Pojęcia podstawowe obwodów prądu zmiennego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pojęcia podstawowe obwodów prądu zmiennego"

Transkrypt

1 Pojęcia podstawowe obwodów prądu zmiennego kłady złożone z elementów biernych Bierne elementy elektroniczne to : opór : u ( i( indukcyjność : di( u( dt i pojemność : q u ( i( dt ozważmy obwód złożony z tych elementów połączonych szeregowo, zasilany ze źródła napięciowego o zmiennej sile elektromotorycznej reprezentowanej przez część rzeczywistą wyrażenia: u( e jωt, gdzie oznacza amplitudę napięcia, a ωπν - częstość kołową. Natężenie prądu płynącego przez układ ma podobną postać: i(i e jωt. ~ u( Skorzystamy z drugiego prawa Kirchhoffa : di( i( dt u( i( + + dt Podstawiając powyższe postaci natężenia oraz napięcia i dzieląc stronami przez I otrzymujemy: Z + jω+ I o jω Wielkość Z jest impedancją powyższego obwodu i jest wielkością zespoloną. Możemy w niej wyróżnić impedancje poszczególnych elementów: oporu: Z, indukcyjności: Z jω oraz pojemności: Z /jω. Dokonaliśmy w ten sposób uogólnienia prawa Ohma dla prądów zmiennych: napięcie u( jest liniowym funkcjonałem prądu i(. Nadal obowiązują prawa Kirchhoffa. W ogólności dla innych obwodów postać algebraiczna impedancji może być inną liczbą zespoloną. W powyższym przypadku, przy szeregowym połączeniu impedancji uzyskujemy wzór na impedancję wypadkową: Z W Z +Z +...+Z n, analogiczny jak przy łączeniu oporów. Przy równoległym połączeniu impedancji: /Z W /Z +/Z +...+/Z n. zęść uczestników zajęć powinna robić układ całkujący, a część różniczkujący. Tutaj j oznacza jednostkę urojoną, w odróżnieniu od prądu i.

2 Pracownia Wstępna - - styczeń 7 zęść rzeczywistą impedancji nazywa się rezystancją, część urojoną - reaktancją. Stosunek reaktancji do rezystancji jest równy tangensowi kąta przesunięcia fazowego ϕ między napięciem i natężeniem. eprezentacja impedancji na płaszczyźnie zespolonej: Z ezystancja opisuje zdolność obwodu do zamiany energii elektrycznej na ciepło: P I, natomiast pojemność i indukcyjność - zdolność do magazynowania energii elektrycznej, odpowiednio: E u() t - w polu elektrycznym pojemności oraz E i() t polu magnetycznym indukcyjności. W warunkach szkolnych możemy zamiast notacji zespolonej, przekształcić powyższy diagram, zaznaczając na poziomej osi opór opornika, natomiast pionowej w kierunku dodatnim impedancję indukcyjności ω, w ujemnym natomiast impedancję kondensatora. Definicja impedancji całkowitej układu oraz przesunięcia fazowego ω ϕ pozostaje niezmieniona. w Im(Z) φ e(z)

3 Pracownia Wstępna styczeń 7 Filtr rezonansowy szeregowy. Szeregowy obwód, do którego dołączono napięciowe źródło sygnału przemiennego o częstości ω. Ze wzoru na dzielnik napięcia otrzymujemy, że napięcie wyjściowe : u we ( jω jωuwe () t u (, u () t, + jω + + jω+ jω jω u we ( u we ( uwy ( u ( + jω + jω u wy ( Stosunek amplitud napięcia wyjściowego do wejściowego (tzw. transmitancja obwodu) wynosi: wy, WY / WE we, + ω ω,8 a przesunięcie fazowe między sygnałem wejściowym i /,6 ω wyjściowym : ϕ arctan,4 ω kład ten nazywany jest filtrem rezonansowym, szeregowym. Pasmo jego przepuszczania zlokalizowane, jest w okolicach częstości ω. mh, nf 5 Ω 3 Ω ν g ν g częstość [Hz] Pasmo przenoszenia filtru rozciąga się od ν g do ν g,, nazywanych częstościami granicznymi. Dla częstości granicznych zachodzi równość: wy, oraz: ϕ π 4. we faza [rad] π/ π/4 -π/4 mh, nf 3 Ω ν g ν 6 7 g częstość [Hz] 5 Ω -π/

