Ústav anorganické technologie: Aplikovaná reakční kinetika - cvičení 6. Tok E do. + tupním proudem N N. i=1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ústav anorganické technologie: Aplikovaná reakční kinetika - cvičení 6. Tok E do. + tupním proudem N N. i=1"

Transkrypt

1 6 Bilance energie Bilanci energie (E) je možno formulovat následovně Množství Rychlost Tok E do akumulace = systému z vyko- nané práce E v systému okolí systémem Množství dodané E vs- Množství + tupním proudem odvedené E výstupním (1) proudem Jako bilancovaná hodnota se volí entalpie, respektive parciální molární entalpie. Cílem bilance energie je získat informaci o časové nebo prostorové změně teploty reagujícího systému. Bilance energie pro CSTR Rovnice vyjadřující bilanci energie pro průtočný, ideálně míchaný reaktor zapíšeme v následujícím tvaru [ N ] n ih i dh dt = d dt kde symboly v předchozí rovnici jsou = Q Ẇs + F 0 i h 0 i F i h i, (2) H enthalpie reakční směsi v reaktoru J n i počet molů i-té složky v reaktoru mol h i parciální molární entalpie i-té složky v reakční směsi J mol 1 h o i parciální molární entalpie i-té složky J mol 1 v reakční směsi na vstupu do reaktoru F i, Fi o výstupní, resp. vstupní molární toky i-té složky mol s 1 Q tepelný tok z okolí (teplosměnného média) J s 1 = Watt do reaktoru W s užitečná (jiná než objemová) práce J s 1 = Watt konaná v reaktoru (např. elektrická) Bilance hmoty i-té složky můžeme vyjádřit následovně dn i dt = F o i F i + ν i r V V R, (3) a dosazením do akumulačního členu rovnice 2 získáme [ dni dt h i + dh ] [ i dt n i = (Fi o F i + ν i r V V R )h i + dh ] i dt n i, (4) 1

2 a pokud dosadíme do původní rovnice a upravíme Předpoklady: [ ] dhi dt n i = Q Ẇs + F o i (h o i h i ) r V V R 1. Reagující systém koná pouze objemovou práci Ẇ s = 0 2. Parciální molární enthalpie i-té složky závisí pouze na teplotě h i (T ) = h i (T ref ) + T ν i h i (5) T ref C p,i dt, (6) kde T ref je referenční teplota a C p,i je molární tepelná kapacita složky i za konstantního tlaku. 3. Tepelný tok mezi reakční směsí a teplosměnným médiem lze vyjádřit následovně Q = κa m (T m T ), (7) kde κ je souhrný koef. prostupu tepla, A m je teplosměnná plocha, T m a T jsou teploty média a reakční směsi Pro reakční teplo platí H R (T ) = ν i h i (T ), (8) a po dosazení do rovnice 5 získáme dt dt n i C p,i = κa m (T m T ) + + F o i ( T0 + ( H R )r V V R. T ref C p,i dt T T ref C p,i dt ) + a po úpravě integrálů v předchozí rovnici dostaneme 2

3 dt dt n i C p,i = κa m (T m T ) + + ( T ) Fi o C p,i dt + T 0 + ( H R )r V V R, (9) a pokud předpokládáme konstantní molární tepelnou kapacitu C p,i dt dt n i C p,i = κa m (T m T ) F o i C p,i (T T 0 ) + ( H R )r V V R. (10) Tato rovnice, společne s rovnicemi bilance hmoty pro N složek, nám poskytuje informaci o vývoji teploty a složení v průtočném, ideálně míchaném reaktoru. Bilance energie pro BATCH reaktor Bilance energie pro ideálně míchaný vsádkový reaktor, ve kterém je konána pouze objemová práce (Ẇs = 0), zahrnuje pouze akumulační člen a teplosměnný člen a je vyjádřena následujícím vztahem d(n i h i ) dt A po úpravách obdobných jakou u CSTR získáme = Q. (11) dt dt n i C p,i = κa m (T m T ) + ( H R )r V V R. (12) Bilance energie pro PFR Bilance energie pro reaktor s pístovým tokem, ve kterém je konána pouze objemová práce (Ẇs = 0) je vyjádřena následujícím vztahem d(n i h i ) dt = Q + F 0 i h 0 i F i h i, (13) kde horní index 0 označuje veličiny odpovídající vstupu do reaktoru. Budeme-li uvažovat pouze ustálený stav 0 = Q + F 0 i h 0 i F i h i, (14) 3

4 a za F i dosadíme z bilance hmoty F i = F 0 i 0 = Am 0 κ(t m T )da m + F 0 i h 0 i + ν i VR 0 r V dv R [( VR ) ] Fi 0 + ν i r V dv R h i. (15) 0 Po úpravách a za přijetí předpokladů jako tomu bylo u CSTR, získáme pro trubkový reaktor s kruhovým průřezem tento vztah dt dz F 0 i C p,i = πd R κ(t m T ) + ( H R )r V πd 2 R/4, (16) kde z je axiální souřadnice reaktoru a d R je jeho průměr. Příklad 6.1a Reakce 1. řádu vzhledem k výchozí látce probíhá v kapalné fázi v ideálně míchaném průtočném reaktoru o objemu 2 m 3 A produkty. Nástřik obsahuje pouze látku A a jeho objemový průtok je 300 l min 1. Koncentrace látky A v nástřiku je 4 mol l 1. K dispozici máme následující data: c p = 3.5 J g 1 K 1, ρ = 1.15 g cm 3, H R = 50 kj mol 1 Rychlostní konstanta reakce je funkcí teploty podle vztahu k A = k exp ( E A /RT ) = exp ( 12000/T ), kde k A /min 1 a T /K. Určete konverzi a teplotu za předpokladu stacionárního a adiabatického chování systému, pro tyto teploty nástřiku (a) 290 K (b) 298 K (c) 305 K 4

