Mechanika i Termodynamika Wykład 1: Wstęp i kinematyka Katarzyna Weron. Wykład dla Matematyki Stosowanej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mechanika i Termodynamika Wykład 1: Wstęp i kinematyka Katarzyna Weron. Wykład dla Matematyki Stosowanej"

Transkrypt

1 Mechanika i Termodynamika Wykład 1: Wstęp i kinematyka Katarzyna Weron Wykład dla Matematyki Stosowanej

2

3 Podstawowa literatura D. Halliday, R. Resnick, J. Walker Podstawy fizyki tom 1 i 2, PWN 2015 Fizyka dla szkół wyższych (2018) tom 1 i 2 J.R.Taylor, Mechanika klasyczna 1 i 2, PWN 2012 R. A. Freedman, L. Ford, H. D. Young, University Physics with Modern Physics (2012)

4 E-materiały z Fizyki 8.01 Physics I: Classical Mechanics, Fall 1999 (Complete Lectures by Walter Lewin) Veritasium, Flipping Physics, SciFun, Wykłady prof. Ewy Popko

5 Warunki zaliczeń i zasady zajęć Prezentacje do wykładów i listy zadań na stronie kursu Prezentacje nie są do nauki! Prezentacja to raczej spis treści Obecność na wykładach nie jest obowiązkowa, ale może Was coś ominąć Kolokwia, aktywność + film do publikacji na youtube 1-5 min

6 Fizyka dla matematyki stosowanej

7 Kim jestem? 2018, Marcin Weron Prof. dr hab. Katarzyna Weron (Sznajd-Weron) Fizyk teoretyk, układy złożone (bio, socjo, ekono) Moje ulubione narzędzia: fizyka statystyczna teoria przejść fazowych symulacje Monte Carlo Fizyka to sposób patrzenia na świat

8 Po co? Mapy podziałów etnicznych w amerykańskich miastach, rok 2010 Legenda: Chicago Detroit New York City Biali Czarni Azjaci Latynosi 1 punkt = 25 mieszkańców Eric Fischer, ispiracja: Bill Rankin, 2009 ( Dane z Census OpenStreetMap, CC-BY-SA

9 Model Schellinga (1971) Agenci mogą być tylko dwóch typów i początkowo rozmieszczeni są losowo na sieci Agent jest nieszczęśliwy jeżeli nie ma w otoczeniu takich samych jak on ( parametr T) Nieszczęśliwy agent jest przesuwany do losowo wybranej wolnej komórki Schelling, T.C. Dynamic Models of Segregation, Journal of Math. Sociology 1: (1971)

10 Jaka nauka płynie z modelu Schellinga? Model segregacji ze względu na pewną cechę (wiek, zamożność, ) Nikt nie preferuje ścisłej segregacji Ostra segregacja mimo łagodnych preferencji Mikro motywy i makro zachowanie

11 Fizycy teoretycy to modelarze W fizyce karykatura zamiast dokładnego portretu Po co upraszczać? Jak być dobrym modelarzem? Wszystko powinno być tak proste, jak to tylko możliwe, ale nie prostsze Marcin Weron

12 Po co nam uproszczenia? Przykład z rozprawy doktorskiej Piotra Nyczki: Oryginalny obraz R, G, B [0,255] Zdjęto kolor jedna zmienna o 256 wartościach Coraz mniejsza liczba odcieni szarości, ostatecznie 2 Łatwiejsza analiza może nawet analityczna Większa kontrola (zrozumienie) Możliwość zupełnej analizy wrażliwości na zmianę parametrów (uwaga na przejścia fazowe!) +?

13 Punkt materialny - model Obiekt (układ) przesunięcia obroty, odkształcenia Punkt materialny (matematycznie): obiekt obdarzony masą mający nieskończenie małe rozmiary Model: cząstka, pojazd, planeta Tylko przesunięcia (translacje) Ruch zmiana położenia w czasie

14 Oddziaływania fundamentalne Rodzaj oddziaływania Zasięg [m] Względna siła oddziaływania grawitacyjne nieskończony elektromagnetyczne nieskończony 10 2 słabe silne Sir Isaac Newton ( ) Mechanika James Clerk Maxwell ( ) Elektromagnetyzm Marcin Weron Marcin Weron

