Mechanika i Termodynamika Wykład 1: Wstęp i kinematyka Katarzyna Weron. Wykład dla Matematyki Stosowanej
|
|
- Dominika Muszyńska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Mechanika i Termodynamika Wykład 1: Wstęp i kinematyka Katarzyna Weron Wykład dla Matematyki Stosowanej
2
3 Podstawowa literatura D. Halliday, R. Resnick, J. Walker Podstawy fizyki tom 1 i 2, PWN 2015 Fizyka dla szkół wyższych (2018) tom 1 i 2 J.R.Taylor, Mechanika klasyczna 1 i 2, PWN 2012 R. A. Freedman, L. Ford, H. D. Young, University Physics with Modern Physics (2012)
4 E-materiały z Fizyki 8.01 Physics I: Classical Mechanics, Fall 1999 (Complete Lectures by Walter Lewin) Veritasium, Flipping Physics, SciFun, Wykłady prof. Ewy Popko
5 Warunki zaliczeń i zasady zajęć Prezentacje do wykładów i listy zadań na stronie kursu Prezentacje nie są do nauki! Prezentacja to raczej spis treści Obecność na wykładach nie jest obowiązkowa, ale może Was coś ominąć Kolokwia, aktywność + film do publikacji na youtube 1-5 min
6 Fizyka dla matematyki stosowanej
7 Kim jestem? 2018, Marcin Weron Prof. dr hab. Katarzyna Weron (Sznajd-Weron) Fizyk teoretyk, układy złożone (bio, socjo, ekono) Moje ulubione narzędzia: fizyka statystyczna teoria przejść fazowych symulacje Monte Carlo Fizyka to sposób patrzenia na świat
8 Po co? Mapy podziałów etnicznych w amerykańskich miastach, rok 2010 Legenda: Chicago Detroit New York City Biali Czarni Azjaci Latynosi 1 punkt = 25 mieszkańców Eric Fischer, ispiracja: Bill Rankin, 2009 ( Dane z Census OpenStreetMap, CC-BY-SA
9 Model Schellinga (1971) Agenci mogą być tylko dwóch typów i początkowo rozmieszczeni są losowo na sieci Agent jest nieszczęśliwy jeżeli nie ma w otoczeniu takich samych jak on ( parametr T) Nieszczęśliwy agent jest przesuwany do losowo wybranej wolnej komórki Schelling, T.C. Dynamic Models of Segregation, Journal of Math. Sociology 1: (1971)
10 Jaka nauka płynie z modelu Schellinga? Model segregacji ze względu na pewną cechę (wiek, zamożność, ) Nikt nie preferuje ścisłej segregacji Ostra segregacja mimo łagodnych preferencji Mikro motywy i makro zachowanie
11 Fizycy teoretycy to modelarze W fizyce karykatura zamiast dokładnego portretu Po co upraszczać? Jak być dobrym modelarzem? Wszystko powinno być tak proste, jak to tylko możliwe, ale nie prostsze Marcin Weron
12 Po co nam uproszczenia? Przykład z rozprawy doktorskiej Piotra Nyczki: Oryginalny obraz R, G, B [0,255] Zdjęto kolor jedna zmienna o 256 wartościach Coraz mniejsza liczba odcieni szarości, ostatecznie 2 Łatwiejsza analiza może nawet analityczna Większa kontrola (zrozumienie) Możliwość zupełnej analizy wrażliwości na zmianę parametrów (uwaga na przejścia fazowe!) +?
