Stosując tzw. równania telegraficzne możemy wyznaczyć napięcie i prąd w układzie: x x. x x
|
|
- Sylwester Domański
- 8 lat temu
- Przeglądów:
Transkrypt
1 WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA WSTĘP TEORETYCZNY Model linii długiej możemy dość dobrze przybliżyć układem elementów R, L, C, jest często stosowany w zagadnieniach związanych z przesyłaniem sygnałów. Nieskończony łańcuch ogniw scharakteryzowany jest przez tzw. parametry pierwotne linii. Są to: R rezystancja; G upływność; L indukcyjność; C pojemność na jednostkę długości; Opisują one straty energii oraz magazynowanie energii magnetycznej i elektrycznej. Dzięki takiemu opisowi układu możemy tłumaczyć zjawiska alowe w linii rzeczywistej oraz odbicia sygnału od jej końców. Pozwala to również na określenie parametrów wtórnych: -impedancji alowej (impedancji charakterystycznej); -jednostkowego opóźnienia sygnału; -jednostkowego tłumienia; Zwykle stosuje się uproszczony model, z wykorzystaniem elementów L i C, zaniedbując straty cieplne w przewodniku i dielektryku. W takim przypadku pasmo przenoszenia ma nieskończoną szerokość i nie występuje tłumienie. Stosując tzw. równania telegraiczne możemy wyznaczyć napięcie i prąd w układzie: x x uxt (, ) = u1( t ) + u2( t+ ) v v x x ixt (, ) = i1( t ) i2( t+ ) v v 1 gdzie v = LC oraz t = 1 są odpowiednio prędkością propagacji ali i opóźnieniem sygnału 0 v na jednostkę długości. Napięcie i prąd są superpozycjami al zależnymi od x i t, przemieszczających się wzdłuż łańcucha LC. Jest to superpozycja ali biegnącej od nadajnika i odbitej od odbiornika (ala pierwotna i ala wtórna). Linia długa Agata Rachwał i Jacek Mostowicz 1
2 Dla takiego układu możemy zdeiniować pojęcie rezystancji alowej, która jest stosunkiem napięcia do prądu w określonym punkcie linii i w określonej chwili. R L = C, dla ali odbitej będzie to R. Gdy występują zniekształcenia liniowe (amplitudowe i azowe) to mamy wtedy do czynienia z impedancja alową Z ( jω ). Gdy na wejściu linii o określonej długości podamy sygnał to na końcu linii zmianę zaobserwujemy dopiero po czasie, kiedy dotrze tam ala padająca. Dla linii o skończonej długości i obciążonej rezystancją R stosunek amplitudy napięcia ali odbitej do amplitudy ali pierwotnej jest współczynnikiem odbicia danym wzorem: R 1 U R 2 ρ = = (1) U R R Dla tego wzoru możliwe są następujące przypadki: dopasowanie ma miejsce, gdy R= R ρ = 0 - ala odbita zanika; zwarcie na końcu w przypadku, gdy R = 0 ρ = 1 - ala odbija się z przeciwną azą; w wyniku następuje wygaszenie ali pierwotnej; rozwarcie (linia nieobciążona) zachodzi, gdy R = ρ = 1 - ala odbija się z tą samą azą następuje wzmocnienie ali (podwojenie amplitudy); W przypadkach pośrednich część energii jest wytracana na obciążeniu, a reszta wraca w postaci ali odbitej. Gdy ani odbiornik, ani nadajnik nie są nie są dopasowane do linii, to występują odbicia wielokrotne. Jeżeli rezystancja wewnętrzna źródła sygnału i rezystancja obciążenia są znacznie większe od R, to w wyniku wielokrotnych odbić odpowiedź jednostkowa jest przebiegiem narastającym schodkowo. Można wtedy mówić o stałej czasowej obwodu transmisji sygnału: 2t0 τ =, ln( ρρ ) gdzie ρ i ρ są współczynnikami odbicia na wyjściu i wejściu linii. Linią opóźniającą nazywamy idealny czwórnik liniowy wprowadzający kontrolowane opóźnienie sygnału. Ma on tę własność, że jego charakterystyka amplitudowa jest płaska, natomiast charakterystyka azowa jest unkcją częstotliwości. Linia długa Agata Rachwał i Jacek Mostowicz 2