15 Siły dalekozasięgowe Oddziaływanie grawitacyjne (prawo powszechnego ciążenia Newtona): F 1 = F 2 = G m 1m 2 r 2 Stała grawitacji Oddziaływanie elektrostatyczne (prawo Coulomba) F 1 = F 2 = 1/4πε 0 Q 1 Q 2 r 2 Source: Przenikalność dielektryczna próżni

16 Porównanie sił dalekozasięgowych F g = G m 1m 2 Q 1 Q 2 r 2, F e = k e r 2, F e = k e F g G Q 1 Q 2 m 1 m 2 układ F e /F g elektron-elektron elektron-proton proton-proton

17 LEPTONY Bozon Higgsa Gluon Bozon W KWARKI Foton Bozon Z Model Standardowy i cząstki elementarne +2/3 FERMIONY BOZONY Górny Powabny Szczytowy -1/3 Dolny Dziwny Spodni -1 Elektron Mion Taon 0 Neutrino Neutrino Neutrino elektronowe 2014 Marcin Weron mionowe taonowe

18 Oddziaływania elektromagnetyczne i silne oddziaływania silne = proton oddziaływania silne = neutron 2014 Marcin Weron

19 Model Standardowy po co tyle cząstek? Wymiana fotonów tak oddziałuje elektron z protonem Gluon skleja kwarki Oddziaływanie silne poprzez wymianę Gluonu

20 Jakimi skalami zajmuje się fizyk i co to znaczy małe? Źródło: D. Halliday, R. Resnick, J. Walker Podstawy fizyki (2007)

21 Powers of Ten, Charles i Ray Eames 1968 Cosmic Voyage, IMAX 2009

22 Fizyka (z stgr. φύσις physis "natura") Zmierz to co mierzalne i uczyń mierzalnym to co takim nie jest. Fizycy obserwują przeróżne zjawiska i starają się znaleźć pewne prawidłowości. Jak obserwować i wnioskować? Powtarzalność eksperymentu i teoria A co z innymi? Psychologia społeczna ok. 30% Galileusz, Galileo Galilei ( ) metoda doświadczalna w badaniu zjawisk przyrody Marcin Weron

23 Eksperyment Galileusza T s = = =16 Źródło: Marcin Weron

24 Eksperyment myślowy w fizyce. Po co? Źródło:

25 Uniwersalne prawa: prawo grawitacji F = G mm r 2, a = F m Źródło:

26 Układ SI - jednostki podstawowe XIV Generalna Konferencja Miar w 1971 Wielkość Nazwa jednostki Symbol jednostki długość metr m masa kilogram kg czas sekunda s temperatura kelwin K mol liczność materii mol natężenie prądu elektrycznego amper światłość kandela cd Metr - odległość, jaką pokonuje światło w próżni w czasie 1/ s [XVII Generalna Konferencja Miar i Wag w 1983] A

27 Wielkości fizyczne Wielkości skalarne Wektory I więcej? czas przesunięcie moment bezwładności temperatura prędkość przenikalność elektryczna masa pęd przenikalność magnetyczna długość przyśpieszenie energia siła

28 Wektory: łatwiej jest pchać czy ciągnąć? F M F M F g = mg F g = mg

29 Mechanika Oddziaływanie grawitacyjne Wystarczą 3 jednostki: Jednostka długości [L] m (metr) Jednostka czasu [t] s (sekunda) Jednostka masy [m] kg (kilogram) Inne wielkości mogą być wyrażone przez podstawowe [L], [t], [m] Przykłady: [prędkość]=[l]/[t] Marcin Weron

30 Opis ruchu obiektu - kinematyka Zbiór kilku definicji te trzeba znać! Język mechaniki bez języka się nie porozumiemy Nie zadajemy pytania o przyczynę Trzeba pamiętać o tym, że RUCH JEST WZGLĘDNY W tym momencie poruszamy się z prędkością ok km/h względem słońca! Układ współrzędnych bardzo ważny!