13 Punkt materialny - model Obiekt (układ) przesunięcia obroty, odkształcenia Punkt materialny (matematycznie): obiekt obdarzony masą mający nieskończenie małe rozmiary Model: cząstka, pojazd, planeta Tylko przesunięcia (translacje) Ruch zmiana położenia w czasie
14 Oddziaływania fundamentalne Rodzaj oddziaływania Zasięg [m] Względna siła oddziaływania grawitacyjne nieskończony elektromagnetyczne nieskończony 10 2 słabe silne Sir Isaac Newton ( ) Mechanika James Clerk Maxwell ( ) Elektromagnetyzm Marcin Weron Marcin Weron
15 Siły dalekozasięgowe Oddziaływanie grawitacyjne (prawo powszechnego ciążenia Newtona): F 1 = F 2 = G m 1m 2 r 2 Stała grawitacji Oddziaływanie elektrostatyczne (prawo Coulomba) F 1 = F 2 = 1/4πε 0 Q 1 Q 2 r 2 Source: Przenikalność dielektryczna próżni
16 Porównanie sił dalekozasięgowych F g = G m 1m 2 Q 1 Q 2 r 2, F e = k e r 2, F e = k e F g G Q 1 Q 2 m 1 m 2 układ F e /F g elektron-elektron elektron-proton proton-proton
17 LEPTONY Bozon Higgsa Gluon Bozon W KWARKI Foton Bozon Z Model Standardowy i cząstki elementarne +2/3 FERMIONY BOZONY Górny Powabny Szczytowy -1/3 Dolny Dziwny Spodni -1 Elektron Mion Taon 0 Neutrino Neutrino Neutrino elektronowe 2014 Marcin Weron mionowe taonowe
18 Oddziaływania elektromagnetyczne i silne oddziaływania silne = proton oddziaływania silne = neutron 2014 Marcin Weron
19 Model Standardowy po co tyle cząstek? Wymiana fotonów tak oddziałuje elektron z protonem Gluon skleja kwarki Oddziaływanie silne poprzez wymianę Gluonu
20 Jakimi skalami zajmuje się fizyk i co to znaczy małe? Źródło: D. Halliday, R. Resnick, J. Walker Podstawy fizyki (2007)
21 Powers of Ten, Charles i Ray Eames 1968 Cosmic Voyage, IMAX 2009
22 Fizyka (z stgr. φύσις physis "natura") Zmierz to co mierzalne i uczyń mierzalnym to co takim nie jest. Fizycy obserwują przeróżne zjawiska i starają się znaleźć pewne prawidłowości. Jak obserwować i wnioskować? Powtarzalność eksperymentu i teoria A co z innymi? Psychologia społeczna ok. 30% Galileusz, Galileo Galilei ( ) metoda doświadczalna w badaniu zjawisk przyrody Marcin Weron
23 Eksperyment Galileusza T s = = =16 Źródło: Marcin Weron
24 Eksperyment myślowy w fizyce. Po co? Źródło:
25 Uniwersalne prawa: prawo grawitacji F = G mm r 2, a = F m Źródło:
26 Układ SI - jednostki podstawowe XIV Generalna Konferencja Miar w 1971 Wielkość Nazwa jednostki Symbol jednostki długość metr m masa kilogram kg czas sekunda s temperatura kelwin K mol liczność materii mol natężenie prądu elektrycznego amper światłość kandela cd Metr - odległość, jaką pokonuje światło w próżni w czasie 1/ s [XVII Generalna Konferencja Miar i Wag w 1983] A
27 Wielkości fizyczne Wielkości skalarne Wektory I więcej? czas przesunięcie moment bezwładności temperatura prędkość przenikalność elektryczna masa pęd przenikalność magnetyczna długość przyśpieszenie energia siła
28 Wektory: łatwiej jest pchać czy ciągnąć? F M F M F g = mg F g = mg
29 Mechanika Oddziaływanie grawitacyjne Wystarczą 3 jednostki: Jednostka długości [L] m (metr) Jednostka czasu [t] s (sekunda) Jednostka masy [m] kg (kilogram) Inne wielkości mogą być wyrażone przez podstawowe [L], [t], [m] Przykłady: [prędkość]=[l]/[t] Marcin Weron
30 Opis ruchu obiektu - kinematyka Zbiór kilku definicji te trzeba znać! Język mechaniki bez języka się nie porozumiemy Nie zadajemy pytania o przyczynę Trzeba pamiętać o tym, że RUCH JEST WZGLĘDNY W tym momencie poruszamy się z prędkością ok km/h względem słońca! Układ współrzędnych bardzo ważny!
