb: ; A) 9 B) ; x jest równa 3. Zatem x wynosi: C) 3 D) 8 Zadanie Całkowity dochód pewnej rodziny wynosił 200zł miesięcznie. Diagram kołowy przedstawia procentowy udział poszczególnych wydatków w budżecie rodziny. Korzystając z diagramu wskaż zdanie prawdziwe

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

Pole trójkata, trapezu

Pole trójkata, trapezu Pole trójkata, trapezu gr. A str. 1/6... imię i nazwisko...... klasa data 1. Poprowadź wysokość do boku AB. Zmierz długości odpowiednich odcinków i oblicz pole trójkąta ABC. 2. W obydwu trójkątach dorysuj

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 0/03 Seria IV październik 0 rozwiązania zadań 6. Dla danej liczby naturalnej n rozważamy wszystkie sumy postaci a b a b 3 a 3 b 3 a b...n

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ...................................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Suma ( ) 0,3 jest równa:

Suma ( ) 0,3 jest równa: Liczby i działania Zadania zamknięte: Zadanie. (0-p.) Dane są liczby: 9 ; - 8,5 ; - 4, ; 6,5. Która z nich ma wartość bezwzględną mniejszą od 5? A) -9. B) 6,5 C) -8,5 D) 4, Zadanie. (0-p.) Ile liczb całkowitych

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018 14.02.2018 1. Test konkursowy zawiera 23 zadania. Są to zadania zamknięte i otwarte. Na

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU!

SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU! Wersja A klasy I II SZKOLNY KONKURS MATEMATYCZNY MATMIX 007 DROGI UCZNIU! Masz do rozwiązania 8 zadań testowych, na rozwiązanie których masz 90 minut. Punktacja rozwiązań: - zadania od do 7 - punkty -

Bardziej szczegółowo

LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV

LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV LICZBY POWTÓRKA ZADANIE (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 0 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E)

Bardziej szczegółowo

Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A

Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test

Bardziej szczegółowo

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_C) Czas pracy: 100 minut Czas pracy może być przedłużony zgodnie z przyznanym dostosowaniem. GRUDZIEŃ 2017

Bardziej szczegółowo

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania KONKURS MATEMATYCZNY dla uczniów szkół podstawowych województwa mazowieckiego w roku szkolnym 01/019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie, inne niż przewidziane

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj

Bardziej szczegółowo

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI A-1 ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron. W zadaniach 1. do 5. są podane 4 odpowiedzi: A, B, C, D, z

Bardziej szczegółowo

PROBNY EGZAMIN GIMNAZJALNY

PROBNY EGZAMIN GIMNAZJALNY IMIE I NAZWISKO PROBNY EGZAMIN GIMNAZJALNY 25 PAŹDZIERNIKA 2012 CZAS PRACY: 90 MIN. ZADANIE 1 W tabeli zapisano cztery liczby. I (0, 2) 10 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 1 Liczba (0, 4) 5 jest

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla każdej liczby

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 19 MARCA 2016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 54 3 24 2 18

Bardziej szczegółowo