31 Położenie i odległość Położenie: Ԧr = xi Ƹ + yj Ƹ + zk = (x, y, z) Odległość: ΔԦr = Ԧr 2 Ԧr 1 = Ԧr t 2 Ԧr(t 1 ) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

32 Prędkość Średnia prędkość: v av = r 2 r 1 = Δ Ԧr t 2 t 1 Δt Prędkość: Δr v = lim Δt 0 Δt = dr dt Kierunek Ԧv to kierunek ruchu obiektu Długość Ԧv to szybkość

33 Prędkość to wektor, zwykle łatwiej pracować na współrzędnych Δr v = lim Δt 0 Δt = dr dt v = v x, v y, v z, v = v x x + v y y + v z z v x = dx x, ሶ v dt y = dy dt y, ሶ v z = dz zሶ dt

34 Przyśpieszenie Δv a = lim Δt 0 Δt = dv dt = d2 r dt 2 a = a x, a y, a z, a = a x x + a y y + a z z a x = dv x = d2 x = x, ሷ dt dt 2 a y = dv y dt = d2 y dt 2 = y, ሷ a z = dv z = d2 z = z, ሷ dt dt 2

35 Matematyka baaardzo ułatwia życie! Nie musicie się uczyć wzorów na pamięć Ruch jednostajny Ruch jednostajnie przyspieszony.. Możecie łatwo wszystko wyprowadzić Możecie rozważać bardziej skomplikowane problemy Wasza strategia Narysujcie układ współrzędnych Rozłóżcie ruch na składowe Zapiszcie równania różniczkowe Zapiszcie warunki początkowe Rozwiążcie równania różniczkowe

36 Ruch w jednym wymiarze Źródło: Physics for Scientists and Engineers 6E by Serway and Jewett

37 Pamiętajcie o układzie odniesienia! y[m] v A = (0, v A, 0), v A v A Ԧa = 0, g, 0 Ԧa = g v B = 0, v B, 0, v B v B x[m]

38 Spadek swobodny wybierz układ współrzędnych (to tylko wygoda) x[m] x[m] Ԧv = v x, v y, v z = ( v, 0,0) Ԧv = v x, v y, v z = (v, 0,0) Ԧa = a x, a y, a z = ( g, 0,0) Ԧa = a x, a y, a z = (g, 0,0)

39 Spadek swobodny wybierz układ współrzędnych (to tylko wygoda) x[m] a x = g dv x dt = g Rozdzielenie zmiennych dv x = gdt v න v 0 dv x = න 0 t gdt = g න 0 = gt v v 0 v = v 0 + gt t dt Ԧa = a x, a y, a z = ( g, 0,0) Ew. liczymy całkę nieoznaczoną i stałą wyznaczamy z warunku początkowego

40 Spadek swobodny wybierz układ współrzędnych (to tylko wygoda) x[m] x න x 0 v = v 0 + gt dx dt = v 0 + gt dx = (v 0 +gt)dt dx = න 0 t (v 0 +gt)dt x x 0 = v 0 t gt2 Ԧa = a x, a y, a z = ( g, 0,0) x = x 0 + v 0 t gt2 Co by było, gdyby przyśpieszenie nie było stałe w czasie?

41 Angry bird wystrzelony do góry teraz spróbujemy z całkami nieoznaczonymi x[m] 0 v x 0 = v 0 x 0 = 0 dv x dt = g dv x = gdt න dv x = g න dt v x = gt + C Stałą C wyznaczamy z warunku początkowego: v x 0 = g 0 + C = C = v 0 dx dt = v 0 gt dx = v 0 dt g tdt x = v 0 t 1 2 gt2 + C x 0 = v g02 + C = C = 0 Równanie ruchu ptaka: x(t) = v 0 t 1 2 gt2

42 Czy faktycznie najpierw leci w górę a potem w dół? x[m] x t = v 0 t 1 2 gt2 = t v gt x = 0 dla t = 0 lub v gt = 0 t = 2v 0 g Najwyższy punkt z warunku: dx = v dt x = 0 v x = v 0 gt = 0 t = v 0 g 0 v x 0 = v 0 x 0 = 0 To nie zawsze będzie połowa czasu! Kiedy nie będzie? Jaki znak ma prędkość? v x = v 0 gt > 0 v 0 > gt t < v 0 g v x = v 0 gt < 0 v 0 < gt t > v 0 g

43 Ruch w dwóch wymiarach rzut ukośny

44 Ruch w dwóch wymiarach rzut ukośny

45 Rzut ukośny rozłóż na składowe Nadawana jest prędkość początkowa Następnie podąża ścieżką (trajektorią) zależną wyłącznie od grawitacji i oporu powietrza Ruch można analizować niezależnie skł. x i y a x = 0 v x t = v x 0 a y = g v y t = v y 0 gt