4 Pracownia Wstępna styczeń 7 Obwód drgający ozważmy obwód złożony z szeregowo połączonych: indukcyjności, pojemności i oporu. Kondensator został naładowany do napięcia, po czym zamknięto wyłącznik. uch ładunku w obwodzie opisuje równanie : di( i( dt i( + +, dt które łatwo można przekształcić w liniowe równanie różniczkowe drugiego stopnia : d i( di( + + i(. dt dt Zakładamy, że rozwiązanie ma postać wykładniczą : it () α Ae t. Podstawiając je do powyższego równania różniczkowego otrzymujemy równanie algebraiczne: α + α +, którego pierwiastki mają wartość: α oraz α. ozwiązanie równania ruchu ładunku jest kombinacją liniową rozwiązań z α i α : αt α t it () Ae + Ae, przy czym wartości amplitud A i A możemy wyznaczyć z warunków początkowych : i( ) A + A, A A, di + i A( α α ), A natężenie [ma] dt α α Przypadki : t ( ) Jeżeli 4, wtedy 4 jest liczbą rzeczywistą i rozwiązania mają charakter t αt dwuwykładniczy : i ( t ) A ( e α e ), a więc po wzbudzeniu prąd w obwodzie zanika. Gdy < 4, wtedy 4 jest liczbą urojoną i rozwiązania mają charakter oscylacyjny: t i( e sin( ω x 3, gdzie częstotliwość ω x oscylacji ω x. 4 3 jx jx e e Skorzystaliśmy tutaj z tożsamości : sin x. j.5 - kład antyoscylacyjny mh, nf, 5kΩ 5 V czas [µs] natężenie [ma] kład drgający : mh, nf, 3 Ω 5 V 3 czas [µs]

5 Pracownia Wstępna styczeń 7 W szczególnym przypadku, gdy otrzymujemy drgania niegasnące [4]: it () sin( ω, gdzie częstotliwość oscylacji : ω. Dla częstotliwości ω / moduły napięć na poszczególnych elementach obwodu mają odpowiednio wartości :,,. a impedancja obwodu wynosi. Dla tej częstotliwości znika łączna impedancja elementów reaktancyjnych, a napięcia na kondensatorze i indukcyjności osiągają wartości maksymalne. Zjawisko to nosi nazwę rezonansu, a ω to częstotliwość rezonansowa. W rezonansie amplitudy napięcia na indukcyjności lub na pojemności mogą przekroczyć amplitudę napięcia wejściowego. Wielkość: Q nazywana jest dobrocią obwodu [5]. Inna postać dobroci : Q j ω π I E π T I T P Ogólna definicja : Dobroć wyraża stosunek energii zmagazynowanej w układzie rezonansowym (E ) do mocy traconej w nim (P) w ciągu jednego okresu drgań (T)., Magazynowanie energii w elementach reaktancyjnych obwodu rezonansowego o wysokiej dobroci i wywołane przez nie podbijanie napięcia jest wykorzystywane do filtracji i transformowania sygnałów o określonej częstotliwości. 4 Ponieważ w rzeczywistym obwodzie zawsze występuje dodatnia rezystancja (np. pasożytnicza), aby uzyskać do obwodu należy wprowadzić rezystancję ujemną, którą jest np. wzmacniacz albo inny odpowiedni element elektroniczny. 5 Wykazać (to co widać na rysunkach na poprzedniej stronie), że Qω / ω, gdzie ω jest szerokością połówkową charakterystyki układu rezonansowego, czyli funkcji f(ω) u (ω,/u(ω,.

6 Pracownia Wstępna styczeń 7 W systemach pomiarowych przy nieumiejętnym łączeniu aparatury elektrycznej pasożytnicze obwody mogą zniekształcać sygnały. Przykład. Połączenie wysokooporowego źródła z urządzeniem pomiarowym. źródło miernik (oscyloskop) wy kabel c k c m ezystancja wyjściowa źródła wy wraz z pojemnościami kabla i miernika ( k + m ) tworzą obwód całkujący, ograniczający od góry pasmo przenoszenia obwodu pomiarowego do częstości /(π wy ). Przykład. Sprzężenie typu A. źródło miernik (oscyloskop) s we Pojemność sprzężenia s wraz z rezystancją wejściową oscyloskopu tworzą obwód różniczkujący ograniczający od dołu pasmo pomiarowe. Przykład 3. Brak kontaktu kabla w gnieździe oscyloskopu jest równoważny pojemności, która wraz z rezystancją wejściową tworzy filtr górnoprzepustowy mogący powodować różniczkowanie sygnałów wejściowych. generator kabel oscyloskop pf przerwa WE