5 Příklad 6.1b 1 Obdobně jako v příkladě 6.1a probíhá reakce prvního řádu v adiabatickém CSTR v kapalné fázi A produkty. Data potřebná k výpočtů jsou uvedena v následující tabulce Parametr Hodnota Jednotky c 0 A 2 kmol m 3 k ref min 1 ρ 1000 kg m 3 T K T ref 298 K H R kj kmol 1 Ĉ p 4 J kg 1 K 1 E K Rychlostní konstanta reakce je funkcí teploty podle vztahu k = k ref exp ( E(1/T 1/T ref )) Vyneste závislost konverze na době zdržení (τ = V R / V ) v rozmezí 0-40 min. 1 Příklad převzat z Rawlings and Ekerdt:Chemical Reactor Analysis and Design Fundamentals, Nob Hill Publishing, Madison 2002, Fig. 6.8, 5

6 Příklad 6.2 V mikroreaktoru s pístovým tokem probíhá oxidace SO 2 podle rovnice SO 2 + 1/2O 2 = SO 3. (17) Reakce probíhá v objemové fázi a je vystižena kinetickou rovnicí ( r V = k y SO2 yo y ) SO 3, (18) K kde y i jsou molární zlomky, r V je rychlost reakce v mol s 1 m 3 a K je rovnovážná konstanta. Pro rychlostní konstantu se uvádí vztah ( ) k = exp, (19) RT kde k je v jednotkách (mol s 1 m 3 ). Rovnovážná konstanta reakce je funkcí teploty ln K = /T. (20) Reakční entalpie se uvažuje konstantní H R = 98 kj mol 1. Taktéž molární tepelná kapacita směsi je konstantní C p = 30 J mol 1 K 1. Složení vstupní směsi v molárních zlomcích je 0.06 SO 2, 0.15 O 2, 0.0 SO 3 a 0.79 N 2. Nástřik do reaktoru je mol s 1 a jeho teplota je 873 K. Tlak v reaktoru je konstantní 101 kpa. Délka reaktoru je 0.15 m a průměr d R je m. Vypočtěte konverzi SO 2 a teplotu podél reaktoru pro následující případy: 1. Izotermní reaktor 2. Adiabatický reaktor 3. Reaktor s optimálním teplotním profilem 6

7 Pro výpočet optimálního teplotního profilu je třeba vyřešit rovnici po úpravě dr V dt = 0 (21) 0 = E a exp ( ) ( Ea yso2 yo2 y RT SO3 exp ( A 2 A )) T 1 ( R A 2 y SO3 exp E a RT A ) 2 T A 1 Příklad 6.3 V trubkovém reaktoru s pístovým tokem probíhá v kapalné fázi reakce A = B, (22) v přítomnosti inertní látky I. Poměr vstupních molárních toků A:I je 0.5. Kinetická rovnice popisující rychlost reakce je ( r V = k c A c ) B, (23) K kde K je rovnovážná konstanta V následující tabulce jsou uvedena data potřebná k výpočtu c 0 A 2000 mol m 3 Ea 41.8 kj mol 1 FA mol s 1 H R 83.6 kj mol 1 FB 0 0 mol s 1 K 1000 (300 K) FI mol s 1 k s 1 (300 K) C p,a 668 J mol 1 K 1 V R 0.01 m 3 C p,b 668 J mol 1 K 1 C p,i 75 J mol 1 K 1 Spočtěte konverzi látky A na výstupu z reaktoru, který se chová adiabaticky. Uvažujte ideální chování kapalné směsi. 7

8 Příklad 6.4 Látka B se získává ve vsádkovém reaktoru s vnějším chlazením silně exotermickou reakcí A B, ( H R = 200 kj mol 1 ) (24) jejíž rychlost lze vyjádřit následující kinetickou rovnicí r V = kc A, (25) kde rychlostní konstanta je funkcí teploty podle vztahu ( ) k = (T T 0 ) exp, (26) RT T 0 kde k je v jednotkách s 1 a T 0 je referenční teplota 273 K. V provozu je k dispozici vsádkový reaktor o objemu 0.5 m 3, teplosměnnou plochou 0.42 m 2 a koeficient prostupu tepla v tomto reaktoru je 6.25 kw m 2 K 1. Vlastnosti reakční směsi jsou: Specifická tepelná kapacita c p 4200 J kg 1 K 1 Hustota reakční směsi ρ 1000 kg m 3 c A mol m 3 Úkolem je vypočíst takovou teplotu chladícího média T m aby bylo v co nejkratší době dosaženo konverze X A 0.8 a zároveň nebyla překročena teplota reakční směsi 410 K při které se již začíná rozkládat produkt B. Přesnost regulace teploty chladícího média je 2 K. 8