3 Gdy założymy, że widmo częstotliwościowe sygnału ogranicza się do wartości znacznie niższych od g oraz, że w łańcuchu mamy n ogniw to otrzymamy wyrażenia na: 1 -czas narastania odpowiedzi: t = 1,1n 3 LC ; -czas opóźnienia: t 0 -rezystancję alową: = n LC ; R r = LC; Wspomnianą wcześniej g obliczamy ze wzoru: g 1 =. π LC Wyniki pomiarów sygnał prostokątny (4μs; 4,5V) L= 100μH; C = 100 pf ; n = 51 (ilość ogniw); Impuls prostokątny Mając daną: indukcyjność, pojemność oraz ilość ogniw obliczono wartości teoretyczne czasu opóźnienia i czasu narastania dla każdego przypadku. W celu policzenia opóźnienia zastosowano wzór: t 0 = n LC. Z kolei dla czasu narastania odpowiedzi: 1 3 t = 1,1n LC. r n t 0 t r 1 0,1 0, ,5 0, ,6 0, ,7 0, ,0 0, ,1 0,41 Można zauważyć, że mnożnik LC wynosi Na wszystkich wykresach oś pozioma to oś czasu (jednostką są ), natomiast na osi pionowej odkładamy napięcie (jednostka to [V]). Linia długa Agata Rachwał i Jacek Mostowicz 3
4 DOPASOWANIE: n=1 R = R Zgodnie z oczekiwaniami, nie zauważono przesunięcia, jednak sygnał wyjściowy ulega zniekształceniu. Zbocza wykresu są nachylone, co wytłumaczyć można tym, że czasy narastania i opadania są większe od zera. Amplituda jest o połowę mniejsza. n=25 Można zauważyć przesunięcie sygnału wyjściowego względem sygnału wejściowego. Czasy narastania i opadania są większe od poprzedniego przypadku, amplituda sygnału wyjściowego o połowę mniejsza niż sygnału wejściowego. Linia długa Agata Rachwał i Jacek Mostowicz 4
5 n=51 Widać wyraźnie, że wraz ze wzrostem liczby ogniw, rośnie przesunięcie sygnału wyjściowego względem wejściowego. Zbocza wykresów stają się mniej strome (coraz większe czasy narastania i opadania). Amplituda sygnału wyjściowego pozostaje w granicach połowy amplitudy sygnału wejściowego. Zmierzone wartości czasów narastania i opóźnienia, odczytane z wykresów dla przypadku: R = R n t 0 t r 1 0,0 0, ,3 0, ,2 0,69 Rozbieżności pomiędzy wynikami pomiarów a wartościami teoretycznymi wynikają z zaniedbania strat w przewodniku i dielektryku (założenie linii bezstratnej). Linia długa Agata Rachwał i Jacek Mostowicz 5
6 ZWARCIE: R = 0 n=1 Sygnał wyjściowy jest zniekształcony, amplituda o połowę mniejsza od amplitudy sygnału wejściowego, czasy narastania i opadania są większe od zera. Dodatkowo zaobserwowano alę odbitą o przeciwnej azie, co można wytłumaczyć za pomocą wzoru (1) w opracowaniu teoretycznym. Współczynnik odbicia w tym przypadku wynosi ρ = 1 (na wyjściu jest zwarcie, czyli R = 0 ). Fala odbita jest trochę bardziej zniekształcona; zbocza wykresu są łagodniejsze, amplituda jest mniejsza od amplitudy ali pierwotnej. n=37 Zaobserwowano zmniejszenie odległości pomiędzy alą pierwotną a alą odbitą zmalała na skutek zwiększenia opóźnienia. Dalsze jego zwiększanie (tzn. zwiększenie liczby ogniw) powinno doprowadzić do wygaszenia ali pierwotnej. Linia długa Agata Rachwał i Jacek Mostowicz 6
7 n=50 Na powyższym wykresie można zaobserwować, że stopniowe zwiększanie opóźnienia, prowadzi do nałożenia ali pierwotnej i odbitej, co w eekcie daje superpozycję al, czyli ich wygaszenie. Zmierzone wartości czasów narastania i opóźnienia, odczytane z wykresów dla przypadku: R = 0 n t 0 t r 1 0,0 0, ,3 0, ,1 0,68 Rozbieżności pomiędzy wynikami pomiarów a wartościami teoretycznymi wynikają z zaniedbania strat w przewodniku i dielektryku (założenie linii bezstratnej). Linia długa Agata Rachwał i Jacek Mostowicz 7