46 Rzut ukośny: Flipping Physics Billy Bobby Bo

47 Ruch w dwóch wymiarach obliczenia na tablicy y[m] dv x dt = 0 v x = const = v x (0) dv y dt = g v y = v y 0 gt t x[m]

48 Zasięg, rzut do celu itp. wyznacz równania ruchu y[m] v x = v x 0 = v 0 cosα x t = v 0 tcosα v y = v y 0 gt = v 0 sinα gt y t = v 0 tsinα 1 2 gt t x[m]

49 Zasięg, rzut do celu itp. Wyznacz równania ruchu zgodne z warunkami początkowymi x t = v 0 tcosα, y t = v 0 tsinα 1 2 gt2 Warunek na zasięg (dlaczego?): y t = 0 t = 0, t = t R x = 0, x = R = x(t R ): R = v 0 2 g sin2α Warunek na max wysokość (dlaczego?): t = t h x = x(t h ) Czy x t h = 2R? Kiedy? dy t dt = v y t = 0 dy t dt = 0 Jak trafić do świni? Świnia znajduje się w punkcie (x s, y s ) y t = 0

50 Jak trafić do świni? Wyznacz równania ruchu zgodne z warunkami początkowymi x t = v 0 tcosα, y t = v 0 tsinα 1 2 gt2 Świnia znajduje się w punkcie (x s, y s ) Tor ruchu musi przechodzić przez (x s, y s ) czyli musi istnieć takie t s, że: x t s = v 0 t s cosα = x s y t s = v 0 t s sinα 1 2 gt s 2 = y s Tor ruchu y = y(x) to też parabola Można też pytać o Kąt z jakim wystrzelić Prędkość z jaką wystrzelić

51 Zasięg, rzut do celu itp. R = v 0 2 g sin2α Max zasięg dla: sin2α = 1 x = v 0 tcosα t = x v 0 cosα y = v 0 tsinα 1 2 gt2 = x sinα cosα 1 gx 2 2 v 2 0 cos 2 α = 1 g 2 v 2 0 cos 2 α x2 + xtgα

52 Równania parametryczne kinematyczne równania ruchu (parametr to czas t) tor ruchu eliminacja t y = y(x)

53 Analogia: Równanie parametryczne okręgu y y 0 R x x y y 0 2 = R 2 Podstawmy: x x 0 = Rcosα y y 0 = Rsinα x 0 x Czyli: x = x 0 + Rcosα y = y 0 + Rsinα

54 Podsumowanie kinematyki Kinematyczne równania ruchu Ԧr = Ԧr t = x t, y t, z(t) Otrzymujemy z definicji d Ԧv Ԧa = dt, Ԧa = a x, a y, a z = dv x dt, dv y dt, dv x dt d Ԧr Ԧv = dt, Ԧv = v x, v y, v z = dx dt, dy dt, dz dt Skąd znamy Ԧa = Ԧa(t)? Musimy znać warunki początkowe

55 Ruch po okręgu więcej szczegółów Ruch jest przyśpieszony zmienia się prędkość Przyśpieszenie prostopadłe do toru ruchu (prędkości): zmienia kierunek wektora prędkości Przyśpieszenie równolegle do toru ruchu (prędkości): zmienia długość wektora prędkości UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

56 Ruch po okręgu ze stałą prędkością Ruch jest przyśpieszony zmienia się prędkość Nie zmienia się wartość wektora prędkości Zmienia się kierunek wektora prędkości a rad = v2 R UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

57 Skąd to się wzięło? Trygonometria Ԧv = v x x + v y y = vsinθ x + vcosθ y Z trójkąta prostokątnego na rys. a): sinθ = y p r, cosθ = x p r Ԧv = v y p x + v x p y r r d Ԧv Ԧa = dt = v dy p x + v dx p r dt r dt = v r v y x + v r v x y Z rys. b): v x = vsinθ, v y = vcosθ y =

58 Skąd to się wzięło? Trygonometria d Ԧv Ԧa = dt = v r v y x + v r v x y v x = vsinθ, v y = vcosθ Ԧa = a = v2 r cosθ x + v2 r sinθ a x 2 + a y 2 = v2 r a = v2 r y cos 2 θ + sin 2 θ

59 Ruch względny Flipping Physics: Introduction to Relative Motion using a Quadcopter Drone Ԧv PE prędkość Priusa w stosunku do ziemi (Earth) Ԧv ME prędkość Minivana w stosunku do ziemi (Earth) Ԧv PM =? prędkość Priusa w stosunku do Minivana Ԧv MP =? Prędkość Minivana w stosunku do Priusa Prius Minivan Ԧv PE = 60 km h, 0,0 Ԧv ME = 80 km h, 0,0