31 Położenie i odległość Położenie: Ԧr = xi Ƹ + yj Ƹ + zk = (x, y, z) Odległość: ΔԦr = Ԧr 2 Ԧr 1 = Ԧr t 2 Ԧr(t 1 ) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
32 Prędkość Średnia prędkość: v av = r 2 r 1 = Δ Ԧr t 2 t 1 Δt Prędkość: Δr v = lim Δt 0 Δt = dr dt Kierunek Ԧv to kierunek ruchu obiektu Długość Ԧv to szybkość
33 Prędkość to wektor, zwykle łatwiej pracować na współrzędnych Δr v = lim Δt 0 Δt = dr dt v = v x, v y, v z, v = v x x + v y y + v z z v x = dx x, ሶ v dt y = dy dt y, ሶ v z = dz zሶ dt
34 Przyśpieszenie Δv a = lim Δt 0 Δt = dv dt = d2 r dt 2 a = a x, a y, a z, a = a x x + a y y + a z z a x = dv x = d2 x = x, ሷ dt dt 2 a y = dv y dt = d2 y dt 2 = y, ሷ a z = dv z = d2 z = z, ሷ dt dt 2
35 Matematyka baaardzo ułatwia życie! Nie musicie się uczyć wzorów na pamięć Ruch jednostajny Ruch jednostajnie przyspieszony.. Możecie łatwo wszystko wyprowadzić Możecie rozważać bardziej skomplikowane problemy Wasza strategia Narysujcie układ współrzędnych Rozłóżcie ruch na składowe Zapiszcie równania różniczkowe Zapiszcie warunki początkowe Rozwiążcie równania różniczkowe
36 Ruch w jednym wymiarze Źródło: Physics for Scientists and Engineers 6E by Serway and Jewett
37 Pamiętajcie o układzie odniesienia! y[m] v A = (0, v A, 0), v A v A Ԧa = 0, g, 0 Ԧa = g v B = 0, v B, 0, v B v B x[m]
38 Spadek swobodny wybierz układ współrzędnych (to tylko wygoda) x[m] x[m] Ԧv = v x, v y, v z = ( v, 0,0) Ԧv = v x, v y, v z = (v, 0,0) Ԧa = a x, a y, a z = ( g, 0,0) Ԧa = a x, a y, a z = (g, 0,0)
39 Spadek swobodny wybierz układ współrzędnych (to tylko wygoda) x[m] a x = g dv x dt = g Rozdzielenie zmiennych dv x = gdt v න v 0 dv x = න 0 t gdt = g න 0 = gt v v 0 v = v 0 + gt t dt Ԧa = a x, a y, a z = ( g, 0,0) Ew. liczymy całkę nieoznaczoną i stałą wyznaczamy z warunku początkowego
40 Spadek swobodny wybierz układ współrzędnych (to tylko wygoda) x[m] x න x 0 v = v 0 + gt dx dt = v 0 + gt dx = (v 0 +gt)dt dx = න 0 t (v 0 +gt)dt x x 0 = v 0 t gt2 Ԧa = a x, a y, a z = ( g, 0,0) x = x 0 + v 0 t gt2 Co by było, gdyby przyśpieszenie nie było stałe w czasie?