9 T m = 276 K, t reak 7 hod Příklad 6.5 V ideálně míchaném průtočném reaktoru o objemu m 3 probíhá v kapalné fázi reakce A + B 2C, ( H R = kj mol 1 ) (27) jejíž rychlost lze vyjádřit následující kinetickou rovnicí r V = kc A c B, (28) kde rychlostní konstanta je funkcí teploty podle vztahu k = exp ( 1 ) 104, (29) T kde k je v jednotkách s 1 mol 1 m 3. Teplosměnná plocha reaktoru je m 2 a koeficient přestupu tepla je 70 W m 2 K 1. Vlastnosti reakční směsi jsou v daném teplotním a koncentračním oboru: Specifická tepelná kapacita c p 2720 kj m 3 K 1 Do reaktoru vstupuje ekvimolární směs látek A a B, kde C 0 A = mol m 3. Průtok reakční směsi je konstantní a je roven m 3 s 1 Zjistěte a analyzujte stacionární stavy uvedeného systému pro teplotu nástřiku 290 K a teplotu chladícího média 360 K. 9

10 T 1,s = 314 K, T 2,s = 451 K, T 3,s = 336 K 1200 F1 F Q [J/mol] T/K Příklad 6.6 Vodík se vyrábí tzv. WGS 2 reakcí CO + H 2 O CO 2 + H 2, ( H R = 39.4 kj mol 1 ) (30) v trubkovém reaktoru s pístovým tokem za normálního tlaku. Nástřik obsahuje 19% (molárních) CO a jeho teplota je 653 K. Molární tepelná kapacita reakční směsi se může uvažovat konstantní v daném oboru teplot a koncentrací c p =33.9 J mol 1 K 1. Vypočtěte: a) Konverzi CO pokud je teplota na výstupu 773 K b) Maximální adiabatický vzrůst teploty v reaktoru X A =0.55, T ad =220 K Příklad 6.7 Ve vsádkovém reaktoru o konstantním objemu probíhá v plynné fázi reakce A B C, ( H R = 98 kj mol 1 ) (31) Na počátku reakce je v reaktoru teplota 673 K. Molární tepelné kapacity složek a počáteční složení reakční směsi: 2 WGS - water gas shift 10

11 Složka c p /J mol 1 K 1 x 0 i A B C Vypočtěte: a) Konverzi složky A pokud je teplota v reaktoru po uplynutí určité doby τ rovna 973 K b) Maximální adiabatický vzrůst teploty v reaktoru X A =0.38, T ad 1541 K Příklad 6.8 V průtočném ideálně, míchaném reaktoru probíhá reakce A + B C + D, ( H R = 1396 kj mol 1 ) (32) Na počátku reakce je v reaktoru teplota 298 K. Molární tepelné kapacity složek a počáteční složení reakční směsi: Složka c p /kj mol 1 K 1 x 0 i A B C D Vypočtěte: a) Pracovní teplotu v reaktoru pokud je konverze složky A 70% b) Jak se změní pracovní teplota (při stejné konverzi) pokud je nástřik složen z 30% A, 30% B a 40% inertu, jehož tepelná kapacita je 41.9 kj mol 1 K 1 a)t =317 K, b)t=307 K Příklad 6.9 V ideálně míchaném reaktoru (BATCH) probíhá reakce A + B C, ( H R = 20 kj mol 1 ) (33) Na počátku reakce je v reaktoru teplota 298 K. Molární tepelné kapacity složek a počáteční složení reakční směsi: 11

12 Složka c p /J mol 1 K 1 c 0 i /mol m 3 A B C 56 0 Vypočtěte konverzi složky A pokud je teplota v reaktoru 393 K. X A =0.58 Příklad 6.10 Nevratná reakce prvního řádu je prováděna v CSTR v plynné fázi do 20% konverze látky A za konstantního tlaku. Stechiometrická rovnice reakce je Rychlost reakce je vyjádřena vztahem A B. r V = kc A, kde rychlostní konstanta k (v jednotkách s 1 ) je ( k(t ) = k exp E ) ( a = exp ) RT T Reakční entalpii H R uvažujte pro zjednodušení nezávislou na teplotě a molární tepelnou kapacitu reakční směsi pokládejte nezávislou na teplotě a složení. H R (T 0 ) = 243 kj mol 1 a c p = 190 J mol 1 K 1 Vypočtěte objem adiabatického reaktoru a teplotu na výstupu z reaktoru. Předpokládejte ideální chování plynné fáze a ustálený stav. Další údaje o systému jsou Teplota vstupního proudu, T 0 = 600 K Nástřik do reaktoru (při T 0 a pouze látka A), V 0 V R = m 3, T =856 K = m 3 s 1 Koncentrace A na vstupu (pro T 0 ), c A 0 = 1000 mol m 3 12

13 Příklad 6.11 Reakce A + B C + D, ( H R = 168 kj mol 1 ) (34) je prováděna v BATCH reaktoru. Teplota reakční směsi v reaktoru na počátku reakce je 313 K. Koncentrace složky A na počátku je 2.4 kmol m 3. Střední měrná tepelná kapacita reakční směsi je konstantní 2.09 kj kg 1 K 1. Hustota reakční směsi je konstantní 960 kg m 3. Ověřte zda je možno reaktor provozovat v adiabatickém režimu do konverze (A) 40%, aniž by teplota reakční směsi přesáhla 373 K. Ne, protože T =393 K Příklad 6.12 V ideálně míchaném průtočném reaktoru o objem 10 m 3 se hydrolýzou ethylenoxidu(a) vyrábí ethylenglykol(c) A + B C. (35) Požadovaná produkce je 8000 tun ethylenglykolu za rok (8000h). Koncentrace ethylenoxidu na vstupu je 1.7kmol m 3 a kinetická rovnice pro tuto reakci je ( r = exp ) c A [kmol m 3 s 1 ]. T Jestliže má reaktor pracovat při konverzi 90% A, jaká musí být pracovní teplota? T =459 K Příklad 6.13 V ideálně míchaném průtočném reaktoru probíhá v kapalné fázi nevratná reakce A R + S. (36) Reakce je prvního řádu vzhledem k složce A. Její rychlostní konstanta je při 298 K rovna s 1 a aktivační energie je rovna J mol 1. K dispozici jsou následující 13