8 ROZWARCIE: n=1 R = Można zauważyć podobieństwa do wcześniejszych przypadków: sygnał jest tak samo zniekształcony jak w przypadku dopasowania (ala pierwotna) jak i w przypadku zwarcia (ala pierwotna i odbita). Amplituda sygnału wyjściowego jest o połowę mniejsza niż wejściowego. Przypadek rozwarcia podobny jest do przypadku zwarcia, z tym jednak wyjątkiem, że współczynnik odbicia w tym przypadku wynosi ρ = 1 ( R = ). W wyniku tego oczekuje się, że ala odbita w miarę zwiększania opóźnienia (liczby ogniw) nałoży się na alę pierwotną i ją wzmocni. n=36 Linia długa Agata Rachwał i Jacek Mostowicz 8
9 n=50 Zgodnie z oczekiwaniami, ala pierwotna została wzmocniona (amplituda sygnału wyjściowego podwoiła się). Można zaobserwować wzrost opóźnienia razem ze zwiększaniem liczby ogniw. Zmierzone wartości czasów narastania i opóźnienia, odczytane z wykresów dla przypadku: R = n t 0 t r 1 0,0 0, ,2 0, ,0 0,57 Rozbieżności pomiędzy wynikami pomiarów a wartościami teoretycznymi wynikają z zaniedbania strat w przewodniku i dielektryku (założenie linii bezstratnej). Linia długa Agata Rachwał i Jacek Mostowicz 9
10 Wyniki pomiarów impuls prostokątny (30μs; 4,5V) Impuls prostokątny o czasie trwania znacznie większym od opóźnienia linii. ROZWARCIE: n=37 R = Jak można zaobserwować na powyższym wykresie, sygnał wyjściowy jest mniej zniekształcony niż w przypadku sygnału o czasie trwania porównywalnym z czasem opóźnienia linii. Godnym zauważenia jest akt, że amplituda sygnału wyjściowego jest o połowę mniejsza niż sygnału wejściowego (podobieństwo do wcześniejszych przykładów). Dodatkowo widać, że ala pierwotna i odbita dodały się (zgodnie z zasadą superpozycji) dając w sumie amplitudę taką samą jak amplituda sygnału wejściowego. Linia długa Agata Rachwał i Jacek Mostowicz 10
11 n=51 Powyżej można zaobserwować całkowite dodanie ali pierwotnej i odbitej. Amplitudy sygnałów wejściowego i wyjściowego są sobie równe. Zmierzone wartości czasów narastania i opóźnienia, odczytane z wykresów dla przypadku: R = n t 0 t r , ,0 1,42 Rozbieżności pomiędzy wynikami pomiarów a wartościami teoretycznymi wynikają z zaniedbania strat w przewodniku i dielektryku (założenie linii bezstratnej). Linia długa Agata Rachwał i Jacek Mostowicz 11
12 ZWARCIE: R = 0 n=1 Jak można zaobserwować na powyższym wykresie, sygnał wyjściowy jest mniej zniekształcony niż w przypadku sygnału o czasie trwania porównywalnym z czasem opóźnienia linii. Godnym zauważenia jest akt, że amplituda sygnału wyjściowego jest o połowę mniejsza niż sygnału wejściowego (podobieństwo do wcześniejszych przykładów). n=50 Można zauważyć, że ala pierwotna i odbita odjęły się (zgodnie z zasadą superpozycji), a w rezultacie tłumią się całkowicie. Linia długa Agata Rachwał i Jacek Mostowicz 12
13 Zmierzone wartości czasów narastania i opóźnienia, odczytane z wykresów dla przypadku: R = 0 n t 0 t r 1 0 0,4 51 4,1 0,5 Rozbieżności pomiędzy wynikami pomiarów a wartościami teoretycznymi wynikają z zaniedbania strat w przewodniku i dielektryku (założenie linii bezstratnej). Linia długa Agata Rachwał i Jacek Mostowicz 13
14 Odpowiedź układu na skok jednostkowy napięcia z obciążeniem pojemnościowym Odpowiedz układu ma charakter wykładniczy, asymptotą obciążenia pojemnościowego jest 1. Odpowiedź układu na skok jednostkowy napięcia z obciążeniem indukcyjnym Odpowiedz ma charakter wykładniczy, a asymptotą obciążenia jest 0. Linia długa Agata Rachwał i Jacek Mostowicz 14