7 Pracownia Wstępna styczeń 7 kłady elektroniczne o stałych rozłożonych. W układach o stałych rozłożonych wielkości takie jak rezystancja, indukcyjność i pojemność nie są zlokalizowane w konkretnych punktach, lecz są rozłożone w przestrzeni. Dotyczy to kabli koncentrycznych, linii paskowych, płyt laminowanych itd. W modelu takich obiektów : jednostka długości S D x opisuje indukcyjność linii, - jej pojemność, S - straty w przewodnikach, z których linia jest zbudowana, D - skończoną rezystancję dielektryka. Wszystkie te wielkości są wyznaczone na jednostkę długości linii przesyłowej, czyli odpowiednio w H/m, F/m i Ω/m (na jednostkę powierzchni w przypadku pły. Spadek napięcia wzdłuż linii przesyłowej 6 : uxt (, ) ixt (, ) ' + ' S i( x, x t Straty prądu : ixt (, ) uxt (, ) uxt (, ) ' + x t ' W warunkach laboratoryjnych, gdy możemy zaniedbać rezystancję materiału linii ( S ) oraz upływność izolatora ( D, / D ): D uxt (, ) x ixt (, ) ' t ixt (, ) uxt (, ) ' x t 6 Tzw. układ równań telegrafistów.

8 Pracownia Wstępna styczeń 7 W linii wzbudzamy drgania o częstości ω. Dlatego funkcji reprezentującej napięcie będziemy poszukiwać w postaci u(x,f(x)e jωt. Natężenie prądu jest równe i(x, u(x,/z f(x)e jωt /Z, (Z jest impedancja układu). Po podstawieniu do powyższych równań różniczkowych otrzymujemy : df ( x) ' dx Z j f ( x df ( x) ω ) ' jω f ( x) Z dx Ponieważ oba równania dotyczą tej samej funkcji f(x), otrzymujemy, że impedancja linii przesyłowej Z ' ', a rozwiązaniem równania : df x dx ( ) ± jω ' ' f ( x) jest funkcja : f(x) Ae ±jγx, gdzie γ ω ' ' jest nazywana stałą propagacji 7. Wstawiając powtórnie obydwa rozwiązanie dla napięcia u(x, do równania telegrafistów znajdujemy znak impedancji ( ± ), jaki należy zastosować w obu przypadkach obliczając prąd i(x,. ozwiązaniem równania telegrafistów jest więc kombinacja liniowa : u(x,(a e -jγx +A e jγx )e jωt i(x, (A e -jγx -A e jγx )e jωt /Z gdzie: A oznacza amplitudę fali biegnącą zgodnie z kierunkiem osi X, A amplitudę fali biegnącej w kierunku przeciwnym, W przypadku, gdy nieskończenie długą linię połączono z generatorem : generator inia Z A w układzie nie istnieje fala propagująca się w kierunku przeciwnym do osi X, czyli : A. Wówczas : uxt (, ) Z ixt (, ). W tym doświadczeniu myślowym z nieskończenie długą linią impedancja falowa ' Z opisuje obciążenie, jakie taka linia stanowi dla ' generatora. Nieskończona linia jest równoważna oporowi o wartości Z. generato r Z ' ' 7 πc Zgodnie z ogólnym rozwiązaniem równania falowego stała propagacji γ πν ' ', λv gdzie λ oznacza długość propagującej się fali elektromagnetycznej w próżni, c - prędkość światła, a V - prędkość fali w linii przesyłowej. Wynika stąd, że V. ' '

9 Pracownia Wstępna styczeń 7 Gdyby zmierzono omomierzem rezystancje nieskończenie długiej linii przesyłowej otrzymano by Z. Doświadczenie takie jest niemożliwe do przeprowadzenia, bo linie nieskończenie długie nie istnieją. W rzeczywistości zawsze mamy do czynienia z sygnałem odbitym od końca linii i interferującym z sygnałem wysłanym z generatora. Jednak nawet w przypadku skończonych linii w wielu doświadczeniach można pokazać, że linia zachowuje się analogicznie do rezystancji Z w czasie krótszym od podwójnego czasu propagacji sygnału przez nią. Impedancja falowa linii jest określona przez jej budowę i stanowi ważny parametr określający linię przesyłową. W technice stosuje się linie o ustalonych standardach, np. 5 Ω (układy pomiarowe), 55 Ω, Ω (układy transmisji danych), 75 Ω, 3 Ω (układy antenowe) i inne. W przypadku, gdy użyto kilku linii przesyłowych: Z Z Z3 Zn wypadkową impedancję falową oblicza się ze wzoru : Z Z Z Z W n ozważmy doświadczenie, w którym linię przesyłową o impedancji falowej Z przedłużono nieskończoną linią o impedancji falowej Z : A A A generator Z Z Środek układu współrzędnych (x) ustalimy na złączu a rozważania prowadzimy dla chwili czasu t. Do linii wprowadzono falę z generatora o amplitudzie A. Możemy przypuszczać, że na styku linii następuje częściowe odbicie i wytworzenie fali powracającej o amplitudzie A, jednak część fali wniknie do linii Z wytwarzając amplitudę A. Ze względu na ciągłość, po obu stronach złącza napięcia i prądy są równe. Podstawiając odpowiednie rozwiązania równania telegrafistów : Z A + A A ' I A A A Z' Z ' I Z' Z Z'