14 data, která považujeme nezávislá na teplotě H reac. = J mol 1 V 0 = m 3 s 1 T 0 = 298 K c 0 A = 2000 mol m 3 c 0 R, c 0 S = 0 mol m 3 V REAC = 0.5 m 3 ρ mix = 1050 kg m 3 c p,mix = J kg 1 K 1 Za předpokladu ustáleného stavu zjistěte: a) Kolik bude třeba odvést tepla z reaktoru, aby byla teplota reagující směsi udržena na teplotě 298 K a jaká bude konverze složky A při těchto podmínkách? b) Jaká bude konverze a teplota v reaktoru v adiabatickém režimu? c) Na jakou teplotu bude třeba předehřát vstupní proud aby byla teplota výstupního proudu z adiabatického reaktoru rovna 363 K? Jaká bude konverze složky A v tomto případě? d) Stěny reaktoru jsou zhotovené z oceli jejíž tepelná kapacita je 502 J kg 1 K 1 a hmotnost prázdného reaktoru je 800 kg. Jaký bude mít vliv hmota (kapacita) reaktoru na předchozí výpočty? a)x A =0.09, b) T adiab. = 301 rovnice 10. X A,adiab. = 0.11, c) T 0 (363) = 311 K, X A,363 = 0.67 d) viz. Příklad 6.14 V adiabatickém průtočném reaktoru s pístovým tokem probíhá reakce A B, jejíž reakční entalpie je H R = kj mol 1. Reakční rychlost je popsána následující kinetickou rovnicí ( r V = k c A c ) B, K 14

15 kde k je rychlostní konstanta a K je rovnovážná konstanta, která pro teplotu 298 K je rovna Tepelnou kapacitu reagujících složek (c p,a = c p,b = 40 J mol 1 K 1 ) je možno považovat za konstantní v studovaném oboru teplot a koncentrací. Vypočtěte maximální dosažitelnou konverzi složky A, pro y 0 A = 1 a T 0 = 300 K. X A =

Matematika III Stechiometrie stručný

Matematika III Stechiometrie stručný Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup

Bardziej szczegółowo

Funkce zadané implicitně. 4. března 2019

Funkce zadané implicitně. 4. března 2019 Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f

Bardziej szczegółowo

Inverzní Z-transformace

Inverzní Z-transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25

Bardziej szczegółowo

Matematika 2, vzorová písemka 1

Matematika 2, vzorová písemka 1 Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět

Bardziej szczegółowo

N413011/M Fitování experimentálních dat (rovnováha kapalina-pára)

N413011/M Fitování experimentálních dat (rovnováha kapalina-pára) Textové zadání příkladů Softwarová podpora předmětu Optimalizace inženýrských procesů - N413011/M413005 Autoři: prof. RNDr. Milan Kubíček, CSc. Ing. Jiří Kolář Ústav matematiky (413) 1 Extrémy funkcí reálných

Bardziej szczegółowo

Úvodní informace. 18. února 2019

Úvodní informace. 18. února 2019 Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz

Bardziej szczegółowo

Rovnice proudění Slapový model

Rovnice proudění Slapový model do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,

Bardziej szczegółowo

5. a 12. prosince 2018

5. a 12. prosince 2018 Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže

Bardziej szczegółowo

Plyny v dynamickém stavu. Jsou-li ve vakuovém systému různé teploty, nebo tlaky dochází k přenosu energie, nebo k proudění plynu.

Plyny v dynamickém stavu. Jsou-li ve vakuovém systému různé teploty, nebo tlaky dochází k přenosu energie, nebo k proudění plynu. Plyny v dynamickém stavu Jsou-li ve vakuovém systému různé teploty, nebo tlaky dochází k přenosu energie, nebo k proudění plynu. Difuze plynu Mechanismus difuze závisí na podmínkách: molekulární λ L viskózně

Bardziej szczegółowo

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :

Bardziej szczegółowo

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter

Bardziej szczegółowo

Geometrická nelinearita: úvod

Geometrická nelinearita: úvod Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,

Bardziej szczegółowo

1 Soustava lineárních rovnic

1 Soustava lineárních rovnic Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační

Bardziej szczegółowo

Co nám prozradí derivace? 21. listopadu 2018

Co nám prozradí derivace? 21. listopadu 2018 Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y

Bardziej szczegółowo

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více 5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme

Bardziej szczegółowo

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35 (1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst

Bardziej szczegółowo

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006 Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce

Bardziej szczegółowo

Skraplacze wyparne. Odpaøovací kondenzátory D 127/3-5 PL/CZ

Skraplacze wyparne. Odpaøovací kondenzátory D 127/3-5 PL/CZ Skraplacze wyparne (70 do 80 kw) Odpaøovací kondenzátory (70 do 80 kw) INSTRUKCJA DOBORU I DANE TECHNICZNE VÝBÌR A TECHNICKÁ DATA D 7/-5 PL/CZ VCL DANE I PROCEDURA DOBORU VCL DATA PRO VÝBÌR A POSTUP PØI

Bardziej szczegółowo

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)

Bardziej szczegółowo

Numerické metody 8. května FJFI ČVUT v Praze

Numerické metody 8. května FJFI ČVUT v Praze Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19

Kristýna Kuncová. Matematika B2 18/19 (6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)

Bardziej szczegółowo

Diferenciální rovnice základní pojmy. Rovnice se

Diferenciální rovnice základní pojmy. Rovnice se Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy! Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.