60 Ruch względny: Flipping Physics

61 Prędkość Priusa w stosunku do Minivana Prius Minivan Ԧv PE = 60 km h, 0,0 Ԧv ME = 80 km h, 0,0 Ԧv ME Ԧv PE Ԧv MP Ԧv ME = Ԧv PE + Ԧv MP Ԧv MP = Ԧv ME Ԧv PE Ԧv PE = Ԧv EP Ԧv ME = Ԧv EM Ԧv MP = Ԧv ME + Ԧv EP Ԧv PM = Ԧv PE Ԧv ME = Ԧv ME + Ԧv PE = Ԧv ME Ԧv PE = Ԧv MP

62 Prędkość względna transformacja Galileusza x PA = x PB + x BA dx PA = dx PB + dx BA dt dt dt v PA x = v PB x + v BA x v BA x = v AB x Ԧr PA = Ԧr PB + Ԧr BA v PA = v PB + v BA A co dla baaardzo dużych prędkości? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

63 Jak dotąd powinniście umieć D. Halliday, R. Resnick, J. Walker Podstawy fizyki (2007), Tom 1, Rozdziały 1-4

64 Zwiastun: Fizycy lubią pytać Dlaczego? Dlaczego satelita nie spada na Ziemię? Dlaczego astronauta na statku kosmicznym znajduje się w stanie nieważkości?

Fizyka dla informatyków Wykład 2: Kinematyka Katarzyna Weron. Wykład dla Matematyki Stosowanej

Fizyka dla informatyków Wykład 2: Kinematyka Katarzyna Weron. Wykład dla Matematyki Stosowanej Fizyka dla informatyków Wykład 2: Kinematyka Katarzyna Weron Wykład dla Matematyki Stosowanej Kim jestem? Prof. dr hab. Katarzyna Weron (Sznajd- Weron w nauce/pub) Fizyk teoretyk, układy złożone (bio,

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 1 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Użyteczne informacje Moja strona domowa: www.if.pwr.wroc.pl/~piosit informacje do wykładu: Dydaktyka/Mechaniczny Miejsce

Bardziej szczegółowo

Podstawy fizyki sezon 1

Podstawy fizyki sezon 1 Podstawy fizyki sezon 1 dr inż. Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Fizyka na IMIR MBM rok 2017/18 Moduł

Bardziej szczegółowo

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron Wykład dla Matematyki Stosowanej Zasady Dynamiki Newtona skrót (inercjalne układy odniesienia) 1. σ F = 0 a = 0 (definicja układu inercjalnego)

Bardziej szczegółowo

Podstawy fizyki sezon 1

Podstawy fizyki sezon 1 Podstawy fizyki sezon 1 dr inż. Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Fizyka na IMIR MBM rok 2013/14 Moduł

Bardziej szczegółowo

Bryła sztywna. Matematyka Stosowana

Bryła sztywna. Matematyka Stosowana Bryła sztywna Matematyka Stosowana Prawdziwe obiekty fizyczne Można przesuwać (punkt materialny też!) Można obracać (punktu materialnego nie!) Można ściskać, rozciągać, skręcać, wyginać, Mechanika ośrodków

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Fizyka - opis przedmiotu

Fizyka - opis przedmiotu Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu 13.2-WI-INFP-F Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Informatyka / Sieciowe systemy informatyczne

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Bardziej szczegółowo

Kto nie zda egzaminu testowego (nie uzyska oceny dostatecznej), będzie zdawał poprawkowy. Reinhard Kulessa 1

Kto nie zda egzaminu testowego (nie uzyska oceny dostatecznej), będzie zdawał poprawkowy. Reinhard Kulessa 1 Wykład z mechaniki. Prof.. Dr hab. Reinhard Kulessa Warunki zaliczenia: 1. Zaliczenie ćwiczeń(minimalna ocena dostateczny) 2. Zdanie egzaminu z wykładu Egzamin z wykładu będzie składał się z egzaminu TESTOWEGO

Bardziej szczegółowo

lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t

lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t Zad. 1 Dwa okręty wyruszyły jednocześnie z tego samego miejsca w drogę w kierunkach do siebie prostopadłych, jeden z prędkością υ 1 = 30 km/h, drugi z prędkością υ 2 = 40 km/h. Obliczyć prędkość wzajemnego

Bardziej szczegółowo

Prowadzący: dr hab. Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: czwartek

Prowadzący: dr hab. Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: czwartek Prowadzący: dr hab. Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: czwartek 16 00-18 00 e-mail: kamil@fizyka.umk.pl Program zajęć Mechanika punktu materialnego, bryły sztywnej, fal oraz cieczy: 1.

Bardziej szczegółowo

Podstawy fizyki wykład 9

Podstawy fizyki wykład 9 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 4, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 1 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Użyteczne informacje Moja strona domowa: if.pwr.edu.pl/~piosit informacje do wykładu: Dydaktyka/Elektronika 1 Miejsce konsultacji:

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni. Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozpatrywania

Bardziej szczegółowo

O ruchu. 10 m. Założenia kinematyki. Najprostsza obserwowana zmiana. Opis w kategoriach przestrzeni i czasu ( geometria fizyki ).

O ruchu. 10 m. Założenia kinematyki. Najprostsza obserwowana zmiana. Opis w kategoriach przestrzeni i czasu ( geometria fizyki ). O ruchu Założenia kinematyki Najprostsza obserwowana zmiana. Ignorujemy czynniki sprawcze ruchu, rozmiar, kształt, strukturę ciała (punkt materialny). Opis w kategoriach przestrzeni i czasu ( geometria

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Fizyka Nazwa w języku angielskim : Physics Kierunek studiów : Informatyka Specjalność (jeśli dotyczy) :

Bardziej szczegółowo

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem

Bardziej szczegółowo

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19 Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........

Bardziej szczegółowo

Dynamika punktu materialnego Katarzyna Sznajd-Weron. Wykład dla Informatyki WPPT

Dynamika punktu materialnego Katarzyna Sznajd-Weron. Wykład dla Informatyki WPPT Dynamika punktu materialnego Katarzyna Sznajd-Weron Wykład dla Informatyki WPPT Fizycy lubią pytać Dlaczego? Dlaczego satelita nie spada na Ziemię? Dlaczego astronauta na statku kosmicznym znajduje się

Bardziej szczegółowo

W efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli.

W efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli. 1. Pocisk wystrzelony poziomo leciał t k = 10 *s+, spadł w odległości S = 600 *m+. Oblicz prędkośd początkową pocisku V0 =?, i z jakiej wysokości został wystrzelony, jak daleko zaleciałby ten pocisk, gdyby

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Dynamika punktu materialnego Katarzyna Weron. Wykład dla Matematyki Stosowanej

Dynamika punktu materialnego Katarzyna Weron. Wykład dla Matematyki Stosowanej Dynamika punktu materialnego Katarzyna Weron Wykład dla Matematyki Stosowanej Powtórka Kinematyczne równania ruchu r = r t = x t, y t, z(t) Otrzymujemy z definicji d v a = dt, a = a x, a y, a z = dv x

Bardziej szczegółowo

Ćwiczenie: "Kinematyka"

Ćwiczenie: Kinematyka Ćwiczenie: "Kinematyka" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Ruch punktu

Bardziej szczegółowo

Fizyka i wielkości fizyczne

Fizyka i wielkości fizyczne Fizyka i wielkości fizyczne Fizyka: - Stosuje opis matematyczny zjawisk - Formułuje prawa fizyczne na podstawie doświadczeń - Opiera się na prawach podstawowych (aksjomatach) Wielkością fizyczną jest każda

Bardziej szczegółowo

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr ohdan ieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D. Resnick,

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Fizyka Nazwa w języku angielskim : Physics Kierunek studiów : Informatyka Specjalność (jeśli dotyczy) :

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Dynamika nieliniowa i chaos deterministyczny. Fizyka układów złożonych

Dynamika nieliniowa i chaos deterministyczny. Fizyka układów złożonych Dynamika nieliniowa i chaos deterministyczny Fizyka układów złożonych Wahadło matematyczne F θ = mgsinθ Druga zasada dynamiki: ma = mgsinθ a = d2 x dt 2 = gsinθ Długość łuku: x = Lθ Równanie ruchu: θ ሷ

Bardziej szczegółowo

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego Plan wynikowy z fizyki dla klasy pierwszej liceum profilowanego Kurs podstawowy z elementami kursu rozszerzonego koniecznymi do podjęcia studiów technicznych i przyrodniczych do programu DKOS-5002-38/04

Bardziej szczegółowo

Kto nie zda egzaminu (nie uzyska oceny dostatecznej), będzie zdawał testowy egzamin poprawkowy Reinhard Kulessa 1

Kto nie zda egzaminu (nie uzyska oceny dostatecznej), będzie zdawał testowy egzamin poprawkowy Reinhard Kulessa 1 Wykład z mechaniki. Prof. Dr hab. Reinhard Kulessa Warunki zaliczenia: 1. Zaliczenie ćwiczeń(minimalna ocena dostateczny) 2. Zdanie egzaminu z wykładu Egzamin z wykładu będzie składał się z egzaminu testowego

Bardziej szczegółowo

Praca w języku potocznym

Praca w języku potocznym Praca w języku potocznym Kto wykonuje większą pracę? d d https://www.how-to-draw-funny-cartoons.com/cartoontable.html http://redwoodbark.org/016/09/1/text-heavy-hidden-weight-papertextbook-use/ https://www.freepik.com/free-photos-vectors/boy

Bardziej szczegółowo

Układy cząstek i bryła sztywna. Matematyka Stosowana

Układy cząstek i bryła sztywna. Matematyka Stosowana Układy cząstek i bryła sztywna Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Niewiele wiemy zwykle o siłach Układy zachowawcze i dyssypatywne

Bardziej szczegółowo

Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana

Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana Wykład 1: Fale wstęp. Drgania Katarzyna Weron WPPT, Matematyka Stosowana Sposoby komunikacji Chcesz się skontaktować z przyjacielem Wysyłasz list? Wykorzystujesz cząstki Telefonujesz? Wykorzystujesz fale

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Nauka - technika 2 Metodologia Problem Hipoteza EKSPERYMENT JAKO NARZĘDZIE WERYFIKACJI 3 Fizyka wielkości fizyczne opisują właściwości obiektów i pozwalają również ilościowo porównać

Bardziej szczegółowo

I. Przedmiot i metodologia fizyki

I. Przedmiot i metodologia fizyki I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone

Bardziej szczegółowo

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii Fizyka Wydział Zarządzania i Ekonomii Kontakt z prowadzącym zajęcia dr Paweł Możejko 1e GG Konsultacje poniedziałek 9:00-10:00 paw@mif.pg.gda.pl Rok akademicki 2013/2014 Program Wykładu Mechanika Kinematyka

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.

Bardziej szczegółowo

Przedmiot i metodologia fizyki

Przedmiot i metodologia fizyki Przedmiot i metodologia fizyki Świat zjawisk fizycznych Oddziaływania fundamentalne i cząstki elementarne Wielkości fizyczne Układy jednostek Modele matematyczne w fizyce 10 30 Świat zjawisk fizycznych

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi.

Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa fizyki i wielkości fizyczne Fizyka (z stgr. φύσις physis "natura") nauka o przyrodzie w najszerszym znaczeniu tego słowa. Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa

Bardziej szczegółowo

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania? III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał

Bardziej szczegółowo

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO.1. Względność ruchu. Układy współrzędnych.. Prędkość i przyspieszenie.3. Ruch prostoliniowy.4. Ruch krzywoliniowy 1 KINEMATYKA PUNKTU MATERIALNEGO

Bardziej szczegółowo

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Zasady zachowania. Fizyka I (Mechanika) Wykład VI:

Zasady zachowania. Fizyka I (Mechanika) Wykład VI: Zasady zachowania Fizyka I (Mechanika) Wykład VI: Zasady zachowania energii i pędu Zasada zachowania momentu pędu Zderzenia elastyczne Układ środka masy Zasada zachowania pędu II zasada dynamiki Pęd układu

Bardziej szczegółowo

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m. Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

Wykład 8: Elektrostatyka Katarzyna Weron

Wykład 8: Elektrostatyka Katarzyna Weron Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca

Bardziej szczegółowo

Układy otwarte, zamknięte i izolowane (termodynamiczne) Fizyka systemów złożonych wykład 1: Wstęp

Układy otwarte, zamknięte i izolowane (termodynamiczne) Fizyka systemów złożonych wykład 1: Wstęp Układy otwarte, zamknięte i izolowane (termodynamiczne) Fizyka systemów złożonych wykład 1: Wstęp Co tu jest stałe? Co może się zmienić? energia materia energia Katarzyna Sznajd Weron Wykład dla Inżynierii

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

Łamigłówka. p = mv. p = 2mv. mv = mv + 2mv po. przed. Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0! Jak to jest możliwe?