10 Pracownia Wstępna - - styczeń 7 Stosunek amplitud A jest współczynnikiem odbicia fali na złączu dwóch linii : A A Z' Z A Z' + Z Na złączu dwóch linii odbicie fali nie nastąpi tylko wtedy, gdy ich impedancje są sobie równe : ZZ W przypadku, gdy linia zakończona jest zwarciem, Z i współczynnik odbicia wynosi : A /A -, co oznacza, że fala odbita od końca linii ma przeciwną fazę do fali wychodzącej z generatora i w wyniku ich interferencji po czasie równym czasowi podwójnego przebiegu sygnału przez linię nastąpi wygaszenie fali. Gdy linia jest rozwarta na końcu, Z i współczynnik odbicia wynosi : A /A. Oznacza to, że odbita fala ma tę samą fazę, co fala z generatora i w momencie ich spotkania nastąpi interferencja konstruktywna prowadząca do podwojenia amplitudy. Bezodbiciowe zakończenie linii można osiągnąć przez zakończenie jej oporem Z. kłady pomiarowe, w których następuje przesyłanie sygnałów o wielkiej częstości powinny być budowane tak, by nie następowały w nich odbicia sygnałów. Powstała w wyniku odbicia fala interferuje z falą wychodzącą z nadajnika, zniekształcając ją. W skrajnych przypadkach (sygnałów o dużej mocy) powstała w wyniku interferencji fala o dużej amplitudzie może zniszczyć układ. Odbicia sygnałów można uniknąć przez stosowanie dopasowania falowego: rezystancja wyjściowa nadajnika, impedancja falowa linii przesyłowej i rezystancja wejściowa odbiornika powinny być sobie równe.

11 Pracownia Wstępna - - styczeń 7 W przypadku braku dopasowania falowego : następuje seria odbić fali od końców linii, które interferują po czasie propagacji τ, zniekształcając przebiegi. Można to zaobserwować np. w źle zbudowanych telewizyjnych układach antenowych. W układach czułych na kształt sygnału (układy cyfrowe) zniekształcenia powstające przy propagacji w liniach lub płytach uniemożliwiają pracę.

u(t)=u R (t)+u L (t)+u C (t)

u(t)=u R (t)+u L (t)+u C (t) Szeregowy obwód Źródło napięciowe u( o zmiennej sile elektromotorycznej E(e [u(] Z drugiego prawa Kirchhoffa: u(u (u (u ( ównanie ruchu ładunku elektrycznego: Prąd płynący w obwodzie: di( i t dt u t i

Bardziej szczegółowo

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Pracownia Wstępna - - WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Układy złożone z elementów biernych Bierne elementy elektroniczne to : opór R: u ( = Ri( indukcyjność L: di( u( = L i pojemność

Bardziej szczegółowo

Szeregowy obwód RLC. u(t)=u R (t)+u L (t)+u C (t) U L = R U U L C U C DOBROĆ OBWODU. Obwód rezonansowy szeregowy - częstość rezonansowa = 1.

Szeregowy obwód RLC. u(t)=u R (t)+u L (t)+u C (t) U L = R U U L C U C DOBROĆ OBWODU. Obwód rezonansowy szeregowy - częstość rezonansowa = 1. Szerego obwód Źródło napięcio o zmiennej sile elektromotorycznej E(e [] drugiego prawa Kirchhoffa: ównanie ruchu ładunku elektrycznego: jeśli Prąd płynący w obwodzie: e jωt u (u (u ( d i t dt u t i t (

Bardziej szczegółowo

Pracownia Fizyczna i Elektroniczna 2014

Pracownia Fizyczna i Elektroniczna 2014 Pracownia Fizyczna i Elektroniczna 04 http://pe.fw.ed.pl/ Wojciech DOMNK ozbłysk gamma GB 08039B 9.03.008 teleskop Pi of the Sky sfilmował najpotężniejszą eksplozję obserwowaną przez człowieka pierwszy