Bardziej szczegółowo

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou. Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.

Bardziej szczegółowo

kontaktní modely (Winklerův, Pasternakův)

kontaktní modely (Winklerův, Pasternakův) TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z

Bardziej szczegółowo

Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu

Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu Teorie plasticity Varianty teorie plasticity Teorie plastického tečení Přehled základních vztahů Pružnoplastická matice tuhosti materiálu 1 Pružnoplastické chování materiálu (1) Pracovní diagram pro případ

Bardziej szczegółowo

Základní elektrotechnická terminologie,

Základní elektrotechnická terminologie, Přednáška č. 1: Základní elektrotechnická terminologie, veličiny a zákony Obsah 1 Terminologie 2 2 Veličiny 6 3 Kirchhoffovy zákony 11 4 Literatura 14 OBSAH Strana 1 / 14 1 TERMINOLOGIE Strana 2 / 14 1

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování

Bardziej szczegółowo

DFT. verze:

DFT. verze: Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály

Bardziej szczegółowo

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018 Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv

Bardziej szczegółowo

Whirlpool Serie 300. Pharo Whirlpool. Pharo Whirlpool Moneva 300 R

Whirlpool Serie 300. Pharo Whirlpool. Pharo Whirlpool Moneva 300 R Pharo Whirlpool Whirlpool Serie 300 Pharo Whirlpool Moneva 300 L Pharo Whirlpool Moneva 300 R Pharo Whirlpool Iseo Twin 320 Pharo Whirlpool Victoria Twin 325 Pharo Whirlpool Teslin 330 Pharo Whirlpool

Bardziej szczegółowo

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2. Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5

Bardziej szczegółowo

Návod k obsluze 2 Ďäçăßĺň ńţóçň 10 Instrukcja obsugi 18 Kullanma Kýlavuzu 26

Návod k obsluze 2 Ďäçăßĺň ńţóçň 10 Instrukcja obsugi 18 Kullanma Kýlavuzu 26 Návod k obsluze 2 Ďäçăßĺň ńţóçň 10 Instrukcja obsugi 18 Kullanma Kýlavuzu 26 9241 ESKY Dkujeme Vám, že jste se rozhodli pro tento výrobek firmy SOEHNLE PROFESSIONAL. Tento výrobek je vybaven všemi znaky

Bardziej szczegółowo

studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava

studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava Matematické modelování studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava 2. února 2018 Obsah 1 Principy matematického modelování 3 1.1 Motivační úlohy.....................................

Bardziej szczegółowo

Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Automatové modely Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stefan

Bardziej szczegółowo

Pharo Whirlpool Serie 200

Pharo Whirlpool Serie 200 M o n t a g e a n l e i t u n g Instrukcja montażu Návod k montáži Ðóêîâîäñòâî ïî ìîíòàæó Pharo Whirlpool Serie 200 Pharo Whirlpool 200 Links 2270xxx Pharo Whirlpool 200 Rechts 22702xxx Pharo Whirlpool

Bardziej szczegółowo

Obsah. 1.2 Integrály typu ( ) R x, s αx+β

Obsah. 1.2 Integrály typu ( ) R x, s αx+β Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................

Bardziej szczegółowo

Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17.

Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. Internet a zdroje (Zdroje na Internetu) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. listopadu 2010 (KFC-INTZ) Databáze, citování 26. listopadu 2010

Bardziej szczegółowo

TGH01 - Algoritmizace

TGH01 - Algoritmizace TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží

Bardziej szczegółowo

Statistika (KMI/PSTAT)

Statistika (KMI/PSTAT) Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina

Bardziej szczegółowo

x y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ].

x y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ]. II.4. Totální diferenciál a tečná rovina Značení pro funkci z = f,: totální diferenciál funkce f v bodě A = 0, 0 ]: dfa = A 0+ A 0 Označme d = 0, d = 0. Pak dfa = A d+ A d Příklad91.Je dána funkce f, =.

Bardziej szczegółowo

Petr Beremlijski, Marie Sadowská

Petr Beremlijski, Marie Sadowská Počítačová cvičení Petr Beremlijski, Marie Sadowská Katedra aplikované matematiky Fakulta elektrotechniky a informatiky VŠB - Technická univerzita Ostrava Cvičení : Matlab nástroj pro matematické modelování

Bardziej szczegółowo

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25 (2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25

Bardziej szczegółowo

Laplaceova transformace

Laplaceova transformace Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17

Bardziej szczegółowo

Cauchyova úloha pro obyčejnou diferenciální rovnici

Cauchyova úloha pro obyčejnou diferenciální rovnici Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité

Bardziej szczegółowo

Energetické principy a variační metody ve stavební mechanice

Energetické principy a variační metody ve stavební mechanice Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2

Kristýna Kuncová. Matematika B2 (3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?

Bardziej szczegółowo

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě

Bardziej szczegółowo

studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava

studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava Matematické modelování studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava 15. září 216 Obsah 1 Principy matematického modelování 3 1.1 Motivační úlohy.....................................

Bardziej szczegółowo

Masarykova univerzita

Masarykova univerzita Masarykova univerzita Přírodovědecká fakulta Řešení úkolů 4. série 4. ročník (2013/2014) B3 Fotochemie Autor: Marek Martínek (e-mail: marek.martinek@gmail.com) 17 bodů 1. Albert Einstein, jednotka Einstein

Bardziej szczegółowo

MIKROMECHANICKÉ MODELY PRO TEPELNOU VODIVOST V KOMPOZITNÍCH MATERIÁLECH S NEDOKONALÝM. Doc. Ing. Jan Zeman, Ph.D.

MIKROMECHANICKÉ MODELY PRO TEPELNOU VODIVOST V KOMPOZITNÍCH MATERIÁLECH S NEDOKONALÝM. Doc. Ing. Jan Zeman, Ph.D. MIKROMECHANICKÉ MODELY PRO TEPELNOU VODIVOST V KOMPOZITNÍCH MATERIÁLECH S NEDOKONALÝM SPOJENÍM SLOŽEK Soutěžní práce Jan Stránský Vedoucí práce: Doc. Ing. Jan Zeman, Ph.D. České Vysoké Učení Technické

Bardziej szczegółowo

MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATIKA 3.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32 Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html

Bardziej szczegółowo

Numerické metody minimalizace

Numerické metody minimalizace Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace

Bardziej szczegółowo

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2019 6. Vedení obvod s nesoustředěnými parametry 1 Obecný impulsní signál základní parametry t r t f u vrchol

Bardziej szczegółowo

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 28 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 25 bodů Nechť {x n } je posloupnost, f : R R

Bardziej szczegółowo

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 5 1. Obvody druhého řádu frekvenční a časová analýza Širokopásmový obvod Rezonanční obvod 1 RC obvod

Bardziej szczegółowo

Register and win! www.kaercher.com

Register and win! www.kaercher.com Register and win! www.kaercher.com A B A, B A B 2 6 A régi készülékek értékes újrahasznosítható anyagokat tartalmaznak, amelyeket tanácsos újra felhasználni. Szárazelemek, olaj és hasonló anyagok ne kerüljenek

Bardziej szczegółowo

Linea rnı (ne)za vislost

Linea rnı (ne)za vislost [1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,

Bardziej szczegółowo

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2019 8. Nelineární obvody nesetrvačné dvojpóly 1 Obvodové veličiny nelineárního dvojpólu 3. 0 i 1 i 1 1.5

Bardziej szczegółowo

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Michal Bulant Masarykova univerzita Fakulta informatiky 29. 9. 2010 Obsah přednášky 1 Literatura

Bardziej szczegółowo

TGH01 - Algoritmizace

TGH01 - Algoritmizace TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl

Bardziej szczegółowo

Návod k použití BUBNOVÁ SUŠIČKA

Návod k použití BUBNOVÁ SUŠIČKA Návod k použití BUBNOVÁ SUŠIČKA CZ Česky, 1 SK Slovenčina, 52 TCD 83B HU Magyar, 18 TR Türkçe, 69 PL Polski, 35 Při prvním zapnutí sušičky musíte zvolit preferovaný jazyk, viz str. 6 Obsah Důležité informace,

Bardziej szczegółowo

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.

Bardziej szczegółowo

Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn

Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové

Bardziej szczegółowo

Obecná orientace (obvykle. Makroskopická anizotropie ( velmi mnoho kluzných rovin )

Obecná orientace (obvykle. Makroskopická anizotropie ( velmi mnoho kluzných rovin ) Fyzikální zdůvodnění plasticity (1) Změny v krystalické mřížce Schmidtův zákon : τ τ τ max (1) Dosažení napětí τ max vede ke změnám v krystalické mřížce Deformace krystalické mřížky pružná deformace Změny

Bardziej szczegółowo

POLIURETANOWE SPRĘŻYNY NACISKOWE. POLYURETHANOVÉ TLAČNÉ PRUŽINY

POLIURETANOWE SPRĘŻYNY NACISKOWE. POLYURETHANOVÉ TLAČNÉ PRUŽINY POLIURETAOWE SPRĘŻYY ACISKOWE. POLYURETHAOVÉ TLAČÉ PRUŽIY Oferowane są wymiary wyrobów o różnych twardościach. Konstrukcja tych sprężyn umożliwia zastąpienie sprężyn tradycyjnych tam, gdzie korozja, wibracje,

Bardziej szczegółowo

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální

Bardziej szczegółowo

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T

Bardziej szczegółowo

Kapitola 2. Nelineární rovnice

Kapitola 2. Nelineární rovnice Kapitola. Nelineární rovnice Formulace: Je dána funkce f : R! R definovaná na intervalu ha; bi. Hledáme x ha; bi tak, aby f(x) = 0. (x... kořen rovnice) Poznámka: Najít přesné řešení analyticky je možné

Bardziej szczegółowo

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární

Bardziej szczegółowo

návod k použití instrukcja obsługi

návod k použití instrukcja obsługi návod k použití instrukcja obsługi Pračka Pralka EWF 106510 W 2 electrolux OBSAH Electrolux. Thinking of you. Více o nás naleznete na adrese www.electrolux.com Bezpečnostní informace 2 Popis spotřebiče

Bardziej szczegółowo

Montageanleitung. Instrukcja montażu Návod pro montáž Èíñòðóêöèÿ ïî ìîíòàæó. Duschtempel

Montageanleitung. Instrukcja montażu Návod pro montáž Èíñòðóêöèÿ ïî ìîíòàæó. Duschtempel Montageanleitung Instrukcja montażu Návod pro montáž Èíñòðóêöèÿ ïî ìîíòàæó Duschtempel Ðóññêèé Česky Polski Duschtempel 5 SL 40 Sensotronic (DT New Line SL) 2927xxx Duschtempel 5 SL 40 Sensotronic (DT