Łamigłówka. p = mv. p = 2mv. mv = mv + 2mv po. przed. Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0! Jak to jest możliwe? Łamigłówka p = mv p = 2mv p = mv przed mv = mv + 2mv po Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0 Jak to jest możliwe? Zastosowanie zasady zachowania pędu - zderzenia 2. Zderzenia elastyczne

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

Fizyka 5. Janusz Andrzejewski

Fizyka 5. Janusz Andrzejewski Fizyka 5 Przykład R y F s x F n mg W kierunku osi Y: W kierunku osi X: m*0=r-f n m*a=f s F s =mgsinα F n =mgcosα Dynamiczne równania ruchu Interesujące jest tylko rozpatrywanie ruchu w kierunku osi X a=gsin

Bardziej szczegółowo

Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda

Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Zderzenia Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Układ środka masy Układ izolowany Izolowany układ wielu ciał: m p m 4 CM m VCM p 4 3

Bardziej szczegółowo

1.6. Ruch po okręgu. ω =

1.6. Ruch po okręgu. ω = 1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane

Bardziej szczegółowo

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako

Bardziej szczegółowo

Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016

Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Streszczenie Wykład przedstawia podstawowe zagadnienia mechaniki klasycznej od kinematyki punktu materialnego, przez prawa Newtona

Bardziej szczegółowo

TRANFORMACJA GALILEUSZA I LORENTZA

TRANFORMACJA GALILEUSZA I LORENTZA TRANFORMACJA GALILEUSZA I LORENTZA Wykład 4 2012/2013, zima 1 Założenia mechaniki klasycznej 1. Przestrzeń jest euklidesowa 2. Przestrzeń jest izotropowa 3. Prawa ruchu Newtona są słuszne w układzie inercjalnym

Bardziej szczegółowo

Siły oporu prędkość graniczna w spadku swobodnym

Siły oporu prędkość graniczna w spadku swobodnym FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.

Bardziej szczegółowo

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne 1, 2, 3- Kinematyka 1 Pomiary w fizyce i wzorce pomiarowe 12.1 2 Wstęp do analizy danych pomiarowych 12.6 3 Jak opisać położenie ciała 1.1 4 Opis

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

Szczególna teoria względności

Szczególna teoria względności 5.04.08 Szczególna teoria względności Gdzie o tym więcej poczytać? Katarzyna Sznajd Weron Dlaczego ta teoria jest szczególna? Albert Einstein (905) Dotyczy tylko inercjalnych układów odniesienia. Spełnione

Bardziej szczegółowo

Bozon Higgsa prawda czy kolejny fakt prasowy?

Bozon Higgsa prawda czy kolejny fakt prasowy? Bozon Higgsa prawda czy kolejny fakt prasowy? Sławomir Stachniewicz, IF PK 1. Standardowy model cząstek elementarnych Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami

Bardziej szczegółowo

FIZYKA I - Podstawy Fizyki

FIZYKA I - Podstawy Fizyki FIZYKA I - Podstawy Fizyki Wykład: Rajmund Bacewicz, prof. dr hab. p. 325, tel 8628, 7267 bacewicz@if.pw.edu.pl http://www.if.pw.edu.pl/~bacewicz/ Ćwiczenia rachunkowe: prof. dr hab. Małgorzata Igalson

Bardziej szczegółowo

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Kinematyka Ruch Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Ruch rozumiany jest jako zmiana położenia jednych ciał względem innych, które nazywamy

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

KINEMATYKA czyli opis ruchu. Marian Talar

KINEMATYKA czyli opis ruchu. Marian Talar KINEMATYKA czyli opis ruchu 1 października 2006 2 Kinematyka czyli opis ruchu 1 Podstawowe pojęcia Kinematyka jest działem fizyki, który zajmuje się tylko opisem ruchu ciał. W ruchu postępowym ciało zastępuje

Bardziej szczegółowo

Cząstki i siły. Piotr Traczyk. IPJ Warszawa

Cząstki i siły. Piotr Traczyk. IPJ Warszawa Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała

Bardziej szczegółowo

Elektrostatyczna energia potencjalna U

Elektrostatyczna energia potencjalna U Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko

Bardziej szczegółowo