15 Kabel Koncentryczny W przypadku kabla koncentrycznego sygnał wejściowy jest zmodyikowany. Wynika to z konieczności wprowadzenia dzielnika napięcia na wejściu, aby dopasować opór nadajnika do oporu kabla. Jako że odbiornik nie jest dopasowany, pojawia się sygnał odbity modyikujący dalszą część wykresu. Można także zauważyć, że amplitudy sygnału pierwotnego i odbitego się różnią i wynoszą odpowiednio: U1 = 476mV i U2 = 412mV. Amplituda sygnału wejściowego wynosi 900mV. Po dopasowaniu opornika przy odbiorniku zmierzono rzeczywisty opór alowy tego kabla, który wynosi 84,8 Ω. Linia długa Agata Rachwał i Jacek Mostowicz 15
16 Aby obliczyć pojemność i indukcyjność na jednostkę długości, korzystamy z przybliżenia linii bezstratnej. Dzięki temu mamy: TR 0 T0 = L0C0 L0 = T L 0R = l l L T 0 0 R C T = 0 = C 0 C R = 0 l R l gdzie: T - zmierzony czas opóźnienia: 374ns ; 0 R - zmierzony opór kabla: 84,5 Ω ; l - długość kabla: 66,6 m; Podstawiając powyższe dane do wzorów, otrzymujemy: L0 = 31,7 μh C0 = 4, 4nF L = 476 nh l m C = 66,1 pf l m 66,6 8 Prędkość rozchodzenia się sygnału: v = l m 1,78 10 m T = 340 ns = s. Czas narastania: T = 374ns. n Tłumienie kabla koncentrycznego można wyliczyć ze wzoru: 2 J 20 log U =, U1 które w tym przypadku wynosi J = 1,25dB. Wnioski 0 Wyniki pomiarów nieco odbiegają od wielkości, które wyliczono w sposób teoretyczny. Największe odchylenia od wartości teoretycznych wykazuje czas narastania, trudno go jednoznacznie wyznaczyć na oscyloskopie. Zamieszczone powyżej wykresy przedstawiają propagacje sygnału w linii. Dla dopasowania sygnał wraz z ilością dołączanych ogniw jest coraz bardziej zdeormowany, rośnie czas narastania i czas opóźnienia. Dla zwarcia: sygnał odbija się i wraca odwrócony w azie. Wraz z ilością dołączanych ogniw występuje ciągłe, powolne wygaszania się sygnałów, aż do ogniwa 51 gdzie następuje całkowite wygaszenie. Dla rozwarcia: amplitudy sygnałów ze źródła i sygnału odbitego powoli się dodają. Sygnał odbity nie jest w przeciwnej azie. Dla ogniwa 51 następuje dodanie się amplitud obydwu sygnałów. Dla kabla koncentrycznego: następuje odbicie od końca, potem sygnał zostaje wzmocniony gdyż, tak jak w przypadku poprzednim dla amplitudy obu sygnałów się dodają. Wyznaczając czas opóźnienia i rezystancję R policzono pojemność i indukcyjność kabla, natomiast mając dana jego długość potraimy policzyć pojemność i indukcyjność na jednostkę długości. Linia długa Agata Rachwał i Jacek Mostowicz 16
Ćwiczenie A1 : Linia długa
Ćwiczenie A1 : Linia długa Jacek Grela, Radosław Strzałka 19 kwietnia 2009 1 Wstęp 1.1 Wzory Podstawowe wzory i zależności które wykorzystywaliśmy w trakcie badania linii: 1. Rezystancja falowa Gdzie:
Bardziej szczegółowoA-1. Linia długa (opóźniająca)
A-1. inia długa 1. Zakres ćwiczenia A-1. inia długa (opóźniająca) wersja 04 2014 Temat obejmuje zbadanie modelu linii długiej oraz odcinka kabla koncentrycznego w aspekcie przesyłania sygnałów elektrycznych,
Bardziej szczegółowoWSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe
Bardziej szczegółowoW celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Bardziej szczegółowoData wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA
WFiIS LABORATORIM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
Bardziej szczegółowoZaprojektowanie i zbadanie dyskryminatora amplitudy impulsów i generatora impulsów prostokątnych (inaczej multiwibrator astabilny).
WFiIS LABOATOIM Z ELEKTONIKI Imię i nazwisko:.. TEMAT: OK GPA ZESPÓŁ N ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Zaprojektowanie i zbadanie
Bardziej szczegółowoBadanie przebiegów falowych w liniach długich
POLITECHNIKA LUBELSKA WYDIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URĄDEŃ ELEKTRYCNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 7 Badanie przebiegów falowych w liniach długich Grupa dziekańska...