41 Angry bird wystrzelony do góry teraz spróbujemy z całkami nieoznaczonymi x[m] 0 v x 0 = v 0 x 0 = 0 dv x dt = g dv x = gdt න dv x = g න dt v x = gt + C Stałą C wyznaczamy z warunku początkowego: v x 0 = g 0 + C = C = v 0 dx dt = v 0 gt dx = v 0 dt g tdt x = v 0 t 1 2 gt2 + C x 0 = v g02 + C = C = 0 Równanie ruchu ptaka: x(t) = v 0 t 1 2 gt2
42 Czy faktycznie najpierw leci w górę a potem w dół? x[m] x t = v 0 t 1 2 gt2 = t v gt x = 0 dla t = 0 lub v gt = 0 t = 2v 0 g Najwyższy punkt z warunku: dx = v dt x = 0 v x = v 0 gt = 0 t = v 0 g 0 v x 0 = v 0 x 0 = 0 To nie zawsze będzie połowa czasu! Kiedy nie będzie? Jaki znak ma prędkość? v x = v 0 gt > 0 v 0 > gt t < v 0 g v x = v 0 gt < 0 v 0 < gt t > v 0 g
43 Ruch w dwóch wymiarach rzut ukośny
44 Ruch w dwóch wymiarach rzut ukośny
45 Rzut ukośny rozłóż na składowe Nadawana jest prędkość początkowa Następnie podąża ścieżką (trajektorią) zależną wyłącznie od grawitacji i oporu powietrza Ruch można analizować niezależnie skł. x i y a x = 0 v x t = v x 0 a y = g v y t = v y 0 gt
46 Rzut ukośny: Flipping Physics Billy Bobby Bo
47 Ruch w dwóch wymiarach obliczenia na tablicy y[m] dv x dt = 0 v x = const = v x (0) dv y dt = g v y = v y 0 gt t x[m]
48 Zasięg, rzut do celu itp. wyznacz równania ruchu y[m] v x = v x 0 = v 0 cosα x t = v 0 tcosα v y = v y 0 gt = v 0 sinα gt y t = v 0 tsinα 1 2 gt t x[m]
49 Zasięg, rzut do celu itp. Wyznacz równania ruchu zgodne z warunkami początkowymi x t = v 0 tcosα, y t = v 0 tsinα 1 2 gt2 Warunek na zasięg (dlaczego?): y t = 0 t = 0, t = t R x = 0, x = R = x(t R ): R = v 0 2 g sin2α Warunek na max wysokość (dlaczego?): t = t h x = x(t h ) Czy x t h = 2R? Kiedy? dy t dt = v y t = 0 dy t dt = 0 Jak trafić do świni? Świnia znajduje się w punkcie (x s, y s ) y t = 0
50 Jak trafić do świni? Wyznacz równania ruchu zgodne z warunkami początkowymi x t = v 0 tcosα, y t = v 0 tsinα 1 2 gt2 Świnia znajduje się w punkcie (x s, y s ) Tor ruchu musi przechodzić przez (x s, y s ) czyli musi istnieć takie t s, że: x t s = v 0 t s cosα = x s y t s = v 0 t s sinα 1 2 gt s 2 = y s Tor ruchu y = y(x) to też parabola Można też pytać o Kąt z jakim wystrzelić Prędkość z jaką wystrzelić
51 Zasięg, rzut do celu itp. R = v 0 2 g sin2α Max zasięg dla: sin2α = 1 x = v 0 tcosα t = x v 0 cosα y = v 0 tsinα 1 2 gt2 = x sinα cosα 1 gx 2 2 v 2 0 cos 2 α = 1 g 2 v 2 0 cos 2 α x2 + xtgα
52 Równania parametryczne kinematyczne równania ruchu (parametr to czas t) tor ruchu eliminacja t y = y(x)