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód

Bardziej szczegółowo

Pracownia Fizyczna i Elektroniczna 2017

Pracownia Fizyczna i Elektroniczna 2017 Pracownia Fizyczna i Elektroniczna 7 http://pe.fw.ed.pl/ Wojciech DOMNK Strktra kład doświadczalnego Strktra kład doświadczalnego EKSPEYMENT EEKTONNY jawisko przyrodnicze detektor rządzenie pomiaro rządzenie

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

Pracownia Fizyczna i Elektroniczna 2012

Pracownia Fizyczna i Elektroniczna 2012 Pracownia Fizyczna i Elektroniczna 0 http://pe.fw.ed.pl/ Wojciech DOMNK Strktra kład doświadczalnego Zjawisko przyrodnicze detektor rządzenie pomiaro rządzenie konawcze interfejs reglator interfejs kompter

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 4 lutego 4 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

Pracownia Technik Pomiarowych dla Astronomów 2014

Pracownia Technik Pomiarowych dla Astronomów 2014 Pracownia Technik Pomiarowych dla Astronomów 04 http://pe.fw.ed.pl/ Wojciech DOMNK Pracownia technik pomiarowych dla astronomów 04 zajęcia w czwartki 3-6 Data Wykład (P7) Ćwiczenia (Pastera Vp) Prawo Ohma

Bardziej szczegółowo

Stosując tzw. równania telegraficzne możemy wyznaczyć napięcie i prąd w układzie: x x. x x

Stosując tzw. równania telegraficzne możemy wyznaczyć napięcie i prąd w układzie: x x. x x WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA WSTĘP TEORETYCZNY Model

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna S. Prąd elektryczny w obwodach; przypomnienie podstawowych pojęć i praw. dq I = dt

Pracownia fizyczna i elektroniczna S. Prąd elektryczny w obwodach; przypomnienie podstawowych pojęć i praw. dq I = dt 03 Pracownia fizyczna i elektroniczna S http://pe.fuw.edu.pl/ Wojciech DOMNK Prąd elektryczny w obwodach; przypomnienie podstawowych pojęć i praw Prąd: uporządkowany ruch ładunków elektrycznych Natężenie

Bardziej szczegółowo

II prawo Kirchhoffa Obwód RC Obwód RC Obwód RC

II prawo Kirchhoffa Obwód RC Obwód RC Obwód RC II prawo Kirchhoffa algebraiczna suma zmian potencjału napotykanych przy pełnym obejściu dowolnego oczka jest równa zeru klucz zwarty w punkcie a - ładowanie kondensatora równanie ładowania Fizyka ogólna

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 9 marca 5 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

Zaznacz właściwą odpowiedź

Zaznacz właściwą odpowiedź EUOEEKTA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej ok szkolny 200/20 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź Zadanie Kondensator o pojemności C =

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC

Bardziej szczegółowo

Generatory drgań sinusoidalnych LC

Generatory drgań sinusoidalnych LC Generatory drgań sinusoidalnych LC Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Generatory drgań sinusoidalnych

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

Badanie rezonansu w obwodach prądu przemiennego

Badanie rezonansu w obwodach prądu przemiennego E/E Wydział Fizyki AM Badanie rezonansu w obwodach prądu przemiennego el ćwiczenia: Przyrządy: Zagadnienia: Poznanie podstawowych własności szeregowego obwodu rezonansowego. Zbadanie wpływu zmian wartości

Bardziej szczegółowo

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego Ryszard Kostecki Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego Warszawa, 3 kwietnia 2 Streszczenie Celem tej pracy jest zbadanie własności filtrów rezonansowego, dolnoprzepustowego,

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład marca Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład marca Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 8 marca 0 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa,. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

Wzmacniacz jako generator. Warunki generacji

Wzmacniacz jako generator. Warunki generacji Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Ćwiczenie A1 : Linia długa

Ćwiczenie A1 : Linia długa Ćwiczenie A1 : Linia długa Jacek Grela, Radosław Strzałka 19 kwietnia 2009 1 Wstęp 1.1 Wzory Podstawowe wzory i zależności które wykorzystywaliśmy w trakcie badania linii: 1. Rezystancja falowa Gdzie:

Bardziej szczegółowo

Badanie przebiegów falowych w liniach długich

Badanie przebiegów falowych w liniach długich POLITECHNIKA LUBELSKA WYDIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URĄDEŃ ELEKTRYCNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 7 Badanie przebiegów falowych w liniach długich Grupa dziekańska...

Bardziej szczegółowo

LABORATORIUM OBWODÓW I SYGNAŁÓW

LABORATORIUM OBWODÓW I SYGNAŁÓW POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie Temat: OBWODY PRĄDU SINUSOIDALNIE ZMIENNEGO Opracował: mgr

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Badanie zjawiska rezonansu elektrycznego w obwodzie RLC

Badanie zjawiska rezonansu elektrycznego w obwodzie RLC Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 IV 2009 Nr. ćwiczenia: 321 Temat ćwiczenia: Badanie zjawiska rezonansu elektrycznego w obwodzie RLC Nr. studenta:...

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną Cewki Wstęp. Urządzenie elektryczne charakteryzujące się indukcyjnością własną i służące do uzyskiwania silnych pól magnetycznych. Szybkość zmian prądu płynącego przez cewkę indukcyjną zależy od panującego

Bardziej szczegółowo

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC BADANE EZONANSU W SZEEGOWYM OBWODZE LC NALEŻY MEĆ ZE SOBĄ: kalkulator naukowy, ołówek, linijkę, papier milimetrowy. PYTANA KONTOLNE. ównanie różniczkowe drgań wymuszonych. Postać równania drgań wymuszonych

Bardziej szczegółowo

Dr inż. Agnieszka Wardzińska 105 Polanka Konsultacje: Poniedziałek : Czwartek:

Dr inż. Agnieszka Wardzińska 105 Polanka Konsultacje: Poniedziałek : Czwartek: Dr inż. Agnieszka Wardzińska 105 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Konsultacje: Poniedziałek : 8.00-9.30 Czwartek: 8.00-9.30 Impedancja elementów dla prądów przemiennych

Bardziej szczegółowo

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0. Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI

LABORATORIUM ELEKTRONIKI INSTYTUT NAWIGACJI MOSKIEJ ZAKŁD ŁĄCZNOŚCI I CYBENETYKI MOSKIEJ AUTOMATYKI I ELEKTONIKA OKĘTOWA LABOATOIUM ELEKTONIKI Studia dzienne I rok studiów Specjalności: TM, IM, PHiON, AT, PM, MSI ĆWICZENIE N 2

Bardziej szczegółowo

LABORATORIUM OBWODÓW I SYGNAŁÓW. Stany nieustalone

LABORATORIUM OBWODÓW I SYGNAŁÓW. Stany nieustalone Politechnika Warszawska Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie nr 4 Stany nieustalone opracował: dr inż. Wojciech Kazubski

Bardziej szczegółowo

Wstęp do ćwiczeń na pracowni elektronicznej

Wstęp do ćwiczeń na pracowni elektronicznej Wstęp do ćwiczeń na pracowni elektronicznej Katarzyna Grzelak listopad 2011 K.Grzelak (IFD UW) listopad 2011 1 / 25 Zajęcia na pracowni elektronicznej Na kolejnych zajęciach spotykamy się na pracowni elektronicznej

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

I= = E <0 /R <0 = (E/R)

I= = E <0 /R <0 = (E/R) Ćwiczenie 28 Temat: Szeregowy obwód rezonansowy. Cel ćwiczenia Zmierzenie parametrów charakterystycznych szeregowego obwodu rezonansowego. Wykreślenie krzywej rezonansowej szeregowego obwodu rezonansowego.

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

Pracownia Technik Informatycznych w Inżynierii Elektrycznej UNIWERSYTET RZESZOWSKI Pracownia Technik Informatycznych w Inżynierii Elektrycznej Ćw. 5. Badanie rezonansu napięć w obwodach szeregowych RLC. Rzeszów 206/207 Imię i nazwisko Grupa Rok studiów Data wykonania

Bardziej szczegółowo

RÓWNANIE RÓśNICZKOWE LINIOWE

RÓWNANIE RÓśNICZKOWE LINIOWE Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VI Sprzężenie zwrotne Wzmacniacz operacyjny Wzmacniacz operacyjny w układach z ujemnym i dodatnim sprzężeniem zwrotnym Janusz Brzychczyk IF UJ Sprzężenie zwrotne Sprzężeniem

Bardziej szczegółowo

Prąd przemienny - wprowadzenie

Prąd przemienny - wprowadzenie Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą

Bardziej szczegółowo

Wzmacniacz operacyjny

Wzmacniacz operacyjny ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 3 Wzmacniacz operacyjny Grupa 6 Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniaczy operacyjnych do przetwarzania

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

Systemy liniowe i stacjonarne

Systemy liniowe i stacjonarne Systemy liniowe i stacjonarne Układ (np.: dwójnik) jest liniowy wtedy i tylko wtedy gdy: Spełnia własność skalowania (jednorodność): T [a x (t )]=a T [ x (t)]=a y (t ) Jeśli wymuszenie zostanie przeskalowane

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

A-1. Linia długa (opóźniająca)

A-1. Linia długa (opóźniająca) A-1. inia długa 1. Zakres ćwiczenia A-1. inia długa (opóźniająca) wersja 04 2014 Temat obejmuje zbadanie modelu linii długiej oraz odcinka kabla koncentrycznego w aspekcie przesyłania sygnałów elektrycznych,

Bardziej szczegółowo

Czym jest oporność wejściowa anteny i co z tym robić?

Czym jest oporność wejściowa anteny i co z tym robić? Czym jest oporność wejściowa anteny i co z tym robić? Wszyscy wiedzą czym jest oporność wejściowa anteny (impedancja), rzadko jest ona równa oporności wejściowej fidera. Postaram się pokazać jak dopasować

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch

Bardziej szczegółowo

Badanie przebiegów falowych w liniach długich

Badanie przebiegów falowych w liniach długich Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja

Bardziej szczegółowo

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

Bierne układy różniczkujące i całkujące typu RC

Bierne układy różniczkujące i całkujące typu RC Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego: Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Temat ćwiczenia: BADANIE WZMACNIA- CZA SELEKTYWNEGO Z OBWODEM LC NIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTT TECHNIKI. 2. 3. Imię i Nazwisko 4. Data wykonania Data oddania

Bardziej szczegółowo

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13 Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ

Bardziej szczegółowo

Temat: Wzmacniacze operacyjne wprowadzenie

Temat: Wzmacniacze operacyjne wprowadzenie Temat: Wzmacniacze operacyjne wprowadzenie.wzmacniacz operacyjny schemat. Charakterystyka wzmacniacza operacyjnego 3. Podstawowe właściwości wzmacniacza operacyjnego bardzo dużym wzmocnieniem napięciowym

Bardziej szczegółowo

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C Obwód RLC t = 0 i(t) R L w u R (t) u L (t) E u C (t) C Odpowiadający mu schemat operatorowy R I Dla zerowych warunków początkowych na cewce i kondensatorze 1 sc sl u (0) = 0 C E s i(0) = 0 Prąd I w obwodzie

Bardziej szczegółowo

Ćwiczenie F1. Filtry Pasywne

Ćwiczenie F1. Filtry Pasywne Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ Ćwiczenie F Filtry Pasywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:.

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

Obwody sprzężone magnetycznie.

Obwody sprzężone magnetycznie. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTT MASZYN I RZĄDZEŃ ENERGETYCZNYCH LABORATORIM ELEKTRYCZNE Obwody sprzężone magnetycznie. (E 5) Opracował: Dr inż. Włodzimierz OGLEWICZ

Bardziej szczegółowo

Warunek zaliczenia wykładu: wykonanie sześciu ćwiczeń w Pracowni Elektronicznej

Warunek zaliczenia wykładu: wykonanie sześciu ćwiczeń w Pracowni Elektronicznej Elektronika cyfrowa Warunek zaliczenia wykładu: wykonanie sześciu ćwiczeń w Pracowni Elektronicznej Część notatek z wykładu znajduje się na: http://zefir.if.uj.edu.pl/planeta/wyklad_elektronika/ 1 Pracownia

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

Ćwiczenie 3 Obwody rezonansowe

Ćwiczenie 3 Obwody rezonansowe Ćwiczenie 3 Obwody rezonansowe Opracowali dr inż. Krzysztof Świtkowski oraz mgr inż. Adam Czerwiński Pierwotne wersje ćwiczenia i instrukcji są dziełem mgr inż. Leszka Widomskiego Celem ćwiczenia jest

Bardziej szczegółowo

Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO

Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO IDEALNA REZYSTANCJA W OBWODZIE PRĄDU PRZEMIENNEGO Symbol rezystora: Idealny rezystor w obwodzie prądu przemiennego:

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

Miernictwo I INF Wykład 13 dr Adam Polak

Miernictwo I INF Wykład 13 dr Adam Polak Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć REZONANS SZEREGOWY I RÓWNOLEGŁY I. Rezonans napięć Zjawisko rezonansu napięć występuje w gałęzi szeregowej RLC i polega na tym, Ŝe przy określonej częstotliwości sygnałów w obwodzie, zwanej częstotliwością