Bardziej szczegółowoĆwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.
Ćwiczenie ELE Jacek Grela, Łukasz Marciniak 3 grudnia 2009 1 Wstęp teoretyczny 1.1 Wzmacniacz ładunkoczuły Rys.1 Schemat wzmacniacza ładunkowego. C T - adaptor ładunkowy, i - źródło prądu reprezentujące
Bardziej szczegółowoĆwiczenie A2 : Filtry bierne
Ćwiczenie A2 : Filtry bierne Jacek Grela, Radosław Strzałka 29 marca 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i deinicje, których używaliśmy w obliczeniach: 1. Stała czasowa iltru RC
Bardziej szczegółowoBadanie działania bramki NAND wykonanej w technologii TTL oraz układów zbudowanych w oparciu o tę bramkę.
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Badanie działania
Bardziej szczegółowoZjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.
1. Uproszczony schemat bezstratnej (R = 0) linii przesyłowej sygnałów cyfrowych. Zjawiska w niej występujące, jeśli jest ona linią długą: odbicie fali na końcu linii; tłumienie fali; zniekształcenie fali;
Bardziej szczegółowoWzmacniacze operacyjne
Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie
Bardziej szczegółowou(t)=u R (t)+u L (t)+u C (t)
Szeregowy obwód Źródło napięciowe u( o zmiennej sile elektromotorycznej E(e [u(] Z drugiego prawa Kirchhoffa: u(u (u (u ( ównanie ruchu ładunku elektrycznego: Prąd płynący w obwodzie: di( i t dt u t i
Bardziej szczegółowoĆwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
Bardziej szczegółowoWłasności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
Bardziej szczegółowoBadanie przebiegów falowych w liniach długich
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja
Bardziej szczegółowoLABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy
LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń
Bardziej szczegółowoĆwiczenie nr 65. Badanie wzmacniacza mocy
Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza
Bardziej szczegółowoCEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
Bardziej szczegółowoTranzystor bipolarny LABORATORIUM 5 i 6
Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA
POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 6 Temat: Sprzęgacz kierunkowy.
Bardziej szczegółowoA3 : Wzmacniacze operacyjne w układach liniowych
A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.
Bardziej szczegółowoĆwiczenie: "Obwody prądu sinusoidalnego jednofazowego"
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres
Bardziej szczegółowoA-2. Filtry bierne. wersja
wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne
Bardziej szczegółowoFiltry aktywne filtr środkowoprzepustowy
Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa
Bardziej szczegółowo1 Filtr górnoprzepustowy (różniczkujący) jest to czwórnik bierny CR. Jego schemat przedstawia poniższy rysunek:
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko:.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
Bardziej szczegółowoĆw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)
Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach
Bardziej szczegółowoWFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Ćwiczenie
Bardziej szczegółowoA6: Wzmacniacze operacyjne w układach nieliniowych (diody)
A6: Wzmacniacze operacyjne w układach nieliniowych (diody) Jacek Grela, Radosław Strzałka 17 maja 9 1 Wstęp Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1. Charakterystyka
Bardziej szczegółowoRys. 1. Wzmacniacz odwracający
Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową
Bardziej szczegółowoL ABORATORIUM UKŁADÓW ANALOGOWYCH
WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTRONIKI zima L ABORATORIUM UKŁADÓW ANALOGOWYCH Grupa:... Data wykonania ćwiczenia: Ćwiczenie prowadził: Imię:......... Data oddania sprawozdania: Podpis: Nazwisko:......
Bardziej szczegółowoĆwiczenie F1. Filtry Pasywne
Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ Ćwiczenie F Filtry Pasywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:.
Bardziej szczegółowoAnaliza właściwości filtra selektywnego
Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..
Bardziej szczegółowoBierne układy różniczkujące i całkujące typu RC
Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:
Bardziej szczegółowo1 Wprowadzenie. WFiIS
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko:. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
Bardziej szczegółowoLABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Bardziej szczegółowoPodstawowe układy pracy tranzystora bipolarnego
L A B O A T O I U M A N A L O G O W Y C H U K Ł A D Ó W E L E K T O N I C Z N Y C H Podstawowe układy pracy tranzystora bipolarnego Ćwiczenie opracował Jacek Jakusz 4. Wstęp Ćwiczenie umożliwia pomiar
Bardziej szczegółowoPojęcia podstawowe obwodów prądu zmiennego
Pojęcia podstawowe obwodów prądu zmiennego kłady złożone z elementów biernych Bierne elementy elektroniczne to : opór : u ( i( indukcyjność : di( u( dt i pojemność : q u ( i( dt ozważmy obwód złożony z
Bardziej szczegółowoĆwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza
Bardziej szczegółowoWZMACNIACZ NAPIĘCIOWY RC
WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości
Bardziej szczegółowoWłasności i charakterystyki czwórników
Własności i charakterystyki czwórników nstytut Fizyki kademia Pomorska w Słupsku Cel ćwiczenia. Celem ćwiczenia jest poznanie własności i charakterystyk czwórników. Zagadnienia teoretyczne. Pojęcia podstawowe
Bardziej szczegółowoLaboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A
Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC
Bardziej szczegółowoLaboratorium Elektroniki
Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki Badanie wzmacniaczy tranzystorowych i operacyjnych 1. Wstęp teoretyczny Wzmacniacze są bardzo często i szeroko stosowanym układem elektronicznym.
Bardziej szczegółowoKatedra Elektrotechniki Teoretycznej i Informatyki
Katedra Elektrotechniki Teoretycznej i normatyki aboratorium Teorii Obwodów Przedmiot: Elektrotechnika teoretyczna Numer ćwiczenia: 4 Temat: Obwody rezonansowe (rezonans prądów i napięć). Wprowadzenie
Bardziej szczegółowoSzeregowy obwód RLC. u(t)=u R (t)+u L (t)+u C (t) U L = R U U L C U C DOBROĆ OBWODU. Obwód rezonansowy szeregowy - częstość rezonansowa = 1.
Szerego obwód Źródło napięcio o zmiennej sile elektromotorycznej E(e [] drugiego prawa Kirchhoffa: ównanie ruchu ładunku elektrycznego: jeśli Prąd płynący w obwodzie: e jωt u (u (u ( d i t dt u t i t (
Bardziej szczegółowoL ABORATORIUM UKŁADÓW ANALOGOWYCH
WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTRONIKI zima 2010 L ABORATORIUM UKŁADÓW ANALOGOWYCH Grupa:... Data wykonania ćwiczenia: Ćwiczenie prowadził: Imię:......... Data oddania sprawozdania: Podpis:
Bardziej szczegółowoĆwiczenie F3. Filtry aktywne
Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ 1 Ćwiczenie F3 Filtry aktywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:
Bardziej szczegółowoWYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego
Pracownia Wstępna - - WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Układy złożone z elementów biernych Bierne elementy elektroniczne to : opór R: u ( = Ri( indukcyjność L: di( u( = L i pojemność
Bardziej szczegółowoPRACOWNIA ELEKTRONIKI
PRACOWNIA ELEKTRONIKI Temat ćwiczenia: BADANIE WZMACNIA- CZA SELEKTYWNEGO Z OBWODEM LC NIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTT TECHNIKI. 2. 3. Imię i Nazwisko 4. Data wykonania Data oddania
Bardziej szczegółowoĆw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi:
Wydział: EAIiE Imię i nazwisko (e mail): Rok: Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi: Wstęp Celem ćwiczenia
Bardziej szczegółowoWzmacniacz operacyjny
ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 3 Wzmacniacz operacyjny Grupa 6 Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniaczy operacyjnych do przetwarzania
Bardziej szczegółowoAnaliza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
Bardziej szczegółoworezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym
Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie
Bardziej szczegółowoLaboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW
Laboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW SYMULACJA UKŁADÓW ELEKTRONICZNYCH Z ZASTOSOWANIEM PROGRAMU SPICE Opracował dr inż. Michał Szermer Łódź, dn. 03.01.2017 r. ~ 2 ~ Spis treści Spis treści 3
Bardziej szczegółowoDynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
Bardziej szczegółowoRyszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego
Ryszard Kostecki Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego Warszawa, 3 kwietnia 2 Streszczenie Celem tej pracy jest zbadanie własności filtrów rezonansowego, dolnoprzepustowego,
Bardziej szczegółowoFiltry aktywne filtr górnoprzepustowy
. el ćwiczenia. Filtry aktywne filtr górnoprzepustowy elem ćwiczenia jest praktyczne poznanie właściwości filtrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów filtru.. Budowa
Bardziej szczegółowoĆwiczenie nr 05 1 Oscylatory RF Podstawy teoretyczne Aβ(s) 1 Generator w układzie Colpittsa gmr Aβ(S) =1 gmrc1/c2=1 lub gmr=c2/c1 gmr C2/C1
Ćwiczenie nr 05 Oscylatory RF Cel ćwiczenia: Zrozumienie zasady działania i charakterystyka oscylatorów RF. Projektowanie i zastosowanie oscylatorów w obwodach. Czytanie schematów elektronicznych, przestrzeganie
Bardziej szczegółowoPOLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2
Cel ćwiczenia: Praktyczne poznanie podstawowych parametrów wzmacniaczy operacyjnych oraz ich możliwości i ograniczeń. Wyznaczenie charakterystyki amplitudowo-częstotliwościowej wzmacniacza operacyjnego.
