VIII Warmińsko Mazurskie Zawody Matematyczne
|
|
- Bronisław Karpiński
- 8 lat temu
- Przeglądów:
Transkrypt
1 Zadanie 1. VIII Warmińsko Mazurskie Zawody Matematyczne Szkoła podstawowa 13 maja 2010r. W pewnej szkole, począwszy od 2010 roku, organizowane są: co dwa lata turniej koszykówki, co trzy lata turniej siatkówki, a co pięć lat turniej piłki nożnej. W którym roku, przed upływem 2099 roku, odbędą się po raz ostatni jednocześnie wszystkie trzy imprezy? Rozwiązanie. Turniej koszykówki odbywa się co 2 lata Turniej siatkówki odbywa się co 3 lata Turniej piłki nożnej odbywa się co 5 lat Wszystkie turnieje odbywają się po raz pierwszy w 2010 roku Wszystkie trzy imprezy po raz kolejny odbędą się jednocześnie po upływie lat, których liczba jest wielokrotnością jednocześnie liczb: 2,3 i 5. Najwcześniejsza impreza odbędzie się po NW W (2, 3, 5) = 30 latach, tzn. w 2040 roku. Kolejne lata jednoczesnego przeprowadzenia trzech turniejów: 2070, 2100, 2130, itd. Wszystkie trzy imprezy odbędą się jednocześnie, po raz ostatni przed upływem 2099 roku, w 2070 roku. Zadanie 2. Prostokąt ABCD tworzy pięć mniejszych, identycznych prostokątów takich, jak na poniższym rysunku. Obliczyć obwód prostokąta ABCD, jeśli jego pole jest równe 6750 cm 2.
2 Rozwiązanie. Niech a i b oznaczają długości, odpowiednio, krótszego i dłuższego boku mniejszego prostokąta. Ponieważ pole prostokąta ABCD jest równe sumie pól pięciu, identycznych, mniejszych prostokątów, więc pole jednego mniejszego prostokąta jest równe, w cm 2, Ponieważ = a = 2b, więc b = 3 2 a. Wynika stąd, że czyli a 3 2 a = 3 2 a2 = 1350, 3a 2 = Zatem a 2 = 900, skąd wynika, że
3 a = 30 oraz b = 3 30 = Obwód prostokąta ABCD, w centymetrach, jest równy 5a + 4b = = = 330. Zadanie 3. Janek przeczytał książkę liczącą 200 stron. Ołówkiem zaznaczał numery każdej nieparzystej strony. Dodał cyfry wszystkich zaznaczonych liczb. Jaką sumę otrzymał? Rozwiązanie. Książka licząca 200 stron ma 100 stron o numerach nieparzystych. Należy zatem znaleźć sumę cyfr pierwszych 100 nieparzystych liczb naturalnych. Suma cyfr w rzędzie jedności: 1. cyfra 1 pojawia się w rzędzie jedności 20 razy w liczbach: 1, 11, 21,..., 91, 101, 111, 121,..., 191, 2. cyfra 3 pojawia się w rzędzie jedności 20 razy w liczbach: 3, 13, 23,..., 93, 103, 113, 123,..., 193, 3. cyfra 5 pojawia się w rzędzie jedności 20 razy w liczbach: 5, 15, 25,..., 95, 105, 115, 125,..., 195, 4. cyfra 7 pojawia się w rzędzie jedności 20 razy w liczbach: 7, 17, 27,..., 97, 107, 117, 127,..., 197, 5. cyfra 9 pojawia się w rzędzie jedności 20 razy w liczbach: 9, 19, 29,..., 99, 109, 119, 129,..., 199. Zatem suma cyfr w rzędzie jedności we wszystkich rozważanych liczbach jest równa Suma cyfr w rzędzie dziesiątek: = 500. cyfra 0 pojawia się w rzędzie dziesiątek 5 razy w liczbach: 101, 103, 105, 107, 109, cyfra 1 pojawia się w rzędzie dziesiątek 10 razy w liczbach: 11, 13, 15, 17, 19 oraz w liczbach 111, 113, 115, 117, 119, cyfra 2 pojawia się w rzędzie dziesiątek 10 razy w liczbach: 21, 23, 25, 27, 29 oraz w liczbach 121, 123, 125, 127, 129, cyfra 3 pojawia się w rzędzie dziesiątek 10 razy w liczbach: 31, 33, 35, 37, 39 oraz w liczbach 131, 133, 135, 137, 139,. cyfra 9 pojawia się w rzędzie dziesiątek 10 razy w liczbach: 91, 93, 95, 97, 99 oraz w liczbach 191, 193, 195, 197, 199.
4 Zatem suma cyfr w rzędzie dziesiątek we wszystkich rozważanych liczbach jest równa = = 450. Suma cyfr w rzędzie setek: cyfra 1 pojawia się w rzędzie setek we wszystkich liczbach trzycyfrowych, tzn. 50 razy w liczbach: 101, 103, 105, 107, 109,..., 191, 193, 195, 197, 199. Zatem suma cyfr w rzędzie setek we wszystkich rozważanych liczbach jest równa 50 1 = 50. Suma cyfr wszystkich rozważanych liczb, tzn. suma cyfr wszystkich numerów stron zaznaczonych w książce przez Janka jest równa: = Zadanie 4. Wewnątrz ośmiokąta foremnego ABCDEF GH obrano punkt I w taki sposób, że trójkąt ABI jest równoboczny. Oblicz miarę kąta wypukłego BIH. Rozwiązanie. Obliczenie miary kąta wewnętrznego ośmiokąta foremnego. Ośmiokąt można podzielić na 8 trójkątów równoramiennych - dwa wierzchołki każdego tójkąta są sąsiednimi wierzchołkami ośmiokąta, zaś trzeci wierzchołek jest środkiem ośmiokąta. Suma miar wszystkich ośmiu kątów wewnętrznych trójkątów o wierzchołku O jest równa 360. Każdy z kątów trójkątów o wierzchołku O ma miarę Miara α kąta ABO jest równa 360 : 8 = ( ) = = 67, 5.
5 Kąt wewnętrzny ośmiokąta ma miarę 2 67, 5 = 135. Ustalenie położenia punktu I. Kąt wewnętrzny każdego z ośmiu identycznych trójkątów o wierzchołku O ma miarę 45, Każdy z kątów trójkąta równobocznego ma miarę 60, Zatem punkt I znajduje się wewnątrz trójkąta ABO. Obliczenie miary kąta wypukłego BIH
6 Miara każdego kąta wewnętrznego ABI jest równa 60. Trójkąt HAI jest równoramienny: długość boku HA jest równa długości boku AI. Wynika stąd, że HAI ma miarę równą różnicy miar kąta wewnętrznego ośmiokąta oraz miary kąta wewnętrznego trójkąta ABI, tzn = 75. Miara kąta HIA jest równa 1 2 ( ) = 52, 5. Kąt wypukły BIH ma miarę równą sumie miar AIB oraz HIA, czyli 52, = 112, 5. Zadanie 5. Liczby w I i II rzędzie wypisano według tej samej reguły. liczbę w II rzędzie. Znajdź brakujące liczby: Następnie zakryto drugą, trzecią i czwartą I rząd II rząd 8 52
7 Rozwiązanie. Ustalenie reguły zapisu liczb: Zauważmy, że w I rzędzie trzecia liczba jest sumą pierwszej i drugiej, czwarta jest sumą drugiej i trzeciej, a piąta jest sumą trzeciej i czwartej. Wyznaczenie zakrytych liczb w II rzędzie. Oznaczmy drugą liczbę przez a. Wówczas, zgodnie z regułą, mamy: trzecia liczba : 8 + a, czwarta liczba : a a = 2a + 8, piąta liczba : 8 + a + 2a + 8 = a. Ponieważ piąta liczba jest równa 52, więc Wynika stąd, że a = 12. Zatem a = 52. II rząd
Bukiety matematyczne dla szkoły podstawowej
Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ 8 X 2002 Bukiet 1 Dany jest sześciokąt ABCDEF, którego wszystkie kąty są równe 120. Proste AB i CD przecinają się w punkcie
SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania
SPIS TREŚCI Do Nauczyciela... 6 Regulamin konkursu... 7 Zadania Liczby i działania... 9 Procenty... 14 Figury geometryczne... 19 Kąty w kole... 24 Wyrażenia algebraiczne... 29 Równania i nierówności...
Wersja testu A 25 września 2011
1. Czy istnieje liczba całkowita dodatnia o sumie cyfr równej 399, podzielna przez a) 3 ; b) 5 ; c) 6 ; d) 9? 2. Czy równość (a+b) 5 = a 3 +3a 2 b+3ab 2 +b 3 jest prawdziwa dla a) a = 8/7, b = 1/7 ; b)
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
IV WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
IV WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ROK SZKOLNY 2017/2018 ELIMINACJE REJONOWE Kod pracy - M A T - Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 6 stron
XIII Olimpiada Matematyczna Juniorów
XIII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (8 września 017 r.) Rozwiązania zadań testowych 1. W każdym z trzech lat 018, 019 i 00 pensja pana Antoniego będzie o 5% większa
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018 14.02.2018 1. Test konkursowy zawiera 23 zadania. Są to zadania zamknięte i otwarte. Na
VIII Olimpiada Matematyczna Gimnazjalistów
VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 29 PAŹDZIERNIKA 2013 R. 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH
...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
WOJEWÓDZKI KONKURS PRZEDMIOTOWY
Pieczątka szkoły Kod ucznia Suma punktów Numer zadania 1-17 18 19 20 Liczba punktów WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2014/2015 5 LISTOPADA 2014R. 1. Test konkursowy
x Kryteria oceniania
Wojewódzki Konkurs z matematyki dla uczniów szkół podstawowych rok szkolny 216/21 Etap I - szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o
2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.
1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej
Planimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA
ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest
Egzamin w klasie III gimnazjum Część matematyczna
Egzamin w klasie III gimnazjum Część matematyczna Szkice rozwiązań zadań Zadanie 1. Ponieważ harcerze zaczęli marsz o 13:00, a skończyli o 15:30 więc rzeczywiście maszerowali 2,5 godziny Z autobusu do
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 018/019 17.1.018 1. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV SZKOŁA
GRUPA A 6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV IMIĘ I NAZWISKO SZKOŁA KLASA Masz do rozwiązania 12 zadań, za które możesz otrzymać
ARKUSZ II
www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2017/2018 04.01.2018 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
2a a a + 5 = 27 6a + 9 = % 18 = = 54
Wojewódzki Konkurs matematyczny dla uczniów szkół podstawowych od klas IV województwa pomorskiego, rok szkolny 2017/2018 Etap II - rejonowy W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2016/2017 18.11.2016 1. Test konkursowy zawiera 22 zadania. Są to zadania zamknięte
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013
.... pieczątka WKK Kod ucznia Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 ETAP WOJEWÓDZKI Drogi Uczniu! Witaj na etapie wojewódzkim konkursu matematycznego.
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych zestaw A klasa I 1. Zbiór wszystkich środków okręgów (leżących na jednej płaszczyźnie) przechodzących przez: a)
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 011/01 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki lutego 01 r. 90 minut Informacje dla ucznia:
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa I
1 MATEMATYKA - poziom rozszerzony klasa I CZERWIEC 2015 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 17). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2016/2017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013
Etap wojewódzki 23 lutego 2013 r. Instrukcja dla ucznia Godzina 11.00 Kod ucznia 1. Sprawdź, czy zestaw zawiera 8 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i
Kryteria punktowania zadań - KRAKOWSKA MATEMATYKA 2012/2013. Etap międzyszkolny - KRAKÓW MIASTO UCZONYCH I ŻAKÓW klasa piąta 1 D) 966 1
Kryteria punktowania zadań - KRAKOWSKA MATEMATYKA 0/0 Etap międzyszkolny - KRAKÓW MIASTO UCZONYCH I ŻAKÓW klasa piąta Zadanie Rozwiązanie Kryteria oceniania D) 966 Max. liczba pkt. D) W XIV wieku B) 75
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI
Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 018/019.10.018 1. Test konkursowy zawiera zadania. Są to zadania zamknięte
KONKURS MATEMATYCZNY dla uczniów szkół podstawowych w roku szkolnym 2013/2014. I stopień zawodów ( szkolny) 15 października 2013
KONKURS MTEMTYZNY dla uczniów szkół podstawowych w roku szkolnym 201/201 I stopień zawodów ( szkolny) 15 października 201 Propozycja punktowania rozwiązań zadań Uwaga: Za każde poprawne rozwiązanie inne
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)
Kod ucznia Nazwisko i imię ucznia M A T E M A T Y K A klasa -(pp) MAJ 07 Czas pracy: 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron (zadania -4). Ewentualny brak zgłoś przewodniczącemu
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria
1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.
Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych od klas IV województwa pomorskiego, rok szkolny 2017/2018 Etap III - wojewódzki
Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych od klas IV województwa pomorskiego, rok szkolny 2017/2018 Etap III - wojewódzki W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe
ZADANIA KONKURSOWE Suma trzech kolejnych liczb nieparzystych jest równa 27. Największa z nich to: A. 11 B. 9 C. 8 D. 7
ZADANIA KONKURSOWE 2019 ZADANIA ZAMKNIĘTE 1. Suma trzech kolejnych liczb nieparzystych jest równa 27. Największa z nich to: A. 11 B. 9 C. 8 D. 7 2. Wszystkich liczb pięciocyfrowych, w których suma cyfr
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2018/2019 19.12.2018 R. 1. Test konkursowy zawiera 23 zadania. Są to zadania zamknięte i otwarte.
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj
Jarosław Wróblewski Matematyka dla Myślących, 2008/09
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (dokończenie).
Zadanie 1. Przekątna prostopadłościanu o wymiarach ma długość A. 2 5 B. 2 3 C. 5 2 D Zadanie 2.
Zadanie 1. Przekątna prostopadłościanu o wymiarach 3 4 5 ma długość A. 2 5 B. 2 3 C. 5 2 D. 2 15 Zadanie 2. Pole powierzchni całkowitej prostopadłościanu jest równe 198. Stosunki długości krawędzi prostopadłościanu
MATURA PRÓBNA PODSTAWOWA GEOMETRIA Z TRYGONOMETRIA
www.zadania.info NJWIEKSZY INTERNETOWY ZIÓR ZŃ Z MTEMTYKI MTUR PRÓN POSTWOW GEOMETRI Z TRYGONOMETRI ZNIE 1 (1 PKT) W trójkacie prostokatnym naprzeciw kata ostrego α leży przyprostokatna długości 3 cm.
Małopolski Konkurs Matematyczny r. etap wojewódzki
Kod ucznia Miejsce na metryczkę ucznia Drogi Uczniu! Małopolski Konkurs Matematyczny dla uczniów szkół podstawowych województwa małopolskiego Etap wojewódzki rok szkolny 2014/2015 1. Przed Tobą zestaw
Małopolski Konkurs Matematyczny r. etap wojewódzki A B C D E
SCHEMAT PUNKTOWANIA ZADAŃ Z KARTY ODPOWIEDZI Numer zadania SCHEMAT PUNKTOWANIA ZADAŃ TESTOWYCH Liczba punktów za zadanie Miejsce na odpowiedź ucznia A B C D E 1 X X X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 11 X
Matematyka podstawowa IX. Stereometria
Zadania wprowadzające: Matematyka podstawowa IX Stereometria 1. Pole powierzchni całkowitej sześcianu jest równe 54. Oblicz objętość sześcianu. 2. Pole powierzchni sześcianu jest równe 96.Oblicz długość
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018
Etap szkolny 20 listopada 2017 r. Godzina 9.00 Imię/ Imiona ucznia - Nazwisko ucznia - klasa - Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 7 stron. Ewentualny brak stron lub inne usterki zgłoś
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. (dla klas trzecich liceum i klas czwartych technikum)
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WPISUJE UCZEŃ KOD PESEL PRZEDMATURALNA DIAGNOZA KSZTAŁTUJĄCA Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 018 (dla klas trzecich liceum
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Najmniejsza liczba całkowita
Internetowe Kółko Matematyczne 2003/2004
Internetowe Kółko Matematyczne 2003/2004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla gimnazjum Zestaw I (12 IX) Zadanie 1. Znajdź cyfry A, B, C, spełniające równość: a) AB A = BCB, b) AB A = CCB. Zadanie
Zadanie 1. ( 0-5. ) Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe lub F jeśli jest fałszywe.
Zadanie 1. ( -5. ) Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe lub F jeśli jest fałszywe. a) Liczby: 1,15 i 3 1: są równe. P F b) Liczba 5 5 5 jest większa od liczby 6 6. 6 P F c) Średnia
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2016/2017 11.01.2017 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
XV Olimpiada Matematyczna Juniorów
XV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (26 września 209 r.) Rozwiązania zadań testowych. odatnia liczba a jest mniejsza od. Wynika z tego, że a) a 2 > a; b) a > a; c)
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2013/2014
Etap szkolny 5 listopada 2013 r. Godzina 10.00 Kod ucznia Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 7 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i na
Instrukcja dla zdającego Czas pracy: 170 minut
MATEMATYKA klasa pierwsza (pp) CZERWIEC 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego
1. Proporcjonalnością prostą jest zależność opisana wzorem: x 5
Matematyka Liceum Klasa II Zakres podstawowy Pytania egzaminacyjne 07. Proporcjonalnością prostą jest zależność opisana wzorem: 5 A. y = B. y = 5 C. y = D. y =.. Dana jest funkcja liniowa f() = + 4. Które
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. rok szkolny 2016/2017. Etap III etap wojewódzki- klucz odpowiedzi
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2016/2017 Etap III etap wojewódzki- klucz odpowiedzi W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą
Mecz Matematyczny. Rozwiązania 11 marca 2016
Mecz Matematyczny Rozwiązania 11 marca 016 Zadanie 1 Na stole leży 9 cuierków. Adam i Bartek grają w następującą grę: każdy z nich w swoim ruchu zabiera ze stołu od 1 do 4 cukierków. Przegrywa gracz, który
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut
sumaryczna liczba punktów Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2.
Życzymy powodzenia w rozwiązywaniu zadań!
Kod Ucznia Porąbka Uszewska, 21 maja 2014 r. Test Liczba punktów za zadanie otwarte Zad. 1-13 1 2 3 4 5 6 7 8 9 10 razem POWIATOWY KONKURS MATEMATYCZNY DLA UCZNIÓW KLAS V ETAP FINAŁOWY Celem obliczeń nie
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
d) a n = e) a n = n 3 - n 2-16n + 16 f) a n = n 3-2n 2-50n +100
Ciągi - zadania Zad. 1 Oblicz sześć początkowych wyrazów ciągu (a n ) określonego wzorem a) a n = 3n + 2 b) a n = (n - 2)n c) a n = n 2-4 d) a n =n e) a n = f) a n = g) a n =(-1) n 2 n+3 h) a n = n - 2
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). Ewentualny
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 80866 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Przekrój osiowy
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj
Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2018/2019 28.02.2019 R. 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.
MATURA Przygotowanie do matury z matematyki
MATURA 2012 Przygotowanie do matury z matematyki Część VII: Planimetria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2011/2012
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2011/2012 Etap II Klasa IV Marcin, Michał i Bartek będąc w gościach zostali poczęstowani trzema rodzajami ciast: sernikiem, keksem
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY. 18 listopada 2013 r. godz. 13:00
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY 18 listopada 2013 r. godz. 13:00 Kod pracy ucznia Suma punktów Czas pracy: 90 minut Liczba punktów możliwych do uzyskania: 30
Zadanie 4. Krawędź sześcianu jest o 6 krótsza od jego przekątnej. Oblicz pole powierzchni całkowitej tego sześcianu
Zadanie 4. Krawędź sześcianu jest o 6 krótsza od jego przekątnej. Oblicz pole powierzchni całkowitej tego sześcianu Zadanie 5. Sześcian o krawędzi 10 przecięto płaszczyzną zawierającą przekątną dolnej
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 2 KWIETNIA 204 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 2 2 3 2 3 jest równa
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:
LUBELSKA PRÓBA PRZED MATUR MATEMATYKA - poziom rozszerzony LO
1 MATEMATYKA - poziom rozszerzony LO MAJ 2017 KLASA 2 Instrukcja dla zdaj cego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 16). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego
Szkolna Liga Matematyczna zestaw nr 3 dla klasy 3
zestaw nr 3 dla klasy 3 W magazynie stoją dwa worki z ryżem. W pierwszym worku jest trzykrotnie więcej ryżu niż w drugim, a w drugim o 24 kg mniej niż w pierwszym. Ile ryżu znajduje się łącznie w obydwu
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2015/2016 13 STYCZNIA 2016 R. 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Kuratorium Oświaty w Lublinie KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2018/2019 ETAP TRZECI
Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły Liczba uzyskanych punktów KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2018/2019 ETAP
Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5.
Matematyka Zadanie 1. Oblicz liczby Zadanie. Oblicz Zadanie 3. Wykaż, że liczba jest podzielna przez Zadanie 4. Wykaż, że liczba 30 0 jest podzielna przez 5. Zadanie 5. n 1 Uzasadnij, że prawdziwa jest