Bardziej szczegółowo

Ćwiczenie C3 Wzmacniacze operacyjne. Wydział Fizyki UW

Ćwiczenie C3 Wzmacniacze operacyjne. Wydział Fizyki UW dział Fizyki W Pracownia fizyczna i elektroniczna (w tym komputerowa) dla Inżynierii Nanostruktur (00-INZ7) oraz Energetyki i Chemii Jądrowej (00-ENPFIZELEK) Ćwiczenie C Wzmacniacze operacyjne Streszczenie

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

2. REZONANS W OBWODACH ELEKTRYCZNYCH

2. REZONANS W OBWODACH ELEKTRYCZNYCH 2. EZONANS W OBWODAH EEKTYZNYH 2.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód elektryczny,

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4 1) Wyprowadź wzór pozwalający obliczyć rezystancję B i konduktancję G B zastępczą układu. 1 2 3 6 B 4 2) Wyprowadź wzór pozwalający obliczyć impedancję (Z, Z) i admitancję (Y, Y) obwodu. Narysować wykres

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Ćwiczenie 25 Poznanie własności obwodu szeregowego RC w układzie. Zrozumienie znaczenia reaktancji pojemnościowej, impedancji kąta fazowego. Poznanie

Bardziej szczegółowo

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych Termin AREK73C Induktor i kondensator. Warunki początkowe Przyjmujemy t, u C oraz ciągłość warunków początkowych ( ) u ( ) i ( ) i ( ) C L L Prąd stały i(t) R u(t) u( t) Ri( t) I R RI i(t) L u(t) u() t

Bardziej szczegółowo

E107. Bezpromieniste sprzężenie obwodów RLC

E107. Bezpromieniste sprzężenie obwodów RLC E7. Bezpromieniste sprzężenie obwodów RLC Cel doświadczenia: Pomiar amplitudy sygnału w rezonatorze w zależności od wzajemnej odległości d cewek generatora i rezonatora. Badanie wpływu oporu na tłumienie

Bardziej szczegółowo

WZMACNIACZE OPERACYJNE

WZMACNIACZE OPERACYJNE WZMACNIACZE OPERACYJNE Indywidualna Pracownia Elektroniczna Michał Dąbrowski asystent: Krzysztof Piasecki 25 XI 2010 1 Streszczenie Celem wykonywanego ćwiczenia jest zbudowanie i zapoznanie się z zasadą

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTONIKI Część II Podstawowe elementy elektroniczne dwójniki bierne LC Formalizm zespolony opisu napięć i prądów harmonicznie zmiennych w czasie impedancja Źródła napięcia i prądu Przekazywanie

Bardziej szczegółowo

Charakterystyki częstotliwościowe elementów pasywnych

Charakterystyki częstotliwościowe elementów pasywnych Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 10. Dwójniki RLC, rezonans elektryczny

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 10. Dwójniki RLC, rezonans elektryczny POTEHNKA WOŁAWSKA, WYDZAŁ PPT - ABOATOM Z PODSTAW EEKTOTEHNK EEKTONK Ćwiczenie nr. Dwójniki, rezonans elektryczny el ćwiczenia: Podstawowym celem ćwiczenia jest zapoznanie studentów właściwościami elementów

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Ćwiczenie A2 : Filtry bierne

Ćwiczenie A2 : Filtry bierne Ćwiczenie A2 : Filtry bierne Jacek Grela, Radosław Strzałka 29 marca 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i deinicje, których używaliśmy w obliczeniach: 1. Stała czasowa iltru RC

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

Ćwiczenie nr 05 1 Oscylatory RF Podstawy teoretyczne Aβ(s) 1 Generator w układzie Colpittsa gmr Aβ(S) =1 gmrc1/c2=1 lub gmr=c2/c1 gmr C2/C1

Ćwiczenie nr 05 1 Oscylatory RF Podstawy teoretyczne Aβ(s) 1 Generator w układzie Colpittsa gmr Aβ(S) =1 gmrc1/c2=1 lub gmr=c2/c1 gmr C2/C1 Ćwiczenie nr 05 Oscylatory RF Cel ćwiczenia: Zrozumienie zasady działania i charakterystyka oscylatorów RF. Projektowanie i zastosowanie oscylatorów w obwodach. Czytanie schematów elektronicznych, przestrzeganie

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej. 1. Uproszczony schemat bezstratnej (R = 0) linii przesyłowej sygnałów cyfrowych. Zjawiska w niej występujące, jeśli jest ona linią długą: odbicie fali na końcu linii; tłumienie fali; zniekształcenie fali;

Bardziej szczegółowo