Bardziej szczegółowoIMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM
Instrukcja do ćwiczenia laboratoryjnego. IMPSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Przekształtnik impulsowy z tranzystorem szeregowym słuŝy do przetwarzania energii prądu jednokierunkowego
Bardziej szczegółowoPOMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C
ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.
Bardziej szczegółowoPRACOWNIA ELEKTRONIKI
PRACOWNIA ELEKTRONIKI UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI Ćwiczenie nr Temat ćwiczenia:. 2. 3. Imię i Nazwisko Badanie filtrów RC 4. Data wykonania Data oddania Ocena Kierunek
Bardziej szczegółowoBadanie wzmacniacza niskiej częstotliwości
Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje
Bardziej szczegółowoĆwiczenie 4: Pomiar parametrów i charakterystyk wzmacniacza mocy małej częstotliwości REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie : Pomiar parametrów i charakterystyk wzmacniacza mocy małej
Bardziej szczegółowoCHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Bardziej szczegółowoBADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC
BADANIE SZEREGOWEGO OBWOD REZONANSOWEGO RLC Marek Górski Celem pomiarów było zbadanie krzywej rezonansowej oraz wyznaczenie częstotliwości rezonansowej. Parametry odu R=00Ω, L=9,8mH, C = 470 nf R=00Ω,
Bardziej szczegółowoII. Elementy systemów energoelektronicznych
II. Elementy systemów energoelektronicznych II.1. Wstęp. Główne grupy elementów w układach impulsowego przetwarzania mocy: elementy bierne bezstratne (kondensatory, cewki, transformatory) elementy przełącznikowe
Bardziej szczegółowoWzmacniacz jako generator. Warunki generacji
Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego
Bardziej szczegółowoPracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości
Bardziej szczegółowoCZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.
CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,
Bardziej szczegółowoPRACOWNIA ELEKTRONIKI
PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania
Bardziej szczegółowoĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
Bardziej szczegółowoCzym jest oporność wejściowa anteny i co z tym robić?
Czym jest oporność wejściowa anteny i co z tym robić? Wszyscy wiedzą czym jest oporność wejściowa anteny (impedancja), rzadko jest ona równa oporności wejściowej fidera. Postaram się pokazać jak dopasować
Bardziej szczegółowoPomiar charakterystyk statycznych tranzystora JFET oraz badanie własności sterowanego dzielnika napięcia.
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Pomiar charakterystyk
Bardziej szczegółowoĆwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Bardziej szczegółowoInstrukcja nr 6. Wzmacniacz operacyjny i jego aplikacje. AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 6.
Instrukcja nr 6 Wzmacniacz operacyjny i jego aplikacje AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 6.1 Wzmacniacz operacyjny Wzmacniaczem operacyjnym nazywamy różnicowy
Bardziej szczegółowoTranzystory w pracy impulsowej
Tranzystory w pracy impulsowej. Cel ćwiczenia Celem ćwiczenia jest poznanie właściwości impulsowych tranzystorów. Wyniki pomiarów parametrów impulsowych tranzystora będą porównane z parametrami obliczonymi.