53 Analogia: Równanie parametryczne okręgu y y 0 R x x y y 0 2 = R 2 Podstawmy: x x 0 = Rcosα y y 0 = Rsinα x 0 x Czyli: x = x 0 + Rcosα y = y 0 + Rsinα
54 Podsumowanie kinematyki Kinematyczne równania ruchu Ԧr = Ԧr t = x t, y t, z(t) Otrzymujemy z definicji d Ԧv Ԧa = dt, Ԧa = a x, a y, a z = dv x dt, dv y dt, dv x dt d Ԧr Ԧv = dt, Ԧv = v x, v y, v z = dx dt, dy dt, dz dt Skąd znamy Ԧa = Ԧa(t)? Musimy znać warunki początkowe
55 Ruch po okręgu więcej szczegółów Ruch jest przyśpieszony zmienia się prędkość Przyśpieszenie prostopadłe do toru ruchu (prędkości): zmienia kierunek wektora prędkości Przyśpieszenie równolegle do toru ruchu (prędkości): zmienia długość wektora prędkości UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
56 Ruch po okręgu ze stałą prędkością Ruch jest przyśpieszony zmienia się prędkość Nie zmienia się wartość wektora prędkości Zmienia się kierunek wektora prędkości a rad = v2 R UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
57 Skąd to się wzięło? Trygonometria Ԧv = v x x + v y y = vsinθ x + vcosθ y Z trójkąta prostokątnego na rys. a): sinθ = y p r, cosθ = x p r Ԧv = v y p x + v x p y r r d Ԧv Ԧa = dt = v dy p x + v dx p r dt r dt = v r v y x + v r v x y Z rys. b): v x = vsinθ, v y = vcosθ y =
58 Skąd to się wzięło? Trygonometria d Ԧv Ԧa = dt = v r v y x + v r v x y v x = vsinθ, v y = vcosθ Ԧa = a = v2 r cosθ x + v2 r sinθ a x 2 + a y 2 = v2 r a = v2 r y cos 2 θ + sin 2 θ
59 Ruch względny Flipping Physics: Introduction to Relative Motion using a Quadcopter Drone Ԧv PE prędkość Priusa w stosunku do ziemi (Earth) Ԧv ME prędkość Minivana w stosunku do ziemi (Earth) Ԧv PM =? prędkość Priusa w stosunku do Minivana Ԧv MP =? Prędkość Minivana w stosunku do Priusa Prius Minivan Ԧv PE = 60 km h, 0,0 Ԧv ME = 80 km h, 0,0
60 Ruch względny: Flipping Physics
61 Prędkość Priusa w stosunku do Minivana Prius Minivan Ԧv PE = 60 km h, 0,0 Ԧv ME = 80 km h, 0,0 Ԧv ME Ԧv PE Ԧv MP Ԧv ME = Ԧv PE + Ԧv MP Ԧv MP = Ԧv ME Ԧv PE Ԧv PE = Ԧv EP Ԧv ME = Ԧv EM Ԧv MP = Ԧv ME + Ԧv EP Ԧv PM = Ԧv PE Ԧv ME = Ԧv ME + Ԧv PE = Ԧv ME Ԧv PE = Ԧv MP
62 Prędkość względna transformacja Galileusza x PA = x PB + x BA dx PA = dx PB + dx BA dt dt dt v PA x = v PB x + v BA x v BA x = v AB x Ԧr PA = Ԧr PB + Ԧr BA v PA = v PB + v BA A co dla baaardzo dużych prędkości? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
63 Jak dotąd powinniście umieć D. Halliday, R. Resnick, J. Walker Podstawy fizyki (2007), Tom 1, Rozdziały 1-4
64 Zwiastun: Fizycy lubią pytać Dlaczego? Dlaczego satelita nie spada na Ziemię? Dlaczego astronauta na statku kosmicznym znajduje się w stanie nieważkości?