Bardziej szczegółowo

DOPLŇKY PRO STAVBU DOPLNKY PRE STAVBU ELEMENTY DODATKOWE NÁVRH PLYNOVÉ VZPĚRY / NÁVRH PLYNOVEJ VZPERY / SPOSÓB DZIAŁANIA

DOPLŇKY PRO STAVBU DOPLNKY PRE STAVBU ELEMENTY DODATKOWE NÁVRH PLYNOVÉ VZPĚRY / NÁVRH PLYNOVEJ VZPERY / SPOSÓB DZIAŁANIA 2010/06/08 DOPLŇKY PRO STVBU DOPLNKY PRE STVBU ELEMENTY DODTKOWE Vzpěry plynové / Vzpery plynové / Siłowniki NÁVRH PLYNOVÉ VZPĚRY / NÁVRH PLYNOVEJ VZPERY / SPOSÓB DZIŁNI CZ Tímto vztahem se vypočte potřebná

Bardziej szczegółowo

Zwój Prawoskrętny. Vinutí Pravé

Zwój Prawoskrętny. Vinutí Pravé SPRĘŻYNY NACISKOWE TYP TLAČNÉ PRUŽINY Sprężyny naciskowe SPEC są wykonywane precyzyjnie i wydajnie. Stosowanie sprężyn SPEC wpływa na obniżkę kosztów z uwagi na oszczędność czasu wynikającą z braku potrzeby

Bardziej szczegółowo

Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17

Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17 Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí

Bardziej szczegółowo

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKUTA STAVEBNÍ Stavební statika Pohyblivé zatížení Jiří Brožovský Kancelář: P H 406/3 Telefon: 597 32 32 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast0.vsb.cz/brozovsky

Bardziej szczegółowo

NÁVOD K POUŽITÍ KEZELÉSI KÉZIKÖNYV INSTRUKCJA OBSŁUGI NÁVOD NA POUŽÍVANIE. Česky. Magyar. Polski. Slovensky

NÁVOD K POUŽITÍ KEZELÉSI KÉZIKÖNYV INSTRUKCJA OBSŁUGI NÁVOD NA POUŽÍVANIE. Česky. Magyar. Polski. Slovensky CANON INC. 30-2 Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan Europe, Africa & Middle East CANON EUROPA N.V. PO Box 2262, 1180 EG Amstelveen, The Netherlands For your local Canon office, please refer

Bardziej szczegółowo

EO 10 klasik EO 15 P. TATRAMAT - ohrievače vody, s.r.o. Malý tlakový zásobník teplé vody Obsluha a instalace 2

EO 10 klasik EO 15 P. TATRAMAT - ohrievače vody, s.r.o. Malý tlakový zásobník teplé vody Obsluha a instalace 2 TATRAMAT - ohrievače vody, s.r.o. CZ Malý tlakový zásobník teplé vody Obsluha a instalace 2 EO 10 klasik EO 15 P Uzavretý (tlakový) malý zásobník na teplú vodu Obsluha a inštalácia 22 OBSAH CZ ZVLÁŠTNÍ

Bardziej szczegółowo

GEM a soustavy lineárních rovnic, část 2

GEM a soustavy lineárních rovnic, část 2 GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova

Bardziej szczegółowo

Funkce více proměnných: limita, spojitost, derivace

Funkce více proměnných: limita, spojitost, derivace Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, derivace Michal Bulant Masarykova univerzita Fakulta informatiky 22. 9. 2014 Obsah přednášky 1 Literatura 2 Zobrazení a funkce více

Bardziej szczegółowo

CS Návod k použití 2 Chladnička s mrazničkou PL Instrukcja obsługi 23 Chłodziarko-zamrażarka S93820CMX2

CS Návod k použití 2 Chladnička s mrazničkou PL Instrukcja obsługi 23 Chłodziarko-zamrażarka S93820CMX2 CS Návod k použití 2 Chladnička s mrazničkou PL Instrukcja obsługi 23 Chłodziarko-zamrażarka S93820CMX2 2 OBSAH 1. BEZPEČNOSTNÍ INFORMACE... 3 2. BEZPEČNOSTNÍ POKYNY...4 3. POPIS SPOTŘEBIČE...6 4. PROVOZ...7

Bardziej szczegółowo

návod k použití instrukcja obsługi

návod k použití instrukcja obsługi návod k použití instrukcja obsługi Pračka Pralka EWS 106540 W EWS 126540 W 2 electrolux Obsah Electrolux. Thinking of you. Více o nás naleznete na adrese www.electrolux.com Bezpečnostní informace 2 Popis

Bardziej szczegółowo

Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být

Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být Obyčejné diferenciální rovnice 1 Úvod Obyčejnou diferenciální rovnici N-tého řádu f ( x,y,y,y,...,y (N)) = g(x) převádíme na soustavu N diferenciálních rovnic 1. řádu. Provedeme substituce y z 1 y z 2...

Bardziej szczegółowo

L 75270 FL L 75470 FL CS PRAČKA NÁVOD K POUŽITÍ 2 PL PRALKA INSTRUKCJA OBSŁUGI 34

L 75270 FL L 75470 FL CS PRAČKA NÁVOD K POUŽITÍ 2 PL PRALKA INSTRUKCJA OBSŁUGI 34 L 75270 FL L 75470 FL CS PRAČKA NÁVOD K POUŽITÍ 2 PL PRALKA INSTRUKCJA OBSŁUGI 34 2 OBSAH 4 BEZPEČNOSTNÍ INFORMACE 6 POZNÁMKY K OCHRANĚ ŽIVOTNÍHO PROSTŘEDÍ 6 TECHNICKÉ INFORMACE 7 POPIS SPOTŘEBIČE 8 OVLÁDACÍ

Bardziej szczegółowo

1 Předmluva Značení... 3

1 Předmluva Značení... 3 Sbírka příkladů k předmětu Lineární systémy Jan Krejčí, korektura Martin Goubej 07 Obsah Předmluva. Značení..................................... 3 Lineární obyčejné diferenciální rovnice s konstantními

Bardziej szczegółowo

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 4. Výpočty v časové oblasti 1 Laplaceova transformace aplikace v analýze elektrických obvodů Obvodové

Bardziej szczegółowo

ó ó ć Ż Ł Ą Ż ó ż ć Ż ó Ą ó ó Ą ć ó ó Ł Ł ó ć ó ż ć ż Śó ó ó ó ć ó ż ć Ą ż ĘĄ ó Ś Ż óź Ż ć ó Ż Ż Ż ć ń Ą ó Ą ż ó Ż ó Ł ó ó Ż ó ó ó ź Ś ó Ą ć Ś ó ó ż ó ż Ł ńę ó ń ó ń ż ć ó Ż Ż ż ć Ż ć ć ć ż ó ń óź ó ć

Bardziej szczegółowo

A71100TSW0 CS MRAZNIČKA NÁVOD K POUŽITÍ 2 PL ZAMRAŻARKA INSTRUKCJA OBSŁUGI 18 SL ZAMRZOVALNIK NAVODILA ZA UPORABO 35

A71100TSW0 CS MRAZNIČKA NÁVOD K POUŽITÍ 2 PL ZAMRAŻARKA INSTRUKCJA OBSŁUGI 18 SL ZAMRZOVALNIK NAVODILA ZA UPORABO 35 A71100TSW0 CS MRAZNIČKA NÁVOD K POUŽITÍ 2 PL ZAMRAŻARKA INSTRUKCJA OBSŁUGI 18 SL ZAMRZOVALNIK NAVODILA ZA UPORABO 35 2 PRO DOKONALÉ VÝSLEDKY Děkujeme vám, že jste si zvolili výrobek značky AEG. Aby vám

Bardziej szczegółowo

Ą Ś Ś ż Ż ć Ś Ż Ś Ń Ó Ż ć Ź ć ć Ż Ź Ś Ą Ą Ż Ś Ą ĘĄ Ś Ę ŚĘ Ę Ó Ś Ą ć Ś ź Ś ż Ż Ź ć ć ć Ą ć ć Ź ć ć ć ć Ś ć Ż ć ć Ą ć Ż ć Ż ć Ż Ż Ż ć Ż ć Ż ć Ż ż ź Ą ż ć Ż Ź Ż Ś Ż Ś Ą ż Ą Ż ź Ż ż ć Ż Ż Ą Ś Ź ć Ś ż Ź ż Ł

Bardziej szczegółowo

47035VD CS Návod k použití 2 PL Instrukcja obsługi 33

47035VD CS Návod k použití 2 PL Instrukcja obsługi 33 47035VD CS Návod k použití PL Instrukcja obsługi 33 www.aeg.com OBSAH 1. BEZPEČNOSTNÍ INFORMACE............................................. 3. BEZPEČNOSTNÍ POKYNY................................................

Bardziej szczegółowo

SANTO 70318-5 KG. mrazničkou

SANTO 70318-5 KG. mrazničkou SANTO 70318-5 KG Návod k použití Instrukcja obsługi Kullanma Kılavuzu Chladnička s mrazničkou Chłodziarkozamrażarka Buzdolabı 2 Obsah Děkujeme, že jste si vybrali jeden z našich vysoce kvalitních výrobků.

Bardziej szczegółowo

Slabá formulace rovnic proudění tekutin

Slabá formulace rovnic proudění tekutin Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁC Mark Dostalík Slabá formulace rovnic proudění tekutin Matematický ústav UK Vedoucí bakalářské práce: Studijní program: Studijní

Bardziej szczegółowo

Edita Pelantová, katedra matematiky / 16

Edita Pelantová, katedra matematiky / 16 Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a

Bardziej szczegółowo

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument) KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A

Bardziej szczegółowo

HAKA watertech 6/2011

HAKA watertech 6/2011 HAKA watertech 6/2011 TEPLÁ UŽITKOVÁ VODA CIEPŁA WODA UŻYTKOWA ÚSTŘEDNÍ TOPENÍ OGRZEWANIE CENTRALNE PODLAHOVÉ VY TÁPĚNÍ OGRZEWANIE PODŁOGOWE Watertech Pohled do čistého ohně skrze velké sklo krbu a vytápění

Bardziej szczegółowo

Matematická analýza 2. Kubr Milan

Matematická analýza 2. Kubr Milan Matematická analýza. Kubr Milan. února 008 Obsah Vektorové funkce jedné reálné proměnné. 3. Základní pojmy...................................... 3. Křivky v R n........................................

Bardziej szczegółowo

Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou

Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou 2. Řešení nelineárních rovnic Průvodce studiem Budeme se zabývat výpočtem reálných kořenů nelineární rovnice f(x) =0, (2.0.1) kde f je v jistém smyslu rozumná reálná funkce. Pro některé funkce (kvadratické,

Bardziej szczegółowo