Bardziej szczegółowoBadanie układów aktywnych część II
Ćwiczenie nr 10 Badanie układów aktywnych część II Cel ćwiczenia. Zapoznanie się z czwórnikami aktywnymi realizowanymi na wzmacniaczu operacyjnym: układem różniczkującym, całkującym i przesuwnikiem azowym,
Bardziej szczegółowo1. Nadajnik światłowodowy
1. Nadajnik światłowodowy Nadajnik światłowodowy jest jednym z bloków światłowodowego systemu transmisyjnego. Przetwarza sygnał elektryczny na sygnał optyczny. Jakość transmisji w dużej mierze zależy od
Bardziej szczegółowoBadanie właściwości multipleksera analogowego
Ćwiczenie 3 Badanie właściwości multipleksera analogowego Program ćwiczenia 1. Sprawdzenie poprawności działania multipleksera 2. Badanie wpływu częstotliwości przełączania kanałów na pracę multipleksera
Bardziej szczegółowoRyszard Kostecki. Badanie własności układu RLC
Ryszard Kostecki Badanie własności układu RLC Warszawa, marca Streszczenie Celem tej pracy jest zbadanie własności układu oscylującego RLC dla dwóch różnych wartości rezystancji R. Podstawy teoretyczne
Bardziej szczegółowoĆwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:
Ćwiczenie Badanie właściwości dynamicznych obiektów II rzędu Program ćwiczenia:. Pomiary metodą skoku jednostkowego a. obserwacja charakteru odpowiedzi obiektu dynamicznego II rzędu w zależności od współczynnika
Bardziej szczegółowoĆwiczenie nr 11. Projektowanie sekcji bikwadratowej filtrów aktywnych
Ćwiczenie nr 11 Projektowanie sekcji bikwadratowej filtrów aktywnych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi filtrami elektrycznymi o charakterystyce dolno-, środkowo- i górnoprzepustowej,
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW. grupa: A
POLTECHNKA POZNAŃSKA FLA W PLE LABORATORM ELEKTRONK TEOR OBWODÓW numer ćwiczenia: 4 data wykonania ćwiczenia: 07.11.2002 data oddania sprawozdania: 28.11.202 OCENA: tytuł ćwiczenia: Przerzutnik Schmitta
Bardziej szczegółowoPodstawowe zastosowania wzmacniaczy operacyjnych
ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych
Bardziej szczegółowoWSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część VI Sprzężenie zwrotne Wzmacniacz operacyjny Wzmacniacz operacyjny w układach z ujemnym i dodatnim sprzężeniem zwrotnym Janusz Brzychczyk IF UJ Sprzężenie zwrotne Sprzężeniem
Bardziej szczegółowoFILTRY AKTYWNE. Politechnika Wrocławska. Instytut Telekomunikacji, Teleinformatyki i Akustyki. Instrukcja do ćwiczenia laboratoryjnego
Politechnika Wrocławska Instytut Telekomunikacji, Teleinormatyki i Akustyki Zakład Układów Elektronicznych Instrukcja do ćwiczenia laboratoryjnego FILTY AKTYWNE . el ćwiczenia elem ćwiczenia jest praktyczne
Bardziej szczegółowoTemat: Wzmacniacze selektywne
Temat: Wzmacniacze selektywne. Wzmacniacz selektywny to układy, których zadaniem jest wzmacnianie sygnałów o częstotliwości zawartej w wąskim paśmie wokół pewnej częstotliwości środkowej f. Sygnały o częstotliwości
Bardziej szczegółowoWIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH
POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA NIESTACJONARNE Semestr III LABORATORIUM UKŁADÓW ELEKTRONICZNYCH Ćwiczenie Temat: Badanie wzmacniacza operacyjnego
Bardziej szczegółowoTEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych
Bardziej szczegółowoWZMACNIACZ OPERACYJNY
1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.
Bardziej szczegółowoTranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.
ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie
Bardziej szczegółowoBadanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna
Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia statycznego obiektu inercyjnego I rzędu 2. orekcja
Bardziej szczegółowoDielektryki i Magnetyki
Dielektryki i Magnetyki Zbiór zdań rachunkowych dr inż. Tomasz Piasecki tomasz.piasecki@pwr.edu.pl Wydanie 2 - poprawione ponownie 1 marca 2018 Spis treści 1 Zadania 3 1 Elektrotechnika....................................
Bardziej szczegółowoStatyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
Bardziej szczegółowoKatedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach
Bardziej szczegółowoIndukcja wzajemna. Transformator. dr inż. Romuald Kędzierski
Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala
Bardziej szczegółowoBADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku
BADANIE FILTRÓW Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z właściwościami filtrów. Zagadnienia teoretyczne. Filtry częstotliwościowe Filtrem nazywamy układ o strukturze czwórnika, który przepuszcza
Bardziej szczegółowoWykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu
Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód
Bardziej szczegółowoPOMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze
Bardziej szczegółowo