Fizyka dla informatyków Wykład 2: Kinematyka Katarzyna Weron. Wykład dla Matematyki Stosowanej
Fizyka dla informatyków Wykład 2: Kinematyka Katarzyna Weron Wykład dla Matematyki Stosowanej Kim jestem? Prof. dr hab. Katarzyna Weron (Sznajd- Weron w nauce/pub) Fizyk teoretyk, układy złożone (bio,
Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18
Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe
Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18
Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 1 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Użyteczne informacje Moja strona domowa: www.if.pwr.wroc.pl/~piosit informacje do wykładu: Dydaktyka/Mechaniczny Miejsce
Podstawy fizyki sezon 1
Podstawy fizyki sezon 1 dr inż. Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Fizyka na IMIR MBM rok 2017/18 Moduł
Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej
Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron Wykład dla Matematyki Stosowanej Zasady Dynamiki Newtona skrót (inercjalne układy odniesienia) 1. σ F = 0 a = 0 (definicja układu inercjalnego)
Podstawy fizyki sezon 1
Podstawy fizyki sezon 1 dr inż. Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Fizyka na IMIR MBM rok 2013/14 Moduł
Bryła sztywna. Matematyka Stosowana
Bryła sztywna Matematyka Stosowana Prawdziwe obiekty fizyczne Można przesuwać (punkt materialny też!) Można obracać (punktu materialnego nie!) Można ściskać, rozciągać, skręcać, wyginać, Mechanika ośrodków
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
Fizyka - opis przedmiotu
Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu 13.2-WI-INFP-F Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Informatyka / Sieciowe systemy informatyczne
Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia
Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha
Kto nie zda egzaminu testowego (nie uzyska oceny dostatecznej), będzie zdawał poprawkowy. Reinhard Kulessa 1
Wykład z mechaniki. Prof.. Dr hab. Reinhard Kulessa Warunki zaliczenia: 1. Zaliczenie ćwiczeń(minimalna ocena dostateczny) 2. Zdanie egzaminu z wykładu Egzamin z wykładu będzie składał się z egzaminu TESTOWEGO
lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t
Zad. 1 Dwa okręty wyruszyły jednocześnie z tego samego miejsca w drogę w kierunkach do siebie prostopadłych, jeden z prędkością υ 1 = 30 km/h, drugi z prędkością υ 2 = 40 km/h. Obliczyć prędkość wzajemnego
Prowadzący: dr hab. Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: czwartek
Prowadzący: dr hab. Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: czwartek 16 00-18 00 e-mail: kamil@fizyka.umk.pl Program zajęć Mechanika punktu materialnego, bryły sztywnej, fal oraz cieczy: 1.
Podstawy fizyki wykład 9
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 4, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 1 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Użyteczne informacje Moja strona domowa: if.pwr.edu.pl/~piosit informacje do wykładu: Dydaktyka/Elektronika 1 Miejsce konsultacji:
Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.
Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozpatrywania
O ruchu. 10 m. Założenia kinematyki. Najprostsza obserwowana zmiana. Opis w kategoriach przestrzeni i czasu ( geometria fizyki ).
O ruchu Założenia kinematyki Najprostsza obserwowana zmiana. Ignorujemy czynniki sprawcze ruchu, rozmiar, kształt, strukturę ciała (punkt materialny). Opis w kategoriach przestrzeni i czasu ( geometria
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Fizyka Nazwa w języku angielskim : Physics Kierunek studiów : Informatyka Specjalność (jeśli dotyczy) :
Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach
Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem
Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19
Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........
Dynamika punktu materialnego Katarzyna Sznajd-Weron. Wykład dla Informatyki WPPT
Dynamika punktu materialnego Katarzyna Sznajd-Weron Wykład dla Informatyki WPPT Fizycy lubią pytać Dlaczego? Dlaczego satelita nie spada na Ziemię? Dlaczego astronauta na statku kosmicznym znajduje się
W efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli.
1. Pocisk wystrzelony poziomo leciał t k = 10 *s+, spadł w odległości S = 600 *m+. Oblicz prędkośd początkową pocisku V0 =?, i z jakiej wysokości został wystrzelony, jak daleko zaleciałby ten pocisk, gdyby
Kinematyka: opis ruchu
Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony
Podstawy fizyki sezon 1 III. Praca i energia
Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy
DYNAMIKA dr Mikolaj Szopa
dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Dynamika punktu materialnego Katarzyna Weron. Wykład dla Matematyki Stosowanej
Dynamika punktu materialnego Katarzyna Weron Wykład dla Matematyki Stosowanej Powtórka Kinematyczne równania ruchu r = r t = x t, y t, z(t) Otrzymujemy z definicji d v a = dt, a = a x, a y, a z = dv x
Ćwiczenie: "Kinematyka"
Ćwiczenie: "Kinematyka" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Ruch punktu
Fizyka i wielkości fizyczne
Fizyka i wielkości fizyczne Fizyka: - Stosuje opis matematyczny zjawisk - Formułuje prawa fizyczne na podstawie doświadczeń - Opiera się na prawach podstawowych (aksjomatach) Wielkością fizyczną jest każda
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne
Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr ohdan ieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D. Resnick,
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Fizyka Nazwa w języku angielskim : Physics Kierunek studiów : Informatyka Specjalność (jeśli dotyczy) :
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Dynamika nieliniowa i chaos deterministyczny. Fizyka układów złożonych
Dynamika nieliniowa i chaos deterministyczny Fizyka układów złożonych Wahadło matematyczne F θ = mgsinθ Druga zasada dynamiki: ma = mgsinθ a = d2 x dt 2 = gsinθ Długość łuku: x = Lθ Równanie ruchu: θ ሷ
Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego
Plan wynikowy z fizyki dla klasy pierwszej liceum profilowanego Kurs podstawowy z elementami kursu rozszerzonego koniecznymi do podjęcia studiów technicznych i przyrodniczych do programu DKOS-5002-38/04
Kto nie zda egzaminu (nie uzyska oceny dostatecznej), będzie zdawał testowy egzamin poprawkowy Reinhard Kulessa 1
Wykład z mechaniki. Prof. Dr hab. Reinhard Kulessa Warunki zaliczenia: 1. Zaliczenie ćwiczeń(minimalna ocena dostateczny) 2. Zdanie egzaminu z wykładu Egzamin z wykładu będzie składał się z egzaminu testowego
Praca w języku potocznym
Praca w języku potocznym Kto wykonuje większą pracę? d d https://www.how-to-draw-funny-cartoons.com/cartoontable.html http://redwoodbark.org/016/09/1/text-heavy-hidden-weight-papertextbook-use/ https://www.freepik.com/free-photos-vectors/boy
Układy cząstek i bryła sztywna. Matematyka Stosowana
Układy cząstek i bryła sztywna Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Niewiele wiemy zwykle o siłach Układy zachowawcze i dyssypatywne
Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana
Wykład 1: Fale wstęp. Drgania Katarzyna Weron WPPT, Matematyka Stosowana Sposoby komunikacji Chcesz się skontaktować z przyjacielem Wysyłasz list? Wykorzystujesz cząstki Telefonujesz? Wykorzystujesz fale
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Nauka - technika 2 Metodologia Problem Hipoteza EKSPERYMENT JAKO NARZĘDZIE WERYFIKACJI 3 Fizyka wielkości fizyczne opisują właściwości obiektów i pozwalają również ilościowo porównać
I. Przedmiot i metodologia fizyki
I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej
Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski
Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu
Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu
Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy
Oddziaływania fundamentalne
Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone
Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii
Fizyka Wydział Zarządzania i Ekonomii Kontakt z prowadzącym zajęcia dr Paweł Możejko 1e GG Konsultacje poniedziałek 9:00-10:00 paw@mif.pg.gda.pl Rok akademicki 2013/2014 Program Wykładu Mechanika Kinematyka
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony
Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.
Przedmiot i metodologia fizyki
Przedmiot i metodologia fizyki Świat zjawisk fizycznych Oddziaływania fundamentalne i cząstki elementarne Wielkości fizyczne Układy jednostek Modele matematyczne w fizyce 10 30 Świat zjawisk fizycznych
Wektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi.
Prawa fizyki i wielkości fizyczne Fizyka (z stgr. φύσις physis "natura") nauka o przyrodzie w najszerszym znaczeniu tego słowa. Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa
III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?
III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał
Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO
Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO.1. Względność ruchu. Układy współrzędnych.. Prędkość i przyspieszenie.3. Ruch prostoliniowy.4. Ruch krzywoliniowy 1 KINEMATYKA PUNKTU MATERIALNEGO
Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja
Zasady dynamiki Newtona
Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
Zasady zachowania. Fizyka I (Mechanika) Wykład VI:
Zasady zachowania Fizyka I (Mechanika) Wykład VI: Zasady zachowania energii i pędu Zasada zachowania momentu pędu Zderzenia elastyczne Układ środka masy Zasada zachowania pędu II zasada dynamiki Pęd układu
Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.
Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Wykład 8: Elektrostatyka Katarzyna Weron
Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory
Odp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
Zasada zachowania energii
Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca
Układy otwarte, zamknięte i izolowane (termodynamiczne) Fizyka systemów złożonych wykład 1: Wstęp
Układy otwarte, zamknięte i izolowane (termodynamiczne) Fizyka systemów złożonych wykład 1: Wstęp Co tu jest stałe? Co może się zmienić? energia materia energia Katarzyna Sznajd Weron Wykład dla Inżynierii
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
Łamigłówka. p = mv. p = 2mv. mv = mv + 2mv po. przed. Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0! Jak to jest możliwe?
Łamigłówka p = mv p = 2mv p = mv przed mv = mv + 2mv po Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0 Jak to jest możliwe? Zastosowanie zasady zachowania pędu - zderzenia 2. Zderzenia elastyczne
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH
Opis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
MiBM sem. III Zakres materiału wykładu z fizyki
MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej
Fizyka 5. Janusz Andrzejewski
Fizyka 5 Przykład R y F s x F n mg W kierunku osi Y: W kierunku osi X: m*0=r-f n m*a=f s F s =mgsinα F n =mgcosα Dynamiczne równania ruchu Interesujące jest tylko rozpatrywanie ruchu w kierunku osi X a=gsin
Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda
Zderzenia Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Układ środka masy Układ izolowany Izolowany układ wielu ciał: m p m 4 CM m VCM p 4 3
1.6. Ruch po okręgu. ω =
1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane
Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski
Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako
Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016
Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Streszczenie Wykład przedstawia podstawowe zagadnienia mechaniki klasycznej od kinematyki punktu materialnego, przez prawa Newtona
TRANFORMACJA GALILEUSZA I LORENTZA
TRANFORMACJA GALILEUSZA I LORENTZA Wykład 4 2012/2013, zima 1 Założenia mechaniki klasycznej 1. Przestrzeń jest euklidesowa 2. Przestrzeń jest izotropowa 3. Prawa ruchu Newtona są słuszne w układzie inercjalnym
Siły oporu prędkość graniczna w spadku swobodnym
FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.
Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne
(program rozszerzony)- 25 spotkań po 4 godziny lekcyjne 1, 2, 3- Kinematyka 1 Pomiary w fizyce i wzorce pomiarowe 12.1 2 Wstęp do analizy danych pomiarowych 12.6 3 Jak opisać położenie ciała 1.1 4 Opis
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Mechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
Szczególna teoria względności
5.04.08 Szczególna teoria względności Gdzie o tym więcej poczytać? Katarzyna Sznajd Weron Dlaczego ta teoria jest szczególna? Albert Einstein (905) Dotyczy tylko inercjalnych układów odniesienia. Spełnione
Bozon Higgsa prawda czy kolejny fakt prasowy?
Bozon Higgsa prawda czy kolejny fakt prasowy? Sławomir Stachniewicz, IF PK 1. Standardowy model cząstek elementarnych Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami
FIZYKA I - Podstawy Fizyki
FIZYKA I - Podstawy Fizyki Wykład: Rajmund Bacewicz, prof. dr hab. p. 325, tel 8628, 7267 bacewicz@if.pw.edu.pl http://www.if.pw.edu.pl/~bacewicz/ Ćwiczenia rachunkowe: prof. dr hab. Małgorzata Igalson
Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.
Kinematyka Ruch Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Ruch rozumiany jest jako zmiana położenia jednych ciał względem innych, które nazywamy
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny
Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii
Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą
KINEMATYKA czyli opis ruchu. Marian Talar
KINEMATYKA czyli opis ruchu 1 października 2006 2 Kinematyka czyli opis ruchu 1 Podstawowe pojęcia Kinematyka jest działem fizyki, który zajmuje się tylko opisem ruchu ciał. W ruchu postępowym ciało zastępuje
Cząstki i siły. Piotr Traczyk. IPJ Warszawa
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała
Elektrostatyczna energia potencjalna U
Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko